MergedTrie: Efficient textual indexing

The accessing and processing of textual information (i.e. the storing and querying of a set of strings) is especially important for many current applications (e.g. information retrieval and social networks), especially when working in the fields of Big Data or IoT, which require the handling of very...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 14; no. 4; p. e0215288
Main Authors: Ferrández, Antonio, Peral, Jesús
Format: Journal Article
Language:English
Published: United States Public Library of Science 23.04.2019
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accessing and processing of textual information (i.e. the storing and querying of a set of strings) is especially important for many current applications (e.g. information retrieval and social networks), especially when working in the fields of Big Data or IoT, which require the handling of very large string dictionaries. Typical data structures for textual indexing are Hash Tables and some variants of Tries such as the Double Trie (DT). In this paper, we propose an extension of the DT that we have called MergedTrie. It improves the DT compression by merging both Tries into a single and by segmenting the indexed term into two fixed length parts in order to balance the new Trie. Thus, a higher overlapping of both prefixes and suffixes is obtained. Moreover, we propose a new implementation of Tries that achieves better compression rates than the Double-Array representation usually chosen for implementing Tries. Our proposal also overcomes the limitation of static implementations that does not allow insertions and updates in their compact representations. Finally, our MergedTrie implementation experimentally improves the efficiency of the Hash Tables, the DTs, the Double-Array, the Crit-bit, the Directed Acyclic Word Graphs (DAWG), and the Acyclic Deterministic Finite Automata (ADFA) data structures, requiring less space than the original text to be indexed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0215288