Does insulin resistance influence neurodegeneration in non-diabetic Alzheimer’s subjects?

Background Type 2 diabetes is a risk factor for Alzheimer’s disease (AD), and AD brain shows impaired insulin signalling. The role of peripheral insulin resistance on AD aetiopathogenesis in non-diabetic patients is still debated. Here we evaluated the influence of insulin resistance on brain glucos...

Full description

Saved in:
Bibliographic Details
Published in:Alzheimer's research & therapy Vol. 13; no. 1; pp. 47 - 11
Main Authors: Femminella, Grazia Daniela, Livingston, Nicholas R., Raza, Sanara, van der Doef, Thalia, Frangou, Eleni, Love, Sharon, Busza, Gail, Calsolaro, Valeria, Carver, Stefan, Holmes, Clive, Ritchie, Craig W., Lawrence, Robert M., McFarlane, Brady, Tadros, George, Ridha, Basil H., Bannister, Carol, Walker, Zuzana, Archer, Hilary, Coulthard, Elizabeth, Underwood, Ben, Prasanna, Aparna, Koranteng, Paul, Karim, Salman, Junaid, Kehinde, McGuinness, Bernadette, Passmore, Anthony Peter, Nilforooshan, Ramin, Macharouthu, Ajayverma, Donaldson, Andrew, Thacker, Simon, Russell, Gregor, Malik, Naghma, Mate, Vandana, Knight, Lucy, Kshemendran, Sajeev, Tan, Tricia, Holscher, Christian, Harrison, John, Brooks, David J., Ballard, Clive, Edison, Paul
Format: Journal Article
Language:English
Published: London BioMed Central 17.02.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:1758-9193, 1758-9193
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Type 2 diabetes is a risk factor for Alzheimer’s disease (AD), and AD brain shows impaired insulin signalling. The role of peripheral insulin resistance on AD aetiopathogenesis in non-diabetic patients is still debated. Here we evaluated the influence of insulin resistance on brain glucose metabolism, grey matter volume and white matter lesions (WMLs) in non-diabetic AD subjects. Methods In total, 130 non-diabetic AD subjects underwent MRI and [18F]FDG PET scans with arterial cannula insertion for radioactivity measurement. T1 Volumetric and FLAIR sequences were acquired on a 3-T MRI scanner. These subjects also had measurement of glucose and insulin levels after a 4-h fast on the same day of the scan. Insulin resistance was calculated by the updated homeostatic model assessment (HOMA2). For [18F]FDG analysis, cerebral glucose metabolic rate (rCMRGlc) parametric images were generated using spectral analysis with arterial plasma input function. Results In this non-diabetic AD population, HOMA2 was negatively associated with hippocampal rCMRGlc, along with total grey matter volumes. No significant correlation was observed between HOMA2, hippocampal volume and WMLs. Conclusions In non-diabetic AD, peripheral insulin resistance is independently associated with reduced hippocampal glucose metabolism and with lower grey matter volume, suggesting that peripheral insulin resistance might influence AD pathology by its action on cerebral glucose metabolism and on neurodegeneration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1758-9193
1758-9193
DOI:10.1186/s13195-021-00784-w