Novel rechargeable calcium phosphate dental nanocomposite
Calcium phosphate (CaP) composites with Ca and P ion release can remineralize tooth lesions and inhibit caries. But the ion release lasts only a few months. The objectives of this study were to develop rechargeable CaP dental composite for the first time, and investigate the Ca and P recharge and re...
Saved in:
| Published in: | Dental materials Vol. 32; no. 2; pp. 285 - 293 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
01.02.2016
|
| Subjects: | |
| ISSN: | 0109-5641, 1879-0097, 1879-0097 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Calcium phosphate (CaP) composites with Ca and P ion release can remineralize tooth lesions and inhibit caries. But the ion release lasts only a few months. The objectives of this study were to develop rechargeable CaP dental composite for the first time, and investigate the Ca and P recharge and re-release of composites with nanoparticles of amorphous calcium phosphate (NACP) to achieve long-term inhibition of caries.
Three NACP nanocomposites were fabricated with resin matrix of: (1) bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) at 1:1 mass ratio (referred to as BT group); (2) pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at 1:1 ratio (PE group); (3) BisGMA, TEGDMA, and Bis[2-(methacryloyloxy)ethyl] phosphate (BisMEP) at 2:1:1 ratio (BTM group). Each resin was filled with 20% NACP and 50% glass particles, and the composite was photo-cured. Specimens were tested for flexural strength and elastic modulus, Ca and P ion release, and Ca and P ion recharge and re-release.
NACP nanocomposites had strengths 3-fold of, and elastic moduli similar to, commercial resin-modified glass ionomer controls. CaP ion recharge capability was the greatest for PE group, followed by BTM group, with BT group being the lowest (p<0.05). For each recharge cycle, CaP re-release reached similarly high levels, showing that CaP re-release did not decrease with more recharge cycles. After six recharge/re-release cycles, NACP nanocomposites without further recharge had continuous CaP ion release for 42 d.
Novel rechargeable CaP composites achieved long-term and sustained Ca and P ion release. Rechargeable NACP nanocomposite is promising for caries-inhibiting restorations, and the Ca and P ion recharge and re-release method has wide applicability to dental composites, adhesives, cements and sealants to achieve long-term caries-inhibition. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0109-5641 1879-0097 1879-0097 |
| DOI: | 10.1016/j.dental.2015.11.015 |