Discovering large conserved functional components in global network alignment by graph matching

Background Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC genomics Ročník 19; číslo Suppl 7; s. 670 - 58
Hlavní autoři: Zhu, Yuanyuan, Li, Yuezhi, Liu, Juan, Qin, Lu, Yu, Jeffrey Xu
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 24.09.2018
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-2164, 1471-2164
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the maximum matching score. However, finding large conserved components remains challenging due to its NP-hardness. Results We propose a new graph matching method GMAlign for global PPI network alignment. It first selects some pairs of important proteins as seeds, followed by a gradual expansion to obtain an initial matching, and then it refines the current result to obtain an optimal alignment result iteratively based on the vertex cover. We compare GMAlign with the state-of-the-art methods on the PPI network pairs obtained from the largest BioGRID dataset and validate its performance. The results show that our algorithm can produce larger size of alignment, and can find bigger and denser common connected subgraphs as well for the first time. Meanwhile, GMAlign can achieve high quality biological results, as measured by functional consistency and semantic similarity of the Gene Ontology terms. Moreover, we also show that GMAlign can achieve better results which are structurally and biologically meaningful in the detection of large conserved biological pathways between species. Conclusions GMAlign is a novel global network alignment tool to discover large conserved functional components between PPI networks. It also has many potential biological applications such as conserved pathway and protein complex discovery across species. The GMAlign software and datasets are avaialbile at https://github.com/yzlwhu/GMAlign .
AbstractList Background Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the maximum matching score. However, finding large conserved components remains challenging due to its NP-hardness. Results We propose a new graph matching method GMAlign for global PPI network alignment. It first selects some pairs of important proteins as seeds, followed by a gradual expansion to obtain an initial matching, and then it refines the current result to obtain an optimal alignment result iteratively based on the vertex cover. We compare GMAlign with the state-of-the-art methods on the PPI network pairs obtained from the largest BioGRID dataset and validate its performance. The results show that our algorithm can produce larger size of alignment, and can find bigger and denser common connected subgraphs as well for the first time. Meanwhile, GMAlign can achieve high quality biological results, as measured by functional consistency and semantic similarity of the Gene Ontology terms. Moreover, we also show that GMAlign can achieve better results which are structurally and biologically meaningful in the detection of large conserved biological pathways between species. Conclusions GMAlign is a novel global network alignment tool to discover large conserved functional components between PPI networks. It also has many potential biological applications such as conserved pathway and protein complex discovery across species. The GMAlign software and datasets are avaialbile at https://github.com/yzlwhu/GMAlign .
Background Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the maximum matching score. However, finding large conserved components remains challenging due to its NP-hardness. Results We propose a new graph matching method GMAlign for global PPI network alignment. It first selects some pairs of important proteins as seeds, followed by a gradual expansion to obtain an initial matching, and then it refines the current result to obtain an optimal alignment result iteratively based on the vertex cover. We compare GMAlign with the state-of-the-art methods on the PPI network pairs obtained from the largest BioGRID dataset and validate its performance. The results show that our algorithm can produce larger size of alignment, and can find bigger and denser common connected subgraphs as well for the first time. Meanwhile, GMAlign can achieve high quality biological results, as measured by functional consistency and semantic similarity of the Gene Ontology terms. Moreover, we also show that GMAlign can achieve better results which are structurally and biologically meaningful in the detection of large conserved biological pathways between species. Conclusions GMAlign is a novel global network alignment tool to discover large conserved functional components between PPI networks. It also has many potential biological applications such as conserved pathway and protein complex discovery across species. The GMAlign software and datasets are avaialbile at Keywords: Protein-protein interaction network, Graph theory, Graph matching
Background Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the maximum matching score. However, finding large conserved components remains challenging due to its NP-hardness. Results We propose a new graph matching method GMAlign for global PPI network alignment. It first selects some pairs of important proteins as seeds, followed by a gradual expansion to obtain an initial matching, and then it refines the current result to obtain an optimal alignment result iteratively based on the vertex cover. We compare GMAlign with the state-of-the-art methods on the PPI network pairs obtained from the largest BioGRID dataset and validate its performance. The results show that our algorithm can produce larger size of alignment, and can find bigger and denser common connected subgraphs as well for the first time. Meanwhile, GMAlign can achieve high quality biological results, as measured by functional consistency and semantic similarity of the Gene Ontology terms. Moreover, we also show that GMAlign can achieve better results which are structurally and biologically meaningful in the detection of large conserved biological pathways between species. Conclusions GMAlign is a novel global network alignment tool to discover large conserved functional components between PPI networks. It also has many potential biological applications such as conserved pathway and protein complex discovery across species. The GMAlign software and datasets are avaialbile at https://github.com/yzlwhu/GMAlign.
Abstract Background Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the maximum matching score. However, finding large conserved components remains challenging due to its NP-hardness. Results We propose a new graph matching method GMAlign for global PPI network alignment. It first selects some pairs of important proteins as seeds, followed by a gradual expansion to obtain an initial matching, and then it refines the current result to obtain an optimal alignment result iteratively based on the vertex cover. We compare GMAlign with the state-of-the-art methods on the PPI network pairs obtained from the largest BioGRID dataset and validate its performance. The results show that our algorithm can produce larger size of alignment, and can find bigger and denser common connected subgraphs as well for the first time. Meanwhile, GMAlign can achieve high quality biological results, as measured by functional consistency and semantic similarity of the Gene Ontology terms. Moreover, we also show that GMAlign can achieve better results which are structurally and biologically meaningful in the detection of large conserved biological pathways between species. Conclusions GMAlign is a novel global network alignment tool to discover large conserved functional components between PPI networks. It also has many potential biological applications such as conserved pathway and protein complex discovery across species. The GMAlign software and datasets are avaialbile at https://github.com/yzlwhu/GMAlign.
Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the maximum matching score. However, finding large conserved components remains challenging due to its NP-hardness. We propose a new graph matching method GMAlign for global PPI network alignment. It first selects some pairs of important proteins as seeds, followed by a gradual expansion to obtain an initial matching, and then it refines the current result to obtain an optimal alignment result iteratively based on the vertex cover. We compare GMAlign with the state-of-the-art methods on the PPI network pairs obtained from the largest BioGRID dataset and validate its performance. The results show that our algorithm can produce larger size of alignment, and can find bigger and denser common connected subgraphs as well for the first time. Meanwhile, GMAlign can achieve high quality biological results, as measured by functional consistency and semantic similarity of the Gene Ontology terms. Moreover, we also show that GMAlign can achieve better results which are structurally and biologically meaningful in the detection of large conserved biological pathways between species. GMAlign is a novel global network alignment tool to discover large conserved functional components between PPI networks. It also has many potential biological applications such as conserved pathway and protein complex discovery across species. The GMAlign software and datasets are avaialbile at https://github.com/yzlwhu/GMAlign .
Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the maximum matching score. However, finding large conserved components remains challenging due to its NP-hardness. We propose a new graph matching method GMAlign for global PPI network alignment. It first selects some pairs of important proteins as seeds, followed by a gradual expansion to obtain an initial matching, and then it refines the current result to obtain an optimal alignment result iteratively based on the vertex cover. We compare GMAlign with the state-of-the-art methods on the PPI network pairs obtained from the largest BioGRID dataset and validate its performance. The results show that our algorithm can produce larger size of alignment, and can find bigger and denser common connected subgraphs as well for the first time. Meanwhile, GMAlign can achieve high quality biological results, as measured by functional consistency and semantic similarity of the Gene Ontology terms. Moreover, we also show that GMAlign can achieve better results which are structurally and biologically meaningful in the detection of large conserved biological pathways between species. GMAlign is a novel global network alignment tool to discover large conserved functional components between PPI networks. It also has many potential biological applications such as conserved pathway and protein complex discovery across species. The GMAlign software and datasets are avaialbile at https://github.com/yzlwhu/GMAlign.
Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the maximum matching score. However, finding large conserved components remains challenging due to its NP-hardness.BACKGROUNDAligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the maximum matching score. However, finding large conserved components remains challenging due to its NP-hardness.We propose a new graph matching method GMAlign for global PPI network alignment. It first selects some pairs of important proteins as seeds, followed by a gradual expansion to obtain an initial matching, and then it refines the current result to obtain an optimal alignment result iteratively based on the vertex cover. We compare GMAlign with the state-of-the-art methods on the PPI network pairs obtained from the largest BioGRID dataset and validate its performance. The results show that our algorithm can produce larger size of alignment, and can find bigger and denser common connected subgraphs as well for the first time. Meanwhile, GMAlign can achieve high quality biological results, as measured by functional consistency and semantic similarity of the Gene Ontology terms. Moreover, we also show that GMAlign can achieve better results which are structurally and biologically meaningful in the detection of large conserved biological pathways between species.RESULTSWe propose a new graph matching method GMAlign for global PPI network alignment. It first selects some pairs of important proteins as seeds, followed by a gradual expansion to obtain an initial matching, and then it refines the current result to obtain an optimal alignment result iteratively based on the vertex cover. We compare GMAlign with the state-of-the-art methods on the PPI network pairs obtained from the largest BioGRID dataset and validate its performance. The results show that our algorithm can produce larger size of alignment, and can find bigger and denser common connected subgraphs as well for the first time. Meanwhile, GMAlign can achieve high quality biological results, as measured by functional consistency and semantic similarity of the Gene Ontology terms. Moreover, we also show that GMAlign can achieve better results which are structurally and biologically meaningful in the detection of large conserved biological pathways between species.GMAlign is a novel global network alignment tool to discover large conserved functional components between PPI networks. It also has many potential biological applications such as conserved pathway and protein complex discovery across species. The GMAlign software and datasets are avaialbile at https://github.com/yzlwhu/GMAlign .CONCLUSIONSGMAlign is a novel global network alignment tool to discover large conserved functional components between PPI networks. It also has many potential biological applications such as conserved pathway and protein complex discovery across species. The GMAlign software and datasets are avaialbile at https://github.com/yzlwhu/GMAlign .
ArticleNumber 670
Audience Academic
Author Zhu, Yuanyuan
Li, Yuezhi
Qin, Lu
Yu, Jeffrey Xu
Liu, Juan
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Zhu
  fullname: Zhu, Yuanyuan
  email: yyzhu@whu.edu.cn
  organization: School of Computer Science, Wuhan University
– sequence: 2
  givenname: Yuezhi
  surname: Li
  fullname: Li, Yuezhi
  organization: School of Computer Science, Wuhan University
– sequence: 3
  givenname: Juan
  surname: Liu
  fullname: Liu, Juan
  email: liujuan@whu.edu.cn
  organization: School of Computer Science, Wuhan University
– sequence: 4
  givenname: Lu
  surname: Qin
  fullname: Qin, Lu
  organization: Centre of Quantum Computation and Intelligent Systems, University of Technology
– sequence: 5
  givenname: Jeffrey Xu
  surname: Yu
  fullname: Yu, Jeffrey Xu
  organization: The Chinese University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30255780$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGxgkWI7fmWDVJXXSJWQeKwt23EyLok92MlA_z03TEs7FaAsklx_5zg-OcfFQYjBFcVTjE4xlvxVxkRyWiEsK4aIqJoHxRGmAlcEc3pw5_mwOM75EiEsJGGPisMaEcaEREeFeuOzjVuXfOjLQafelTaG7NLWtWU3Bzv5GPQAw3EDm4cplz6U_RANDIObfsT0rdSD78MIi6W5KvukN-ty1JNdg-fj4mGnh-yeXN9Piq_v3n45_1BdfHy_Oj-7qCyvxVTVUnYUSSZqgxEnqBXOYoKJ09gw7LghTiDOaWOZYcZQJqkkHUOmEy1vtK5PitXOt436Um2SH3W6UlF79XsQU690mrwdnNK00cy4pmY1pozCG9fS2prQ2hiLW_B6vfPazGZ0rYWDJT3sme6vBL9WfdwqjpkgDQaDF9cGKX6fXZ7UCCm7YdDBxTkrgjHhqOGSAfr8HnoZ5wSJLxQhnHBM0C3VaziAD12Efe1iqs4YY7QmDZFAnf6Fgqt1o4e_6joP8z3Byz0BMJP7OfV6zlmtPn_aZ5_dDeVPGjdVAkDsAJtizsl1yvpJL_WBr_CDwkgtpVW70ioorVpKqxpQ4nvKG_P_achOkzdLdV26ze3fol-Lofwk
CitedBy_id crossref_primary_10_1109_TCBB_2019_2937771
crossref_primary_10_1007_s11704_020_8179_0
crossref_primary_10_1109_TCBB_2022_3231489
crossref_primary_10_1016_j_cmpb_2024_108188
crossref_primary_10_1016_j_eswa_2021_115908
Cites_doi 10.1007/978-3-642-24855-9_20
10.1101/gr.4526006
10.1007/978-3-540-78839-3_19
10.1093/bioinformatics/btt202
10.1371/journal.pone.0090073
10.1098/rsif.2010.0063
10.1073/pnas.0409522102
10.1186/1471-2105-4-2
10.1038/nbt.2831
10.1093/nar/gkt1137
10.1089/cmb.2006.13.182
10.1109/34.6778
10.1093/bioinformatics/btu450
10.1093/bioinformatics/btr127
10.1093/nar/gks1158
10.1093/bioinformatics/bti1049
10.1073/pnas.0806627105
10.1073/pnas.1534710100
10.1093/nar/gki031
10.1101/gr.5235706
10.1093/bioinformatics/bts592
10.1093/bioinformatics/btv161
10.1093/bioinformatics/btu089
10.1109/TPAMI.2008.245
10.1093/bioinformatics/btv130
10.1093/bioinformatics/btt071
10.1007/978-3-540-71681-5_2
10.1093/bioinformatics/btu409
10.1007/s00778-012-0292-8
10.1093/nar/gkh411
10.1073/pnas.2032324100
10.1093/bioinformatics/btu307
10.1039/c2ib00140c
10.1126/science.1116804
10.1093/bioinformatics/btp196
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-018-5027-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 58
ExternalDocumentID oai_doaj_org_article_a49a5be9353145449a6a8cc3243bbc1d
PMC6157291
A555432928
30255780
10_1186_s12864_018_5027_9
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
AIXEN
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c637t-388f408573b10620d7ec1212ea1b51e6b2e706649c5b5bb458482f50bf7d69aa3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454770600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2164
IngestDate Fri Oct 03 12:50:50 EDT 2025
Tue Nov 04 01:46:16 EST 2025
Fri Sep 05 12:01:21 EDT 2025
Tue Oct 07 06:11:16 EDT 2025
Tue Nov 11 10:21:29 EST 2025
Tue Nov 04 18:07:55 EST 2025
Thu Nov 13 15:16:09 EST 2025
Wed Feb 19 02:43:41 EST 2025
Tue Nov 18 21:15:46 EST 2025
Sat Nov 29 03:39:46 EST 2025
Sat Sep 06 07:21:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 7
Keywords Protein-protein interaction network
Graph theory
Graph matching
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-388f408573b10620d7ec1212ea1b51e6b2e706649c5b5bb458482f50bf7d69aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/a49a5be9353145449a6a8cc3243bbc1d
PMID 30255780
PQID 2122626120
PQPubID 44682
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_a49a5be9353145449a6a8cc3243bbc1d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6157291
proquest_miscellaneous_2112609685
proquest_journals_2122626120
gale_infotracmisc_A555432928
gale_infotracacademiconefile_A555432928
gale_incontextgauss_ISR_A555432928
pubmed_primary_30255780
crossref_citationtrail_10_1186_s12864_018_5027_9
crossref_primary_10_1186_s12864_018_5027_9
springer_journals_10_1186_s12864_018_5027_9
PublicationCentury 2000
PublicationDate 2018-09-24
PublicationDateYYYYMMDD 2018-09-24
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 5027_CR32
R Singh (5027_CR41) 2008; 105
GD Bader (5027_CR35) 2003; 4
P Uetz (5027_CR6) 2006; 311
BP Kelley (5027_CR13) 2004; 32
R Singh (5027_CR17) 2007; 41
I Ebersberger (5027_CR39) 2014; 42
V Memisevic (5027_CR20) 2012; 4
V Memisevic (5027_CR12) 2010; 7
M Zaslavskiy (5027_CR18) 2009; 31
R Sharan (5027_CR8) 2005; 102
H Hu (5027_CR34) 2005; 21
B Neyshabur (5027_CR23) 2013; 29
Y Zhu (5027_CR28) 2013; 22
5027_CR38
J Flannick (5027_CR16) 2008; 41
J Flannick (5027_CR14) 2006; 16
S Hashemifar (5027_CR25) 2014; 30
V Vijayan (5027_CR27) 2015; 31
O Kuchaiev (5027_CR5) 2010; 7
FE Faisal (5027_CR11) 2014; 30
D Maglott (5027_CR31) 2005; 33
P Resnik (5027_CR37) 1995; 41
N Maloddognin (5027_CR2) 2015; 31
S Umeyama (5027_CR29) 1998; 10
Y Hulovatyy (5027_CR10) 2014; 9
R Patro (5027_CR22) 2012; 28
C Clark (5027_CR33) 2014; 30
O Kuchaiev (5027_CR7) 2011; 27
FE Faisal (5027_CR40) 2015; 1
AE Aladag (5027_CR24) 2013; 29
D Knossow (5027_CR30) 2009; 41
V. Spirin (5027_CR36) 2003; 100
SV Rajagopala (5027_CR1) 2014; 32
BP Kelley (5027_CR3) 2003; 100
M Zaslavskiy (5027_CR19) 2009; 25
V Saraph (5027_CR26) 2014; 30
M Koyuturk (5027_CR15) 2006; 13
S Bandyopadhyay (5027_CR4) 2006; 16
M El-Kebir (5027_CR21) 2011; 41
A Chatr-Aryamontri (5027_CR9) 2013; 41
20375452 - J Integr Bioinform. 2010 Mar 25;7(3):null
25792552 - Bioinformatics. 2015 Jul 15;31(14):2409-11
24554629 - Bioinformatics. 2014 Jun 15;30(12):1721-9
24794929 - Bioinformatics. 2014 Aug 15;30(16):2351-9
15961460 - Bioinformatics. 2005 Jun;21 Suppl 1:i213-21
12525261 - BMC Bioinformatics. 2003 Jan 13;4:2
20236959 - J R Soc Interface. 2010 Sep 6;7(50):1341-54
23047556 - Bioinformatics. 2012 Dec 1;28(23):3105-14
15215356 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W83-8
21414992 - Bioinformatics. 2011 May 15;27(10):1390-6
15608257 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D54-8
25161231 - Bioinformatics. 2014 Sep 1;30(17):i438-44
25725498 - Bioinformatics. 2015 Jul 1;31(13):2182-9
24594900 - PLoS One. 2014 Mar 03;9(3):e90073
15687504 - Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1974-9
16339411 - Science. 2006 Jan 13;311(5758):239-42
23203989 - Nucleic Acids Res. 2013 Jan;41(Database issue):D816-23
23696650 - Bioinformatics. 2013 Jul 1;29(13):1654-62
14517352 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12123-8
23413436 - Bioinformatics. 2013 Apr 1;29(7):917-24
24234440 - Nucleic Acids Res. 2014 Feb;42(3):1509-23
24561554 - Nat Biotechnol. 2014 Mar;32(3):285-290
18725631 - Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12763-8
16510899 - Genome Res. 2006 Mar;16(3):428-35
16597234 - J Comput Biol. 2006 Mar;13(2):182-99
22234340 - Integr Biol (Camb). 2012 Jul;4(7):734-43
19834143 - IEEE Trans Pattern Anal Mach Intell. 2009 Dec;31(12):2227-42
16899655 - Genome Res. 2006 Sep;16(9):1169-81
25015987 - Bioinformatics. 2014 Oct 15;30(20):2931-40
14504397 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11394-9
19477997 - Bioinformatics. 2009 Jun 15;25(12):i259-67
References_xml – volume: 41
  start-page: 225
  issue: D1
  year: 2011
  ident: 5027_CR21
  publication-title: Pattern Recogn Bioinforma
  doi: 10.1007/978-3-642-24855-9_20
– volume: 16
  start-page: 428
  issue: 3
  year: 2006
  ident: 5027_CR4
  publication-title: Genome Res
  doi: 10.1101/gr.4526006
– volume: 41
  start-page: 214
  issue: D1
  year: 2008
  ident: 5027_CR16
  publication-title: Res Comput Mol Biol
  doi: 10.1007/978-3-540-78839-3_19
– volume: 29
  start-page: 1654
  issue: 13
  year: 2013
  ident: 5027_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt202
– volume: 9
  start-page: 90073
  year: 2014
  ident: 5027_CR10
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0090073
– volume: 1
  start-page: 1
  year: 2015
  ident: 5027_CR40
  publication-title: EURASIP J Bioinforma
– volume: 7
  start-page: 1341
  issue: 50
  year: 2010
  ident: 5027_CR5
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2010.0063
– volume: 102
  start-page: 1974
  issue: 6
  year: 2005
  ident: 5027_CR8
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0409522102
– volume: 41
  start-page: 816
  issue: D1
  year: 2009
  ident: 5027_CR30
  publication-title: Graph-Based Representations Pattern Recognit
– volume: 4
  start-page: 1
  issue: 1
  year: 2003
  ident: 5027_CR35
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-4-2
– volume: 32
  start-page: 285
  issue: 3
  year: 2014
  ident: 5027_CR1
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2831
– ident: 5027_CR32
– volume: 42
  start-page: 1509
  issue: 3
  year: 2014
  ident: 5027_CR39
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1137
– volume: 13
  start-page: 182
  issue: 2
  year: 2006
  ident: 5027_CR15
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2006.13.182
– volume: 10
  start-page: 695
  issue: 5
  year: 1998
  ident: 5027_CR29
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.6778
– volume: 30
  start-page: 438
  issue: 17
  year: 2014
  ident: 5027_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu450
– volume: 27
  start-page: 1390
  issue: 10
  year: 2011
  ident: 5027_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr127
– volume: 41
  start-page: 816
  issue: D1
  year: 2013
  ident: 5027_CR9
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1158
– ident: 5027_CR38
– volume: 21
  start-page: 213
  issue: Suppl 1
  year: 2005
  ident: 5027_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1049
– volume: 105
  start-page: 12763
  issue: 35
  year: 2008
  ident: 5027_CR41
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.0806627105
– volume: 100
  start-page: 11394
  issue: 20
  year: 2003
  ident: 5027_CR3
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1534710100
– volume: 33
  start-page: 54
  issue: Database issue
  year: 2005
  ident: 5027_CR31
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki031
– volume: 7
  start-page: 135
  year: 2010
  ident: 5027_CR12
  publication-title: J Integr Bioinformatics
– volume: 16
  start-page: 1169
  issue: 9
  year: 2006
  ident: 5027_CR14
  publication-title: Genome Res
  doi: 10.1101/gr.5235706
– volume: 28
  start-page: 3105
  issue: 23
  year: 2012
  ident: 5027_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts592
– volume: 31
  start-page: 2409
  issue: 14
  year: 2015
  ident: 5027_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv161
– volume: 30
  start-page: 1721
  year: 2014
  ident: 5027_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu089
– volume: 31
  start-page: 2227
  issue: 12
  year: 2009
  ident: 5027_CR18
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.245
– volume: 31
  start-page: 2182
  issue: 13
  year: 2015
  ident: 5027_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv130
– volume: 29
  start-page: 917
  issue: 7
  year: 2013
  ident: 5027_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt071
– volume: 41
  start-page: 16
  issue: D1
  year: 2007
  ident: 5027_CR17
  publication-title: Res Comput Mol Biol
  doi: 10.1007/978-3-540-71681-5_2
– volume: 30
  start-page: 2931
  issue: 20
  year: 2014
  ident: 5027_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu409
– volume: 41
  start-page: 816
  issue: D1
  year: 1995
  ident: 5027_CR37
  publication-title: arXiv preprint cmp-lg/9511007
– volume: 22
  start-page: 345
  issue: 3
  year: 2013
  ident: 5027_CR28
  publication-title: The VLDB Journal
  doi: 10.1007/s00778-012-0292-8
– volume: 32
  start-page: 83
  issue: Suppl 2
  year: 2004
  ident: 5027_CR13
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh411
– volume: 100
  start-page: 12123
  issue: 21
  year: 2003
  ident: 5027_CR36
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.2032324100
– volume: 30
  start-page: 2351
  issue: 16
  year: 2014
  ident: 5027_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu307
– volume: 4
  start-page: 734
  issue: 7
  year: 2012
  ident: 5027_CR20
  publication-title: Integr Biol
  doi: 10.1039/c2ib00140c
– volume: 311
  start-page: 239
  issue: 5758
  year: 2006
  ident: 5027_CR6
  publication-title: Science
  doi: 10.1126/science.1116804
– volume: 25
  start-page: 259
  issue: 12
  year: 2009
  ident: 5027_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp196
– reference: 15687504 - Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1974-9
– reference: 21414992 - Bioinformatics. 2011 May 15;27(10):1390-6
– reference: 16899655 - Genome Res. 2006 Sep;16(9):1169-81
– reference: 12525261 - BMC Bioinformatics. 2003 Jan 13;4:2
– reference: 24234440 - Nucleic Acids Res. 2014 Feb;42(3):1509-23
– reference: 24794929 - Bioinformatics. 2014 Aug 15;30(16):2351-9
– reference: 24594900 - PLoS One. 2014 Mar 03;9(3):e90073
– reference: 15608257 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D54-8
– reference: 20236959 - J R Soc Interface. 2010 Sep 6;7(50):1341-54
– reference: 25725498 - Bioinformatics. 2015 Jul 1;31(13):2182-9
– reference: 15961460 - Bioinformatics. 2005 Jun;21 Suppl 1:i213-21
– reference: 25015987 - Bioinformatics. 2014 Oct 15;30(20):2931-40
– reference: 14517352 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12123-8
– reference: 16510899 - Genome Res. 2006 Mar;16(3):428-35
– reference: 15215356 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W83-8
– reference: 18725631 - Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12763-8
– reference: 23696650 - Bioinformatics. 2013 Jul 1;29(13):1654-62
– reference: 19834143 - IEEE Trans Pattern Anal Mach Intell. 2009 Dec;31(12):2227-42
– reference: 25161231 - Bioinformatics. 2014 Sep 1;30(17):i438-44
– reference: 23413436 - Bioinformatics. 2013 Apr 1;29(7):917-24
– reference: 20375452 - J Integr Bioinform. 2010 Mar 25;7(3):null
– reference: 23047556 - Bioinformatics. 2012 Dec 1;28(23):3105-14
– reference: 16339411 - Science. 2006 Jan 13;311(5758):239-42
– reference: 24561554 - Nat Biotechnol. 2014 Mar;32(3):285-290
– reference: 24554629 - Bioinformatics. 2014 Jun 15;30(12):1721-9
– reference: 25792552 - Bioinformatics. 2015 Jul 15;31(14):2409-11
– reference: 23203989 - Nucleic Acids Res. 2013 Jan;41(Database issue):D816-23
– reference: 16597234 - J Comput Biol. 2006 Mar;13(2):182-99
– reference: 22234340 - Integr Biol (Camb). 2012 Jul;4(7):734-43
– reference: 19477997 - Bioinformatics. 2009 Jun 15;25(12):i259-67
– reference: 14504397 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11394-9
SSID ssj0017825
Score 2.2946608
Snippet Background Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different...
Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In...
Background Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different...
Abstract Background Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 670
SubjectTerms Algorithms
Alignment
Analysis
Animal Genetics and Genomics
Animals
Bioinformatics
Biological effects
Biomedical and Life Sciences
Computational biology
Computational Biology - methods
Computer Graphics
Gene Ontology
Gene Regulatory Networks
Genomics
Graph matching
Graph theory
Graphs
Humans
Integer programming
Life Sciences
Linear programming
Methods
Microarrays
Microbial Genetics and Genomics
Models, Theoretical
Phylogenetics
Plant Genetics and Genomics
Protein interaction
Protein Interaction Mapping
Protein-protein interaction network
Protein-protein interactions
Proteins
Proteins - genetics
Proteins - metabolism
Proteomics
Seeds
Semantics
Species
Wildlife conservation
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BAYkX7iNQkEFISKCoGyd2nCdUjgokVFVc6ptlO86yUpWUzW6l_ntmHG9KiugLj7sZa2OP5_J8-xnghRJOkqbTrPRYoDg0KVVnLsXcv8wxRNQ-oC1-fC7399XhYXUQD9z6CKvc-MTgqOvO0Rn5DrpYLonvavbm-FdKt0ZRdzVeoXEZrhBLAg_QvYOxi4DRT8ROZqbkTo--WBLmQqUCq7G0msSiQNn_t2P-IzKdR02ea52GiLR383_ncgtuxFyU7Q6b5zZc8u0duDbcTnl6F_T7Re8I4Ym_zo4IMc4cYa-XJ75mFA-HY0RGqPSuJUAGW7RsYBhh7QAvZ5jmzwPggNlTFtixGebIAcB5D77vffj27mMa72NInczLVZor1RAhWplbLCT5rC69w2Xn3mRWZF5ajoqVsqicsMJa6sAq3oiZbcpaVsbk92Grxfd5CKwQllhfMLvC9BN9rjWKG8rNJG9M1cgEZhvNaBfJyunOjCMdihYl9aBMjcrUpExdJfBqHHI8MHVcJPyW1D0KEsl2-KJbznW0WW2Kygjrqxz9VCEK_CSNcg5T0Nxal9UJPKfNoolGoyWcztys-15_-vpF7wpM03JecZXAyyjUdDgDZ-LfHnAdiHlrIrk9kUQ7d9PHm82ko5_p9dlOSuDZ-JhGEnau9d2aZDIsWiupRAIPhi08zjunkrJUOLqcbO7JwkyftIufgYUcU2EszLIEXm_M4Oy1_rnujy6exGO4zsk8Q9dvG7ZWy7V_AlfdyWrRL58G4_4NELBTwA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC40KuTF-xiN0oogKIM7R1-P8QgKEiTRkLemu6dnXQizYWc3kH9vVc-hEw_Qx92uXqaru66tb74GeK64F7TTaSYDFigeTUpVmU8x95cFhogqRLTF0Se5v6-Oj_Xn_j3udkC7Dy3J6KmjWSvxukVPKggxoVKOtVSqL8MVjHaK7ms4ODwaWwcY8njfvvzttEkAijz9v3rjn8LRRajkhX5pDEN7N_5rATfhep91st3umNyCS6G5Dde6eyjP74B5t2g9YTnx59gJYcOZJ5T16ixUjCJf94chI_z5siHoBVs0rOMSYU0HJGeY0M8jtIC5cxZ5sBlmwxGqeRe-7r3_8vZD2t-8kHpRyHVaKFUT9ZksHJaM-aySwWcY5ILNHM-CcDluoRCl9txx56jXqvKaz1wtK6GtLe7BVoPP8wBYyR3xu2AehYkmeldnVW4pCxN5bXUtEpgN22F8T0tOt2OcmFieKGE6vRnUmyG9GZ3Ay3HKacfJ8TfhN7THoyDRaccvlqu56a3T2FJb7oIu0COVvMRPwirvMdksnPNZlcAzOiGGCDMaQuTM7aZtzcfDA7PLMSErcp2rBF70QvUSV-Bt_4ID6oE4tiaSOxNJtGg_HR4Oouk9SmtQ-7kgvrdZAk_HYZpJKLkmLDckk2F5qoXiCdzvzu247oKKR6lwtpyc6IlipiPN4lvkG8ekF0uwLIFXw7n-8Vh_1PvDf5J-BNs5GUZs9-3A1nq1CY_hqj9bL9rVk2jg3wFkmkmR
  priority: 102
  providerName: Springer Nature
Title Discovering large conserved functional components in global network alignment by graph matching
URI https://link.springer.com/article/10.1186/s12864-018-5027-9
https://www.ncbi.nlm.nih.gov/pubmed/30255780
https://www.proquest.com/docview/2122626120
https://www.proquest.com/docview/2112609685
https://pubmed.ncbi.nlm.nih.gov/PMC6157291
https://doaj.org/article/a49a5be9353145449a6a8cc3243bbc1d
Volume 19
WOSCitedRecordID wos000454770600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0KvgiftZoe6wiCEpoPm6_HlvbYkGP46rlfFp2N0k9KDm53BX63zuzyZ1NRX3xJZDsLGxmZndmsr_8FuCN4l6QpeNUlligeJxSqkh9jLm_zDFEFGVAW5x9kqORmk71-NpRX4QJa-mBW8Xt2aG23JU6R2cZ8iHeCau8xzwgd86nBa2-idTrYqrbP8C4x7s9zFSJvQZXYUFoCxVzrMNi3YtCgaz_9yX5Wky6iZe8sWkaYtHxQ3jQJZFsvx38I7hV1o_hXnus5NUTMIezxhM0EzuzC4J6M0-g6cVlWTAKZO33P0Zw8nlNSAo2q1lLDcLqFhfOMD8_D0gB5q5YoLVmmNwG5OVT-Hp89OXDx7g7SCH2IpfLOFeqIiYzmTusALOkkKVPMWaVNnU8LYXL0CJCDLXnjjtHW6cqq3jiKlkIbW3-DLZqHM9zYEPuiK4F0yLMG3GxdFZllpIqkVVWVyKCZK1Y4zuWcTrs4sKEakMJ09rCoC0M2cLoCN5tuvxoKTb-JnxA1toIEjt2eIA-YzqfMf_ymQhek60N8V_UBLA5t6umMSenE7PPMb_KM52pCN52QtUc38Db7n8F1ANRZvUkd3qSOEF9v3ntUqZbIBqD2s8E0bclEbzaNFNPAr3V5XxFMilWm1ooHsF264Gb986pFpQKe8ueb_YU02-pZ98DfTjmsFhRpRG8X3vxr2H9Ue8v_ofeX8L9jOZg2NTbga3lYlXuwl1_uZw1iwHcllMZrmoAdw6ORuPJIMzqAQFyx_hsfPJ5_A3vJqdnPwGkd00W
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQX3g9DgQWBkKisxo9drw8IFUrVqGkUQYva0-Jdr0OkyilxUpQ_xW9kxo8UF9FbDxztnbV21_P0fJ4BeCW5EfSmXS-yGKAYFCmZesZF3z8K0ESktkRbfO1Hg4E8PIyHK_Cr-ReGYJWNTiwVdTox9I18A1WsL6jeVff9yQ-XukZRdrVpoVGxxa5d_MSQrXjX28L3-9r3tz_tf9xx664CrhFBNHMDKTMq6xUFGsMhv5tG1nj4dJt4mntWaB-XJ0QYG6651pRHlH7GuzqLUhEnSYDPvQKrITF7B1aHvb3h0TJvgfaW17lTT4qNArW_IJSHdDnGf27csn5lk4C_TcEftvA8TvNcsra0gdu3_rfTuw03a2-bbVbicQdWbH4XrlX9Nxf3QG2NC0MYVtwtOyZMPDOELp-e2pSRxa8-lDLC3U9ygpywcc6qGiosrwD0DAOZUQmpYHrByvrfDKOAEqJ6Hw4uZXcPoJPjeh4BC7mmujboP6KDjVZFJ9JPyPsUfpbEmXCg23CCMnU5duoKcqzKsEwKVTGPQuZRxDwqduDtcspJVYvkIuIPxF5LQiojXt6YTEeq1koqCeOEaxsHqIlDHuKVSKQx6GQHWhsvdeAlMaeiQiE5IZFGybwoVO_LZ7XJ0REN_NiXDrypibIJ7sAk9Y8deA5UW6xFudaiRE1m2sMN86pakxbqjHMdeLEcppmEDsztZE40HoblsZDcgYeVyCz3HVDQHEmcHbWEqXUw7ZF8_L2ss47OPoaengPrjdidLeuf5_744k08h-s7-3t91e8Ndp_ADZ9UQ5njXIPObDq3T-GqOZ2Ni-mzWrUw-HbZ8vgbhUWwHw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED_BeIgvvNkCAwxCQgJFax527I-DUTExVRODad8s20lKpSmdmnbS_nvu7DSQ8ZAQH1ufq_h857vr_fIzwCvJnaCdjpOiwgLFoUvJMnEx5v5FhiGirDza4vigmEzkyYk67O45bddo93VLMrzTQCxNzXLnrKyDi0ux0-KpKgg9IWOOdVWsrsK1nHD0VK4fHfdtBAx_vGtl_nbaIBh5zv5fT-afQtNl2OSl3qkPSeM7_72Yu3C7y0bZbjCfe3Clau7DjXA_5cUD0Huz1hHGE3-anRJmnDlCXy_Oq5JRRAx_JDLCpc8bgmSwWcMCxwhrAsCcYaI_9ZADZi-Y58dmmCV7COdD-Dr-8OX9x7i7kSF2IiuWcSZlTZRoRWaxlExHZVG5BINfZRLLk0rYFLdWiFw5brm11IOVac1Hti5KoYzJHsFGg8-zBSznlnhfML_CBBRPXWtkaig7E2ltVC0iGK23RruOrpxuzTjVvmyRQge9adSbJr1pFcGbfspZ4Or4m_A72u9ekGi2_RfzxVR3XqtNrgy3lcrwpMp5jp-Ekc5hEppZ65IygpdkLZqINBpC6kzNqm31_tFnvcsxUctSlcoIXndC9RxX4Ez34gPqgbi3BpLbA0n0dDccXhul7k6aVqP2U0E8cKMIXvTDNJPQc001X5FMgmWrEpJHsBlsuF93RkVlIXF2MbDugWKGI83sm-chx2QYS7MkgrdrG__xWH_U--N_kn4ONw_3xvpgf_LpCdxKyUd8R3AbNpaLVfUUrrvz5axdPPN-_x15QFVZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+large+conserved+functional+components+in+global+network+alignment+by+graph+matching&rft.jtitle=BMC+genomics&rft.au=Yuanyuan+Zhu&rft.au=Yuezhi+Li&rft.au=Juan+Liu&rft.au=Lu+Qin&rft.date=2018-09-24&rft.pub=BMC&rft.eissn=1471-2164&rft.volume=19&rft.issue=S7&rft.spage=41&rft.epage=58&rft_id=info:doi/10.1186%2Fs12864-018-5027-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a49a5be9353145449a6a8cc3243bbc1d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon