The artificial intelligence-based agricultural field irrigation warning system using GA-BP neural network under smart agriculture
This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly,...
Uložené v:
| Vydané v: | PloS one Ročník 20; číslo 1; s. e0317277 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Public Library of Science
17.01.2025
Public Library of Science (PLoS) |
| Predmet: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10
−4
to 3.68×10
−4
and 2.38×10
−4
to 1.66×10
−4
, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making. |
|---|---|
| AbstractList | This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model's Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10-4 to 3.68×10-4 and 2.38×10-4 to 1.66×10-4, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making. This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model's Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53x10.sup.-4 to 3.68x10.sup.-4 and 2.38x10.sup.-4 to 1.66x10.sup.-4, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making. This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10−4 to 3.68×10−4 and 2.38×10−4 to 1.66×10−4, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making. This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10 −4 to 3.68×10 −4 and 2.38×10 −4 to 1.66×10 −4 , respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making. This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model's Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10-4 to 3.68×10-4 and 2.38×10-4 to 1.66×10-4, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making.This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model's Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10-4 to 3.68×10-4 and 2.38×10-4 to 1.66×10-4, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making. This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10 −4 to 3.68×10 −4 and 2.38×10 −4 to 1.66×10 −4 , respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making. |
| Audience | Academic |
| Author | Wang, Xiying |
| Author_xml | – sequence: 1 givenname: Xiying orcidid: 0009-0002-7590-1922 surname: Wang fullname: Wang, Xiying |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39823438$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk01v1DAQhiNURD_gHyCIhITgkCWOk9jhtlRQVqpUBIWr5TjjrIvXXmxHpUf-Oc5uWu1WFUI5JJ4878zkzcxxcmCsgSR5jvIZwgS9u7KDM1zP1jE8yzEiBSGPkiPU4CKrixwf7DwfJsfeX-V5hWldP0kOcUMLXGJ6lPy5XELKXVBSCcV1qkwArVUPRkDWcg9dynunxKDD4OJ7qUB3qXJO9Twoa9Jr7owyfepvfIBVOvjxcDbPPnxJDWwkBsK1dT_TwXTgUr-K1XZywtPkseTaw7PpfpJ8__Tx8vRzdn5xtjidn2eixiRkHS5zXneAZdMhTktcVgKLhktacgwSMG0JtARLVEMOLRJdXhJOUSUrCoK2-CR5uc271tazyT3PMKpqQoq6qSKx2BKd5Vds7VRs9YZZrtgmYF3PRqeEBkZiZS6kxDi2IqXkABwVYydCiI6gmOvNVM3ZXwP4wFbKi2gtN2CHbVmao7omEX11D324uYnqeayvjLTBcTEmZfP4MxtMG1RGavYAFa8OVkrESZEqxvcEb_cEkQnwO_R88J4tvn39f_bixz77eoddAtdh6a0expnx--CL6euHdgXdne23IxqBcgsIZ713IO8QlLNxE27tYuMmsGkTouz9PZlQYTOy0RGl_y3-CxJzEak |
| CitedBy_id | crossref_primary_10_3390_w17091304 crossref_primary_10_3390_technologies13080366 crossref_primary_10_12688_f1000research_161865_2 crossref_primary_10_3390_agriculture15151703 |
| Cites_doi | 10.1007/s11630-022-1766-7 10.1007/s00521-022-07377-0 10.1089/big.2021.0242 10.1109/ICSITech.2015.7407796 10.1016/j.compstruct.2019.111739 10.3390/w11091795 10.1016/j.agwat.2019.105953 10.3390/buildings12040438 10.1016/j.iswcr.2022.03.004 10.2298/TSCI220307121J 10.1016/j.scitotenv.2020.140338 10.1038/s41586-021-04223-6 10.1016/B978-0-12-816514-0.00014-X 10.1186/s12879-021-05973-4 10.1016/j.scitotenv.2020.142761 10.1007/s11063-022-11055-6 10.1016/j.dibe.2022.100113 10.3390/s21093079 10.1109/JSEN.2021.3069266 10.1007/s11227-020-03404-w 10.1016/j.envsoft.2022.105436 10.1016/j.uclim.2021.101078 10.1007/s11063-020-10363-z 10.1080/13241583.2021.1936907 10.1007/s40745-021-00354-9 10.3390/axioms12070613 10.1007/s11042-020-10139-6 10.1016/j.aej.2020.06.008 10.3390/ma15041477 10.32604/iasc.2022.016543 10.1016/j.agwat.2021.106838 10.1007/s11269-022-03401-z 10.3390/app13095317 10.1142/S0219691322500308 10.1371/journal.pone.0233723 10.1016/j.jcis.2023.02.030 10.1007/s00521-020-05604-0 10.1177/03611981221083311 10.1155/2021/1718234 10.3390/electronics10212689 10.1016/j.uclim.2023.101630 10.17762/turcomat.v12i11.6155 10.1111/pce.13970 10.1016/j.aiia.2022.09.007 10.3390/en16093632 10.1007/s12065-019-00327-1 10.1142/S0218001419590286 10.1016/j.ijhydene.2021.03.132 10.1093/jxb/erab090 10.1080/00103624.2022.2118291 10.1109/ACCESS.2020.3002928 10.1109/MIS.2022.3201553 10.1109/ACCESS.2021.3075159 10.1007/s00521-020-05035-x 10.3390/electronics11193022 10.1016/j.future.2021.08.006 10.1016/j.commatsci.2020.110067 10.1038/s41598-023-28855-y 10.1109/ACCESS.2020.2971969 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 DOA |
| DOI | 10.1371/journal.pone.0317277 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Opposing Viewpoints (Gale in Context) Science (Gale in Context) ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database ProQuest Nursing and Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Agriculture |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3156772695 oai_doaj_org_article_7c9aacff33a84fffaeea124a3ecccd71 A823938914 39823438 10_1371_journal_pone_0317277 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c637t-d340a6de3f9d1a84345c3c9af84a3efe38b7eb73f16e0eb1cd047a815f58ec8b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001407853100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:18:42 EDT 2025 Mon Nov 10 04:29:37 EST 2025 Fri Sep 05 14:05:54 EDT 2025 Tue Oct 07 09:15:14 EDT 2025 Sat Nov 29 13:50:02 EST 2025 Sat Nov 29 10:29:32 EST 2025 Wed Nov 26 10:45:40 EST 2025 Wed Nov 26 10:45:32 EST 2025 Mon Dec 01 06:32:00 EST 2025 Mon Jul 21 05:33:42 EDT 2025 Sat Nov 29 02:49:15 EST 2025 Tue Nov 18 22:43:57 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Copyright: © 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c637t-d340a6de3f9d1a84345c3c9af84a3efe38b7eb73f16e0eb1cd047a815f58ec8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0002-7590-1922 |
| OpenAccessLink | https://doaj.org/article/7c9aacff33a84fffaeea124a3ecccd71 |
| PMID | 39823438 |
| PQID | 3156772695 |
| PQPubID | 1436336 |
| PageCount | e0317277 |
| ParticipantIDs | plos_journals_3156772695 doaj_primary_oai_doaj_org_article_7c9aacff33a84fffaeea124a3ecccd71 proquest_miscellaneous_3156801667 proquest_journals_3156772695 gale_infotracmisc_A823938914 gale_infotracacademiconefile_A823938914 gale_incontextgauss_ISR_A823938914 gale_incontextgauss_IOV_A823938914 gale_healthsolutions_A823938914 pubmed_primary_39823438 crossref_primary_10_1371_journal_pone_0317277 crossref_citationtrail_10_1371_journal_pone_0317277 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-17 |
| PublicationDateYYYYMMDD | 2025-01-17 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | M Kashif (pone.0317277.ref043) 2023; 4 C F Muller (pone.0317277.ref010) 2021; 25 J Zhang (pone.0317277.ref021) 2021; 2021 G Wang (pone.0317277.ref044) 2023; 54 M Zhai (pone.0317277.ref065) 2021; 21 B Li (pone.0317277.ref012) 2023; 640 Z Chikr Elmezouar (pone.0317277.ref058) 2023; 12 M Chen (pone.0317277.ref014) 2021; 250 Z Zhang (pone.0317277.ref003) 2020; 230 W Sadok (pone.0317277.ref060) 2021; 44 B. Liu (pone.0317277.ref055) 2023; 6 K Reza Kashyzadeh (pone.0317277.ref013) 2022; 12 C Kim (pone.0317277.ref052) 2021; 186 N Sadeghi Gargari (pone.0317277.ref015) 2022; 2676 X Guo (pone.0317277.ref017) 2022; 10 B Mohebali (pone.0317277.ref036) 2020 M Jiang (pone.0317277.ref056) 2023; 27 A. Sohail (pone.0317277.ref049) 2023; 10 S Lu (pone.0317277.ref063) 2021; 60 Y Song (pone.0317277.ref040) 2023; 32 S Song (pone.0317277.ref028) 2021; 46 A F. Gad (pone.0317277.ref051) 2023 S N Kim (pone.0317277.ref009) 2020; 62 A Hamrani (pone.0317277.ref018) 2020; 741 X Qin (pone.0317277.ref029) 2022; 11 D M Mulumba (pone.0317277.ref041) 2023; 13 M G M Abdolrasol (pone.0317277.ref045) 2021; 10 X R Zhang (pone.0317277.ref031) 2022; 32 T Wang (pone.0317277.ref057) 2023; 16 B B Sinha (pone.0317277.ref001) 2022; 126 J X Han (pone.0317277.ref032) 2021; 33 S He (pone.0317277.ref039) 2023; 37 Z Lyu (pone.0317277.ref046) 2022; 15 M Sumathi (pone.0317277.ref019) 2022; 20 J Tian (pone.0317277.ref030) 2022; 41 H Zhao (pone.0317277.ref026) 2018; 122 C E Moore (pone.0317277.ref061) 2021; 72 M Rashid (pone.0317277.ref020) 2021; 9 A Mukherjee (pone.0317277.ref038) 2020; 8 M Kaveh (pone.0317277.ref034) 2023; 55 S Nazar (pone.0317277.ref059) 2023; 13 Z Xia (pone.0317277.ref025) 2022; 10 pone.0317277.ref023 M Hosseinzadeh (pone.0317277.ref037) 2021; 77 Z Z Wang (pone.0317277.ref050) 2020; 233 K M Hamdia (pone.0317277.ref054) 2021; 33 P K Kashyap (pone.0317277.ref062) 2021; 21 Q Li (pone.0317277.ref002) 2020; 15 Z Jiang (pone.0317277.ref008) 2022; 155 L Wang (pone.0317277.ref064) 2020; 52 M Suresh (pone.0317277.ref016) 2021; 12 N Chen (pone.0317277.ref022) 2019; 11 V G Dhanya (pone.0317277.ref005) 2022; 6 L G Wright (pone.0317277.ref011) 2022; 601 L Sharafi (pone.0317277.ref006) 2021; 758 P Liu (pone.0317277.ref033) 2019; 33 A Glória (pone.0317277.ref007) 2021; 21 J Kuck (pone.0317277.ref035) 2020; 33 J Chen (pone.0317277.ref027) 2023; 51 R Kumar (pone.0317277.ref004) 2022; 38 G T Reddy (pone.0317277.ref053) 2020; 13 X Li (pone.0317277.ref042) 2023; 35 S Katoch (pone.0317277.ref048) 2021; 80 X Shen (pone.0317277.ref024) 2020; 8 H Bai (pone.0317277.ref047) 2023; 13 |
| References_xml | – volume: 32 start-page: 387 issue: 1 year: 2023 ident: pone.0317277.ref040 article-title: Optimization of a Lobed Mixer with BP Neural Network and Genetic Algorithm publication-title: Journal of Thermal Science doi: 10.1007/s11630-022-1766-7 – volume: 62 start-page: 33 issue: 4 year: 2020 ident: pone.0317277.ref009 article-title: Establishment of inundation probability DB for forecasting the farmland inundation risk using weather forecast data publication-title: Journal of the Korean Society of Agricultural Engineers – volume: 35 start-page: 2045 issue: 3 year: 2023 ident: pone.0317277.ref042 article-title: Risk prediction in financial management of listed companies based on optimized BP neural network under digital economy publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-07377-0 – start-page: 1 year: 2023 ident: pone.0317277.ref051 article-title: Pygad: An intuitive genetic algorithm python library publication-title: Multimedia Tools and Applications – volume: 10 start-page: 493 issue: 6 year: 2022 ident: pone.0317277.ref017 article-title: A hybrid seasonal autoregressive integrated moving average and denoising autoencoder model for atmospheric temperature profile prediction publication-title: Big Data doi: 10.1089/big.2021.0242 – ident: pone.0317277.ref023 doi: 10.1109/ICSITech.2015.7407796 – volume: 233 start-page: 111739 year: 2020 ident: pone.0317277.ref050 article-title: A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation publication-title: Composite Structures doi: 10.1016/j.compstruct.2019.111739 – volume: 11 start-page: 1795 issue: 9 year: 2019 ident: pone.0317277.ref022 article-title: An improved genetic algorithm coupling a back-propagation neural network model (IEGA-BPNN) for water-level predictions publication-title: Water doi: 10.3390/w11091795 – volume: 230 start-page: 105953 year: 2020 ident: pone.0317277.ref003 article-title: Influence of mulched drip irrigation on landscape scale evapotranspiration from farmland in an arid area publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2019.105953 – volume: 12 start-page: 438 issue: 4 year: 2022 ident: pone.0317277.ref013 article-title: Prediction of concrete compressive strength using a back-propagation neural network optimized by a genetic algorithm and response surface analysis considering the appearance of aggregates and curing conditions publication-title: Buildings doi: 10.3390/buildings12040438 – volume: 10 start-page: 635 issue: 4 year: 2022 ident: pone.0317277.ref025 article-title: A spatial frequency/spectral indicator-driven model for estimating cultivated land quality using the gradient boosting decision tree and genetic algorithm-back propagation neural network publication-title: International Soil and Water Conservation Research doi: 10.1016/j.iswcr.2022.03.004 – volume: 27 start-page: 179 issue: 1 Part A year: 2023 ident: pone.0317277.ref056 article-title: Optimization of micro-channel heat sink based on genetic algorithm and back propagation neural network publication-title: Thermal Science doi: 10.2298/TSCI220307121J – volume: 741 start-page: 140338 year: 2020 ident: pone.0317277.ref018 article-title: Machine learning for predicting greenhouse gas emissions from agricultural soils publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2020.140338 – volume: 601 start-page: 549 issue: 7894 year: 2022 ident: pone.0317277.ref011 article-title: Deep physical neural networks trained with backpropagation publication-title: Nature doi: 10.1038/s41586-021-04223-6 – start-page: 347 volume-title: Handbook of probabilistic models year: 2020 ident: pone.0317277.ref036 doi: 10.1016/B978-0-12-816514-0.00014-X – volume: 122 start-page: 30 year: 2018 ident: pone.0317277.ref026 publication-title: Optimization of wastewater anaerobic digestion treatment based on GA-BP neural network – volume: 21 start-page: 1 issue: 1 year: 2021 ident: pone.0317277.ref065 article-title: Research on the predictive effect of a combined model of ARIMA and neural networks on human brucellosis in Shanxi Province, China, pp. a time series predictive analysis publication-title: BMC Infectious Diseases doi: 10.1186/s12879-021-05973-4 – volume: 758 start-page: 142761 year: 2021 ident: pone.0317277.ref006 article-title: Farmers’ decision to use drought early warning system in developing countries publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.142761 – volume: 55 start-page: 4519 issue: 4 year: 2023 ident: pone.0317277.ref034 article-title: Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review publication-title: Neural Processing Letters doi: 10.1007/s11063-022-11055-6 – volume: 13 start-page: 100113 year: 2023 ident: pone.0317277.ref059 article-title: Formulation of estimation models for the compressive strength of concrete mixed with nanosilica and carbon nanotubes publication-title: Developments in the Built Environment doi: 10.1016/j.dibe.2022.100113 – volume: 21 start-page: 3079 issue: 9 year: 2021 ident: pone.0317277.ref007 article-title: Sustainable irrigation system for farming supported by machine learning and real-time sensor data publication-title: Sensors doi: 10.3390/s21093079 – volume: 33 start-page: 667 year: 2020 ident: pone.0317277.ref035 article-title: Belief propagation neural networks publication-title: Advances in Neural Information Processing Systems – volume: 21 start-page: 17479 issue: 16 year: 2021 ident: pone.0317277.ref062 article-title: Towards precision agriculture: IoT-enabled intelligent irrigation systems using deep learning neural network publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3069266 – volume: 77 start-page: 3616 year: 2021 ident: pone.0317277.ref037 article-title: A multiple multilayer perceptron neural network with an adaptive learning algorithm for thyroid disease diagnosis in the internet of medical things publication-title: The Journal of Supercomputing doi: 10.1007/s11227-020-03404-w – volume: 155 start-page: 105436 year: 2022 ident: pone.0317277.ref008 article-title: Coupling machine learning and weather forecast to predict farmland flood disaster: A case study in Yangtze River basin publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2022.105436 – volume: 4 start-page: 015004 issue: 1 year: 2023 ident: pone.0317277.ref043 article-title: The impact of cost function globality and locality in hybrid quantum neural networks on NISQ devices. Machine Learning publication-title: Science and Technology – volume: 41 start-page: 101078 year: 2022 ident: pone.0317277.ref030 article-title: Smog prediction based on the deep belief-BP neural network model (DBN-BP) publication-title: Urban Climate doi: 10.1016/j.uclim.2021.101078 – volume: 52 start-page: 2607 year: 2020 ident: pone.0317277.ref064 article-title: Forecasting monthly tourism demand using enhanced backpropagation neural network publication-title: Neural Processing Letters doi: 10.1007/s11063-020-10363-z – volume: 25 start-page: 159 issue: 2 year: 2021 ident: pone.0317277.ref010 article-title: Incorporating weather forecasts into risk-based irrigation decision-making publication-title: Australasian Journal of Water Resources doi: 10.1080/13241583.2021.1936907 – volume: 10 start-page: 1007 issue: 4 year: 2023 ident: pone.0317277.ref049 article-title: Genetic algorithms in the fields of artificial intelligence and data sciences publication-title: Annals of Data Science doi: 10.1007/s40745-021-00354-9 – volume: 6 start-page: 151 issue: 6 year: 2023 ident: pone.0317277.ref055 article-title: Review of swarm intelligence algorithm optimization of BP neural network publication-title: Academic Journal of Computing & Information Science – volume: 12 start-page: 613 issue: 7 year: 2023 ident: pone.0317277.ref058 article-title: Scalar-on-Function Relative Error Regression for Weak Dependent Case publication-title: Axioms doi: 10.3390/axioms12070613 – volume: 80 start-page: 8091 year: 2021 ident: pone.0317277.ref048 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimedia tools and applications doi: 10.1007/s11042-020-10139-6 – volume: 60 start-page: 87 issue: 1 year: 2021 ident: pone.0317277.ref063 article-title: A combined method for short-term traffic flow prediction based on recurrent neural network publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2020.06.008 – volume: 15 start-page: 1477 issue: 4 year: 2022 ident: pone.0317277.ref046 article-title: Back-propagation neural network optimized by K-fold cross-validation for prediction of torsional strength of reinforced Concrete beam publication-title: Materials doi: 10.3390/ma15041477 – volume: 32 start-page: 1041 issue: 2 year: 2022 ident: pone.0317277.ref031 article-title: Deformation expression of soft tissue based on BP neural network publication-title: Intelligent Automation & Soft Computing doi: 10.32604/iasc.2022.016543 – volume: 250 start-page: 106838 year: 2021 ident: pone.0317277.ref014 article-title: A reinforcement learning approach to irrigation decision-making for rice using weather forecasts publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2021.106838 – volume: 37 start-page: 747 issue: 2 year: 2023 ident: pone.0317277.ref039 article-title: Short-term runoff prediction optimization method based on bgru-bp and blstm-bp neural networks publication-title: Water Resources Management doi: 10.1007/s11269-022-03401-z – volume: 13 start-page: 5317 issue: 9 year: 2023 ident: pone.0317277.ref041 article-title: Application of an Optimized PSO-BP Neural Network to the Assessment and Prediction of Underground Coal Mine Safety Risk Factors publication-title: Applied Sciences doi: 10.3390/app13095317 – volume: 20 start-page: 2250030 issue: 06 year: 2022 ident: pone.0317277.ref019 article-title: A crop yield prediction model based on an improved artificial neural network and yield monitoring using a blockchain technique publication-title: International journal of Wavelets, Multiresolution and Information processing doi: 10.1142/S0219691322500308 – volume: 15 start-page: e0233723 issue: 6 year: 2020 ident: pone.0317277.ref002 article-title: Multistage stochastic programming modeling for farmland irrigation management under uncertainty publication-title: Plos one doi: 10.1371/journal.pone.0233723 – volume: 640 start-page: 110 year: 2023 ident: pone.0317277.ref012 article-title: Quantification of interfacial interaction related with adhesive membrane fouling by genetic algorithm back propagation (GABP) neural network publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2023.02.030 – volume: 33 start-page: 4111 year: 2021 ident: pone.0317277.ref032 article-title: Product modeling design based on genetic algorithm and BP neural network publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05604-0 – volume: 2676 start-page: 236 issue: 8 year: 2022 ident: pone.0317277.ref015 article-title: Long-Term Traffic Forecast Using Neural Network and Seasonal Autoregressive Integrated Moving Average: Case of a Container Port publication-title: Transportation Research Record doi: 10.1177/03611981221083311 – volume: 2021 start-page: 1718234 issue: 1 year: 2021 ident: pone.0317277.ref021 article-title: Optimization of backpropagation neural network under the adaptive genetic algorithm publication-title: Complexity doi: 10.1155/2021/1718234 – volume: 10 start-page: 2689 issue: 21 year: 2021 ident: pone.0317277.ref045 article-title: Artificial neural networks based optimization techniques: A review publication-title: Electronics doi: 10.3390/electronics10212689 – volume: 51 start-page: 101630 year: 2023 ident: pone.0317277.ref027 article-title: Predict the effect of meteorological factors on haze using BP neural network publication-title: Urban Climate doi: 10.1016/j.uclim.2023.101630 – volume: 12 start-page: 1986 issue: 11 year: 2021 ident: pone.0317277.ref016 article-title: Analyzing and Forecasting of Electricity Consumption by Integration of Autoregressive Integrated Moving Average Model with Neural Network on Smart Meter Data publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT) doi: 10.17762/turcomat.v12i11.6155 – volume: 44 start-page: 2102 issue: 7 year: 2021 ident: pone.0317277.ref060 article-title: Transpiration increases under high‐temperature stress: Potential mechanisms, trade‐offs and prospects for crop resilience in a warming world publication-title: Plant, Cell & Environment doi: 10.1111/pce.13970 – volume: 6 start-page: 211 year: 2022 ident: pone.0317277.ref005 article-title: Deep learning based computer vision approaches for smart agricultural applications publication-title: Artificial Intelligence in Agriculture doi: 10.1016/j.aiia.2022.09.007 – volume: 16 start-page: 3632 issue: 9 year: 2023 ident: pone.0317277.ref057 article-title: Research on Optimization of Profile Parameters in Screw Compressor Based on BP Neural Network and Genetic Algorithm publication-title: Energies doi: 10.3390/en16093632 – volume: 13 start-page: 185 year: 2020 ident: pone.0317277.ref053 article-title: Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis publication-title: Evolutionary Intelligence doi: 10.1007/s12065-019-00327-1 – volume: 33 start-page: 1959028 issue: 09 year: 2019 ident: pone.0317277.ref033 article-title: A fault diagnosis intelligent algorithm based on improved BP neural network publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001419590286 – volume: 46 start-page: 20065 issue: 38 year: 2021 ident: pone.0317277.ref028 article-title: Modeling the SOFC by BP neural network algorithm publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2021.03.132 – volume: 72 start-page: 2822 issue: 8 year: 2021 ident: pone.0317277.ref061 article-title: The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems publication-title: Journal of experimental botany doi: 10.1093/jxb/erab090 – volume: 54 start-page: 463 issue: 4 year: 2023 ident: pone.0317277.ref044 article-title: Study on Prediction Model of Soil Nutrient Content Based on Optimized BP Neural Network Model publication-title: Communications in Soil Science and Plant Analysis doi: 10.1080/00103624.2022.2118291 – volume: 8 start-page: 111731 year: 2020 ident: pone.0317277.ref024 article-title: A hybrid forecasting model for the velocity of hybrid robotic fish based on back-propagation neural network with genetic algorithm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002928 – volume: 38 start-page: 42 issue: 4 year: 2022 ident: pone.0317277.ref004 article-title: Deep learning and smart contract-assisted secure data sharing for IoT-based intelligent agriculture publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2022.3201553 – volume: 9 start-page: 63406 year: 2021 ident: pone.0317277.ref020 article-title: A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction publication-title: IEEE access doi: 10.1109/ACCESS.2021.3075159 – volume: 33 start-page: 1923 year: 2021 ident: pone.0317277.ref054 article-title: An efficient optimization approach for designing machine learning models based on genetic algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05035-x – volume: 11 start-page: 3022 issue: 19 year: 2022 ident: pone.0317277.ref029 article-title: User OCEAN personality model construction method using a BP neural network publication-title: Electronics doi: 10.3390/electronics11193022 – volume: 126 start-page: 169 year: 2022 ident: pone.0317277.ref001 article-title: Recent advancements and challenges of Internet of Things in smart agriculture: A survey publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2021.08.006 – volume: 186 start-page: 110067 year: 2021 ident: pone.0317277.ref052 article-title: Polymer design using genetic algorithm and machine learning publication-title: Computational Materials Science doi: 10.1016/j.commatsci.2020.110067 – volume: 13 start-page: 2095 issue: 1 year: 2023 ident: pone.0317277.ref047 article-title: Mind evolutionary algorithm optimization in the prediction of satellite clock bias using the back propagation neural network publication-title: Scientific Reports doi: 10.1038/s41598-023-28855-y – volume: 8 start-page: 28524 year: 2020 ident: pone.0317277.ref038 article-title: Back propagation neural network based cluster head identification in MIMO sensor networks for intelligent transportation systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971969 |
| SSID | ssj0053866 |
| Score | 2.4854617 |
| Snippet | This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in... This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in... |
| SourceID | plos doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source |
| StartPage | e0317277 |
| SubjectTerms | Accuracy Agricultural Irrigation - methods Agricultural land Agricultural production Agriculture Agriculture - methods Algorithms Artificial Intelligence Artificial neural networks Back propagation networks Decision making Digital agriculture Emissions Environmental factors Flow Genetic algorithms Irrigation Irrigation systems Local optimization Methods Neural networks Neural Networks, Computer Nodes Prediction models Technology application Warning systems Water levels Water resources Water resources planning |
| SummonAdditionalLinks | – databaseName: Nursing & Allied Health Database dbid: 7RV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4QAHoOXRhQIGIQEHt_E6iZ0T2iIKSKhUBVa9RbZjr1YqyZLswpl_zkziDY3ES-Iaj514Xh47428IeVJ4PFzSBVNpZFhstGHGTGJmEjPRUkeJa5PHZ-_k0ZE6Pc2Ow4FbE9IqNz6xddRFZfGMfF_ARgMiwTRLXiy_MKwahX9XQwmNi-QSx9gY9FmezDaeGGw5TcN1OSH5fpDO3rIq3R4oMyzdcrActaj9vW8eLc-q5veBZ7sAHV7_30-_Qa6F0JNOO13ZIhdcuU2uTud1gN9w22QrmHpDnwU86uc3yXdQJYoa1oFN0MU5FE-Gq2BBdT8ItLdJcXRR1y16R1XSb93pC-1Qoymm2s_p6yk7OKYIpwldyi4ZneKNtpo2n-Ft58Z0t8inw1cfX75hoXIDs6mQK1aIONJp4YTPCq5VLOLECptpr2ItnHdCGemMFJ6nLoLVwhZRLLXiiU-Us8qI22RUgpR2COXOJlxy51XmY3BIxiJkmIlh31gY0KgxERsB5jbAmmN1jbO8_VcnYXvTsTdHsedB7GPC-l7LDtbjL_QHqBs9LYJytw-qep4HG88lzFBb74WAKXvvtXMawieYsbW2kHxMHqJm5d0N19615FOFOHQq4_GYPG4pEJijxMyfuV43Tf72_ewfiD6cDIieBiJfATusDrctYE4I-DWg3B1Qgnuxg-YdtIMNV5r8pzZDz42-_7r5Ud-Mg2I2X-mqdUcDkVGaAl_vdDbVc1Zk8OpYqLt_HvweuTLBSswRZ1zuktGqXrv75LL9ulo09YPWDfwAbEtrOA priority: 102 providerName: ProQuest – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegcIADsPGxwgCDkICDR1w7sXPsEAOkaVR8TLtFtmNXlUZaJS2c-c95L3HDiqiAa_2zXb-8D7_k-WdCnpUBXy6ZkukssUxaY5m1I8lsakdGmST1bfH46bE6OdFnZ_nkV6L42xd8ofirKNODxbzyB6CCEHDVZXJlJLIMk62jyfHa84LtZlk8Hret50b4aVn6e188WJzPm-0bzTbgHN383796i9yIW0s67nRhh1zy1S65Pp7WkV7D75KdaMoNfRH5pl_eJj9AVShqUEcmQWcXWDoZRrmSmn4QaG-L3uisrlt2jnlFv3dvV2jHCk2xlH5K347Z4YQiXSZ0qbpic4on1mrafIXZLozp75AvR28-v37H4s0MzGVCLVkpZGKy0ouQl9xoKWTqhMtN0NIIH7zQVnmrROCZTyAauDKRymiehlR7p624SwYVCGmPUO5dyhX3QedBgsOxDinBrIS8sLSgMUMi1g-scJG2HG_POC_ab3EK0pdOvAVKvYhSHxLW91p0tB1_wR-iLvRYJN1uf4DHW0QbLhSs0LgQhIAlhxCM9wa2R7Bi51yp-JA8Rk0quhOsvesoxhp55nTO5ZA8bRFIvFFhZc_UrJqmeP_h9B9Anz5ugJ5HUJiDOJyJpylgTUjotYHc30CC-3AbzXuo92upNIWAjB5SrixPoefaFv7c_KRvxkGxWq_y81WHgZ0PGOiQ3OtsqJesyGFqKfT97fM-INdGeMtywhlX-2SwrFf-Ibnqvi1nTf2oNfmf59FZWw priority: 102 providerName: Public Library of Science |
| Title | The artificial intelligence-based agricultural field irrigation warning system using GA-BP neural network under smart agriculture |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39823438 https://www.proquest.com/docview/3156772695 https://www.proquest.com/docview/3156801667 https://doaj.org/article/7c9aacff33a84fffaeea124a3ecccd71 http://dx.doi.org/10.1371/journal.pone.0317277 |
| Volume | 20 |
| WOSCitedRecordID | wos001407853100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLagcOCCGL9WGMUgJOCQLqmT2Dm20wrTthJ1UBUuke3YVaWRVk0LZ_5z3ovTqJVA48DlHeLnOPne87OdPH8m5E1u8eOSzD0R-8oLlVSeUr3QU5HqSS79yFTJ45MLPhqJ6TRJd476wpwwRw_sgDvmOpFSW8uYFKG1VhojYUySDNrWebV7vOfzZLuYcjEYenEc1xvlGA-Oa7t0l4vCdMGNYdDmewNRxdffROXW8npR_n3KWQ09wwfkfj1npH33rAfklikekoO6V5b0XU0d_f4R-QVWp_hOjheCzncINz0csHIqZ6uGboNW-Wt0vlpVRBuLgv50H0qoI3immBU_ox_63iClyHwJVQqXN05x89mKlt-htZ17msfky_D088lHrz5kwdMx42svZ6Ev49wwm-QBQMzCSDPA3ArE2BomFDeKMxvExofArnM_5FIEkY2E0UKxJ6RVAKyHhAZGRwEPjBWJDSF2KI3sXiqEJV6uwPhtwraIZ7pmIMeDMK6z6rcah5WIAzRDO2W1ndrEa2otHQPHDfoDNGaji_zZ1QXwqqz2quwmr2qTl-gKmduM2kSBrC-QMk4kQdgmrysN5NAoMElnJjdlmZ19mvyD0tV4T-ltrWQXAIeW9cYIeCfk5trTPNrThEig94oP0XG3qJQZg8U5rJ7iJIKaW2f-c_Grphhviol3hVlsnA5MYuIYcH3qOkGDLEug6ZCJZ_8D8efkXg-PVvYDL-BHpLVebcwLclf_WM_LVYfc5uMJyimvpAApToIOuTM4HaXjTtX7QQ7TC5Dngy7IS_8cJU8reQUyjb5BjfTsMv36G4pgZ-w |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQcgJZHFwo1CAQc0iZrJ04OCG2B0lWXsiqlqrgE27FXK5VkSXapOPKH-I3M5EVX4nXpget64siz843Hzsw3hDxMLF4uycQJA1c5XEnlKNXjjvJVTwrp-qZMHj8cir298OgoGi2R700tDKZVNj6xdNRJpvGOfJPBQQMiwSDyn08_O9g1Cr-uNi00KrPYNV9P4MhWPBu8hP_3Ua-3_ergxY5TdxVwdMDEzEkYd2WQGGajxJMhZ9zXTEfShlwyYw0LlTBKMOsFxgVPphOXCxl6vvVDo0PFYN5z5DznPRdRNPI_NJ4ffEcQ1OV5THibtTVsTLPUbAB4IFQQC9tf2SWg3Qs60-Os-H2gW25421f_N1VdI1fq0Jr2KywskyWTrpDL_XFe04uYFbJcu7KCPqn5tp9eJ98AKhQRVJFp0MkpllIHd_mEynYSGC-T_ugkz0t2kiylJ9XtEq1YsSmWEozp676zNaJIFwqPpFWyPcWKvZwWn-Btp-Y0N8j7M1HMTdJJwSpWCfWM9j3hGRtGloPDVRop0RSHc3GiADFdwhqDiXVN247dQ47j8lukgONbpd4YzSyuzaxLnPapaUVb8hf5LbTFVhZJx8sfsnwc1z4sFrBCqa1lDJZsrZXGSAgPYcVa60R4XbKOlhxXFbyt64z7IfLshZHHu-RBKYHEIylmNo3lvCjiwdvDfxB6t78g9LgWshmoQ8u6mgTWhIRmC5JrC5LgPvXC8CrirtFKEf9EDzzZ4OvXw_fbYZwUsxVTk80rGYj8ggD0eqvCcKtZFsGrOQtv_3nydXJx5-DNMB4O9nbvkEs97Drteo4n1khnls_NXXJBf5lNivxe6YIo-XjWQP4BoFzKtg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQQgegI2PFQYzCAQ8ZE3qJE4eEOoYhWrTqAZMEy_Bduyq0khK0jLxyL_FX8dd4oRV4utlD7zWF0e-3u98du5-R8jD1ODlkkidKHSl40shHSn7viMD2RdcuIGukscP9_j-fnR0FI9XyPemFgbTKhufWDnqNFd4R95jcNCASDCMg56xaRHjneHz2WcHO0jhl9amnUZtIrv66wkc38pnox34rx_1-8OX7168dmyHAUeFjM-dlPmuCFPNTJx6IvKZHyimYmEiXzBtNIsk15Iz44XaBa-mUtfnIvICE0RaRZLBvOfIeQ5nTEwnHAcfml0A_EgY2lI9xr2etYytWZ7pLQAShA18aSusOga0-0JndpyXvw96q81vePV_Vts1csWG3HRQY2SVrOhsjVweTApLO6LXyKp1cSV9Ynm4n14n3wBCFJFVk2zQ6Sn2Ugd3_5SKdhIYr5IB6bQoKtaSPKMn9a0TrdmyKZYYTOirgbM9pkgjCo9kdRI-xUq-gpaf4G2n5tQ3yPszUcxN0snAQtYJ9bQKPO5pE8XGB0csFVKlSR_Oy6kEJHUJa4wnUZbOHbuKHCfVN0oOx7pavQmaXGJNrkuc9qlZTWfyF_lttMtWFsnIqx_yYpJY35ZwWKFQxjAGSzbGCK0FhI2wYqVUyr0u2USrTurK3talJoMI-fei2PO75EElgYQkGdroRCzKMhm9OfwHobcHS0KPrZDJQR1K2CoTWBMSnS1JbixJgltVS8PriMFGK2XyE0nwZIO1Xw_fb4dxUsxizHS-qGUgIgxD0OutGs-tZlkMr_ZZdPvPk2-Si4DfZG-0v3uHXOpjM2rXczy-QTrzYqHvkgvqy3xaFvcqb0TJx7PG8Q95ZdOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+artificial+intelligence-based+agricultural+field+irrigation+warning+system+using+GA-BP+neural+network+under+smart+agriculture&rft.jtitle=PloS+one&rft.au=Wang%2C+Xiying&rft.date=2025-01-17&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=1&rft.spage=e0317277&rft_id=info:doi/10.1371%2Fjournal.pone.0317277&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |