Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission

NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment Vol. 270; p. 112845
Main Authors: Duncanson, Laura, Kellner, James R., Dubayah, Ralph, Minor, David M., Hancock, Steven, Healey, Sean P., Patterson, Paul L., Saarela, Svetlana, Marselis, Suzanne, Silva, Carlos E., Bruening, Jamis, Goetz, Scott J., Tang, Hao, Hofton, Michelle, Blair, Bryan, Luthcke, Scott, Fatoyinbo, Lola, Alonso, Alfonso, Andersen, Hans-Erik, Aplin, Paul, Baker, Timothy R., Barbier, Nicolas, Bastin, Jean Francois, Biber, Peter, Boeckx, Pascal, Bogaert, Jan, Boschetti, Luigi, Boucher, Peter Brehm, Boyd, Doreen S., Calvo-Rodriguez, Sofia, Chazdon, Robin L., Coomes, David A., Corona, Piermaria, Cushman, K.C., Cutler, Mark E.J., Dalling, James W., Dash, Jonathan, de-Miguel, Sergio, Deng, Songqiu, Ellis, Peter Woods, Erasmus, Barend, Fekety, Patrick A., Fernandez-Landa, Alfredo, Ferraz, Antonio, Fisher, Adrian G., García-Abril, Antonio, Hacker, Jorg M., Heurich, Marco, Hill, Ross A., Hopkinson, Chris, Huang, Huabing, Hubbell, Stephen P., Hudak, Andrew T., Huth, Andreas, Imbach, Benedikt, Jeffery, Kathryn J., Katoh, Masato, Kearsley, Elizabeth, Kenfack, David, Kljun, Natascha, Král, Kamil, Krůček, Martin, Labrière, Nicolas, Lewis, Simon L., Longo, Marcos, Lucas, Richard M., Main, Russell, Martínez, Rodolfo Vásquez, Mathieu, Renaud, Memiaghe, Herve, Meyer, Victoria, Monerris, Alessandra, Montesano, Paul, Morsdorf, Felix, Næsset, Erik, Naidoo, Laven, Nilus, Reuben, O’Brien, Michael, Orwig, David A., Papathanassiou, Konstantinos, Poulsen, John R., Pretzsch, Hans, Saatchi, Sassan, Sanchez-Azofeifa, Arturo, Sanchez-Lopez, Nuria, Scholes, Robert, Silva, Carlos A., Simard, Marc, Skidmore, Andrew, Stereńczak, Krzysztof, Tanase, Mihai, Torresan, Chiara, Valbuena, Ruben, Verbeeck, Hans, Vrska, Tomas, Wessels, Konrad, White, Joanne C., White, Lee J.T., Zahabu, Eliakimu, Zgraggen, Carlo
Format: Journal Article
Language:English
Published: New York Elsevier Inc 01.03.2022
Elsevier BV
Elsevier
Subjects:
ISSN:0034-4257, 1879-0704, 1879-0704
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available. •NASA’s GEDI collects spaceborne lidar data used for mapping aboveground biomass.•A global database of field and airborne lidar was compiled.•Models stratified by Plant Functional Type and geographic region outperform a global model.•GEDI04_A models are OLS models predicting biomass as a function of RH metrics.•Maximum forest height is an important predictor of biomass across geographic domains.
AbstractList NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.
NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available. •NASA’s GEDI collects spaceborne lidar data used for mapping aboveground biomass.•A global database of field and airborne lidar was compiled.•Models stratified by Plant Functional Type and geographic region outperform a global model.•GEDI04_A models are OLS models predicting biomass as a function of RH metrics.•Maximum forest height is an important predictor of biomass across geographic domains.
NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (similar to 25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.
NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerablevariability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.
ArticleNumber 112845
Author Fekety, Patrick A.
Saatchi, Sassan
Bastin, Jean Francois
Huang, Huabing
Kljun, Natascha
Philipson, Christopher
Goetz, Scott J.
Imbach, Benedikt
Lewis, Simon L.
Blair, Bryan
Chave, Jérôme
Marselis, Suzanne
Heurich, Marco
Král, Kamil
Skidmore, Andrew
Hofton, Michelle
Fisher, Adrian G.
Luthcke, Scott
Boeckx, Pascal
Bogaert, Jan
Naidoo, Laven
Minor, David M.
de-Miguel, Sergio
Clark, David B.
Næsset, Erik
Fischer, Rico
Ellis, Peter Woods
Patterson, Paul L.
Kenfack, David
Hudak, Andrew T.
Manzanera, Jose A.
Nilus, Reuben
Lucas, Richard M.
Fernandez-Landa, Alfredo
Torresan, Chiara
White, Lee J.T.
Scholes, Robert
Bruening, Jamis
Andersen, Hans-Erik
Tanase, Mihai
García-Abril, Antonio
Kellner, James R.
Simard, Marc
Dubayah, Ralph
Healey, Sean P.
Aplin, Paul
Hopkinson, Chris
Monerris, Alessandra
Pisek, Jan
Fatoyinbo, Lola
Duncanson, Laura
Boyd, Doreen S.
Silva, Carlos A.
Corona, Piermaria
Dash, Jonathan
Rüdiger, Christoph
Stereńczak, Krzysztof
Ferraz, Antonio
Alonso, Alfonso
Longo, Marcos
Verbeeck, Hans
Labrière, Nicolas
Wessels, Konrad
Jeffery, Kathryn J.
A
Author_xml – sequence: 1
  givenname: Laura
  surname: Duncanson
  fullname: Duncanson, Laura
  email: lduncans@umd.edu
  organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA
– sequence: 2
  givenname: James R.
  surname: Kellner
  fullname: Kellner, James R.
  organization: Brown University, 75 Waterman St, Providence, RI 02912, USA
– sequence: 4
  givenname: Ralph
  surname: Dubayah
  fullname: Dubayah, Ralph
  organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA
– sequence: 5
  givenname: David M.
  surname: Minor
  fullname: Minor, David M.
  organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA
– sequence: 6
  givenname: Steven
  surname: Hancock
  fullname: Hancock, Steven
  organization: University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
– sequence: 7
  givenname: Sean P.
  surname: Healey
  fullname: Healey, Sean P.
  organization: USDA Forest Service, Rocky Mountain Research Station, 507 25th St., Ogden, UT 84401, USA
– sequence: 8
  givenname: Paul L.
  surname: Patterson
  fullname: Patterson, Paul L.
  organization: USDA Forest Service, Rocky Mountain Research Station, 507 25th St., Ogden, UT 84401, USA
– sequence: 9
  givenname: Svetlana
  surname: Saarela
  fullname: Saarela, Svetlana
  organization: Swedish University of Agricultural Sciences, SLU Skogsmarksgränd 17, SE-901 83 Umeå, Sweden
– sequence: 10
  givenname: Suzanne
  surname: Marselis
  fullname: Marselis, Suzanne
  organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA
– sequence: 11
  givenname: Carlos E.
  surname: Silva
  fullname: Silva, Carlos E.
  organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA
– sequence: 12
  givenname: Jamis
  surname: Bruening
  fullname: Bruening, Jamis
  organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA
– sequence: 13
  givenname: Scott J.
  surname: Goetz
  fullname: Goetz, Scott J.
  organization: Northern Arizona University, 1295 S. Knoles Dr., Flagstaff, AZ 86011, USA
– sequence: 14
  givenname: Hao
  surname: Tang
  fullname: Tang, Hao
  organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA
– sequence: 15
  givenname: Michelle
  surname: Hofton
  fullname: Hofton, Michelle
  organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA
– sequence: 16
  givenname: Bryan
  surname: Blair
  fullname: Blair, Bryan
  organization: NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA
– sequence: 17
  givenname: Scott
  surname: Luthcke
  fullname: Luthcke, Scott
  organization: NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA
– sequence: 18
  givenname: Lola
  surname: Fatoyinbo
  fullname: Fatoyinbo, Lola
  organization: NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA
– sequence: 20
  givenname: Alfonso
  surname: Alonso
  fullname: Alonso, Alfonso
  organization: Smithsonian Conservation Biology Institute, PO Box 37012, MRC 5516, Washington, DC 20013, USA
– sequence: 21
  givenname: Hans-Erik
  surname: Andersen
  fullname: Andersen, Hans-Erik
  organization: USDA Forest Service, Pacific Northwest Research Station,University of Washington, Box 352100, Seattle, WA 98195-2100, USA
– sequence: 22
  givenname: Paul
  surname: Aplin
  fullname: Aplin, Paul
  organization: Edge Hill University, St Helens Road, Ormskirk, Lancashire L394QP, UK
– sequence: 23
  givenname: Timothy R.
  surname: Baker
  fullname: Baker, Timothy R.
  organization: University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
– sequence: 24
  givenname: Nicolas
  surname: Barbier
  fullname: Barbier, Nicolas
  organization: AMAP, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, 34398 Montpellier cedex 5, France
– sequence: 25
  givenname: Jean Francois
  surname: Bastin
  fullname: Bastin, Jean Francois
  organization: TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
– sequence: 26
  givenname: Peter
  surname: Biber
  fullname: Biber, Peter
  organization: Technical University Munich, Arcisstraße 21, D-80333 Munich, Germany
– sequence: 27
  givenname: Pascal
  surname: Boeckx
  fullname: Boeckx, Pascal
  organization: Ghent University, Coupure Links 653, 9000 Gent, Belgium
– sequence: 28
  givenname: Jan
  surname: Bogaert
  fullname: Bogaert, Jan
  organization: University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium
– sequence: 29
  givenname: Luigi
  surname: Boschetti
  fullname: Boschetti, Luigi
  organization: University of Idaho, 875 Perimeter Dr., MS 1133, Moscow, ID 83844, USA
– sequence: 30
  givenname: Peter Brehm
  surname: Boucher
  fullname: Boucher, Peter Brehm
  organization: Harvard University, 26 Oxford Street Cambridge, MA 02138, USA
– sequence: 31
  givenname: Doreen S.
  surname: Boyd
  fullname: Boyd, Doreen S.
  organization: University of Nottingham, University Park, Nottingham NG7 2RD, UK
– sequence: 33
  givenname: Sofia
  surname: Calvo-Rodriguez
  fullname: Calvo-Rodriguez, Sofia
  organization: University of Alberta, Edmonton, AB T6G 2E3, Canada
– sequence: 35
  givenname: Robin L.
  surname: Chazdon
  fullname: Chazdon, Robin L.
  organization: University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-2043, USA
– sequence: 39
  givenname: David A.
  surname: Coomes
  fullname: Coomes, David A.
  organization: University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
– sequence: 40
  givenname: Piermaria
  surname: Corona
  fullname: Corona, Piermaria
  organization: Council for Agricultural Research and Economics, viale Santa Margherita 80, 52100 Arezzo, Italy
– sequence: 41
  givenname: K.C.
  surname: Cushman
  fullname: Cushman, K.C.
  organization: Brown University, 75 Waterman St, Providence, RI 02912, USA
– sequence: 42
  givenname: Mark E.J.
  surname: Cutler
  fullname: Cutler, Mark E.J.
  organization: University of Dundee, Nethergate, Dundee DD1 4HN, UK
– sequence: 43
  givenname: James W.
  surname: Dalling
  fullname: Dalling, James W.
  organization: Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Panama
– sequence: 45
  givenname: Jonathan
  surname: Dash
  fullname: Dash, Jonathan
  organization: Scion New Zealand Forest Research Institute, New Zealand
– sequence: 46
  givenname: Sergio
  surname: de-Miguel
  fullname: de-Miguel, Sergio
  organization: University of Lleida, Av. Alcalde Rovira Roure, 191, E-25198 Lleida, Spain
– sequence: 47
  givenname: Songqiu
  surname: Deng
  fullname: Deng, Songqiu
  organization: Shinshu University, 8304, Minamiminowa-Vill., Kamiina-County, Nagano 399-4598, Japan
– sequence: 48
  givenname: Peter Woods
  surname: Ellis
  fullname: Ellis, Peter Woods
  organization: The Nature Conservancy, 4245 North Fairfax Drive, Suite 100, Arlington, VA 22203, USA
– sequence: 49
  givenname: Barend
  surname: Erasmus
  fullname: Erasmus, Barend
  organization: University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000, Johannesburg, South Africa
– sequence: 50
  givenname: Patrick A.
  surname: Fekety
  fullname: Fekety, Patrick A.
  organization: Colorado State University, 1062 Campus Delivery, Fort Collins, CO 80523-1062, USA
– sequence: 51
  givenname: Alfredo
  surname: Fernandez-Landa
  fullname: Fernandez-Landa, Alfredo
  organization: Agresta Sociedad Cooperativa, St. Numancia 1, E-42001 Soria, Spain
– sequence: 52
  givenname: Antonio
  surname: Ferraz
  fullname: Ferraz, Antonio
  organization: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove, Pasadena, CA 91109, USA
– sequence: 54
  givenname: Adrian G.
  surname: Fisher
  fullname: Fisher, Adrian G.
  organization: University of New South Wales, Sydney, NSW 2052, Australia
– sequence: 55
  givenname: Antonio
  surname: García-Abril
  fullname: García-Abril, Antonio
  organization: Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28040 Madrid, Spain
– sequence: 57
  givenname: Jorg M.
  surname: Hacker
  fullname: Hacker, Jorg M.
  organization: Airborne Research Australia, Hangar 60, Dakota Drive, Parafield Airport, 5106, Australia
– sequence: 58
  givenname: Marco
  surname: Heurich
  fullname: Heurich, Marco
  organization: Bavarian Forest National Park, Freyunger Straße, 94481 Grafenau, Germany
– sequence: 59
  givenname: Ross A.
  surname: Hill
  fullname: Hill, Ross A.
  organization: Bournemouth University, Talbot Campus, Poole, Dorset BH12 5BB, UK
– sequence: 60
  givenname: Chris
  surname: Hopkinson
  fullname: Hopkinson, Chris
  organization: University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
– sequence: 61
  givenname: Huabing
  surname: Huang
  fullname: Huang, Huabing
  organization: School of Geospatial Engineering and Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
– sequence: 62
  givenname: Stephen P.
  surname: Hubbell
  fullname: Hubbell, Stephen P.
  organization: Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Panama
– sequence: 63
  givenname: Andrew T.
  surname: Hudak
  fullname: Hudak, Andrew T.
  organization: USDA Forest Service, Rocky Mountain Research Station, 1221 South Main St., Moscow, ID 83843, USA
– sequence: 64
  givenname: Andreas
  surname: Huth
  fullname: Huth, Andreas
  organization: Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
– sequence: 65
  givenname: Benedikt
  surname: Imbach
  fullname: Imbach, Benedikt
  organization: Aeroscout, Hengstrain 14, 6280, Hochdorf, Switzerland
– sequence: 66
  givenname: Kathryn J.
  surname: Jeffery
  fullname: Jeffery, Kathryn J.
  organization: University of Stirling, University of Stirling, Stirling FK9 4LA, UK
– sequence: 67
  givenname: Masato
  surname: Katoh
  fullname: Katoh, Masato
  organization: Shinshu University, 8304, Minamiminowa-Vill., Kamiina-County, Nagano 399-4598, Japan
– sequence: 68
  givenname: Elizabeth
  surname: Kearsley
  fullname: Kearsley, Elizabeth
  organization: Ghent University, Coupure Links 653, 9000 Gent, Belgium
– sequence: 69
  givenname: David
  surname: Kenfack
  fullname: Kenfack, David
  organization: Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Panama
– sequence: 70
  givenname: Natascha
  surname: Kljun
  fullname: Kljun, Natascha
  organization: Lund University, Centre for Environmental and Climate Science, Sölvegatan 37, 223 62 Lund, Sweden
– sequence: 72
  givenname: Kamil
  surname: Král
  fullname: Král, Kamil
  organization: The Silva Tarouca Research Institute, Lidická 25/27, 602 00 Brno, Czech Republic
– sequence: 73
  givenname: Martin
  surname: Krůček
  fullname: Krůček, Martin
  organization: The Silva Tarouca Research Institute, Lidická 25/27, 602 00 Brno, Czech Republic
– sequence: 74
  givenname: Nicolas
  surname: Labrière
  fullname: Labrière, Nicolas
  organization: Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (CNRS/IRD/UPS), 118 route de Narbonne, 31062 Toulouse Cedex 9, France
– sequence: 75
  givenname: Simon L.
  surname: Lewis
  fullname: Lewis, Simon L.
  organization: University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
– sequence: 76
  givenname: Marcos
  surname: Longo
  fullname: Longo, Marcos
  organization: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove, Pasadena, CA 91109, USA
– sequence: 77
  givenname: Richard M.
  surname: Lucas
  fullname: Lucas, Richard M.
  organization: Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion SY23 3DY, UK
– sequence: 78
  givenname: Russell
  surname: Main
  fullname: Main, Russell
  organization: University of Pretoria, Lynnwood Rd, Hatfield, Pretoria 0002, South Africa
– sequence: 80
  givenname: Rodolfo Vásquez
  surname: Martínez
  fullname: Martínez, Rodolfo Vásquez
  organization: Jardín Botánico de Missouri, Prolongación Bolognesi Mz.E-6, Peru
– sequence: 81
  givenname: Renaud
  surname: Mathieu
  fullname: Mathieu, Renaud
  organization: University of Pretoria, Lynnwood Rd, Hatfield, Pretoria 0002, South Africa
– sequence: 82
  givenname: Herve
  surname: Memiaghe
  fullname: Memiaghe, Herve
  organization: Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (CNRS/IRD/UPS), 118 route de Narbonne, 31062 Toulouse Cedex 9, France
– sequence: 83
  givenname: Victoria
  surname: Meyer
  fullname: Meyer, Victoria
  organization: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove, Pasadena, CA 91109, USA
– sequence: 85
  givenname: Alessandra
  surname: Monerris
  fullname: Monerris, Alessandra
  organization: University of Melbourne, Grattan Street, Parkville, Victoria, Australia
– sequence: 86
  givenname: Paul
  surname: Montesano
  fullname: Montesano, Paul
  organization: NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA
– sequence: 87
  givenname: Felix
  surname: Morsdorf
  fullname: Morsdorf, Felix
  organization: Department of Geography, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
– sequence: 88
  givenname: Erik
  surname: Næsset
  fullname: Næsset, Erik
  organization: Norwegian University of Life Sciences, P.O. Box 5003, NMBU, 1432 Ås, Norway
– sequence: 89
  givenname: Laven
  surname: Naidoo
  fullname: Naidoo, Laven
  organization: Council for Scientific and Industrial Research, PO BOX 395, Pretoria 0001, South Africa
– sequence: 90
  givenname: Reuben
  surname: Nilus
  fullname: Nilus, Reuben
  organization: Sabah Forestry Department, P.O.Box 1407, 90715 Sandakan, Sabah, Malaysia
– sequence: 91
  givenname: Michael
  surname: O’Brien
  fullname: O’Brien, Michael
  organization: Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Spain
– sequence: 92
  givenname: David A.
  surname: Orwig
  fullname: Orwig, David A.
  organization: Harvard University, Harvard Forest, 324 North Main Street, Petersham, MA 01366, USA
– sequence: 93
  givenname: Konstantinos
  surname: Papathanassiou
  fullname: Papathanassiou, Konstantinos
  organization: DLR, Königswinterer Str. 522-524, D-53227 Bonn, Germany
– sequence: 98
  givenname: John R.
  surname: Poulsen
  fullname: Poulsen, John R.
  organization: Duke University, PO Box 90328, USA
– sequence: 99
  givenname: Hans
  surname: Pretzsch
  fullname: Pretzsch, Hans
  organization: Technical University Munich, Arcisstraße 21, D-80333 Munich, Germany
– sequence: 101
  givenname: Sassan
  surname: Saatchi
  fullname: Saatchi, Sassan
  organization: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove, Pasadena, CA 91109, USA
– sequence: 102
  givenname: Arturo
  surname: Sanchez-Azofeifa
  fullname: Sanchez-Azofeifa, Arturo
  organization: University of Alberta, Edmonton, AB T6G 2E3, Canada
– sequence: 103
  givenname: Nuria
  surname: Sanchez-Lopez
  fullname: Sanchez-Lopez, Nuria
  organization: University of Idaho, 875 Perimeter Dr., MS 1133, Moscow, ID 83844, USA
– sequence: 104
  givenname: Robert
  surname: Scholes
  fullname: Scholes, Robert
  organization: University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000, Johannesburg, South Africa
– sequence: 105
  givenname: Carlos A.
  surname: Silva
  fullname: Silva, Carlos A.
  organization: University of Florida, 342 Newins-Ziegler Hall, PO Box 110410, Gainesville, FL, USA
– sequence: 106
  givenname: Marc
  surname: Simard
  fullname: Simard, Marc
  organization: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove, Pasadena, CA 91109, USA
– sequence: 107
  givenname: Andrew
  surname: Skidmore
  fullname: Skidmore, Andrew
  organization: University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
– sequence: 108
  givenname: Krzysztof
  surname: Stereńczak
  fullname: Stereńczak, Krzysztof
  organization: Forest Research Institute, Braci Leśnej 3 Street, Sękocin Stary, 05-090 Raszyn, Poland
– sequence: 109
  givenname: Mihai
  surname: Tanase
  fullname: Tanase, Mihai
  organization: University of Melbourne, Grattan Street, Parkville, Victoria, Australia
– sequence: 110
  givenname: Chiara
  surname: Torresan
  fullname: Torresan, Chiara
  organization: Council for Agricultural Research and Economics, viale Santa Margherita 80, 52100 Arezzo, Italy
– sequence: 111
  givenname: Ruben
  surname: Valbuena
  fullname: Valbuena, Ruben
  organization: Swedish University of Agricultural Sciences, SLU Skogsmarksgränd 17, SE-901 83 Umeå, Sweden
– sequence: 112
  givenname: Hans
  surname: Verbeeck
  fullname: Verbeeck, Hans
  organization: Ghent University, Coupure Links 653, 9000 Gent, Belgium
– sequence: 113
  givenname: Tomas
  surname: Vrska
  fullname: Vrska, Tomas
  organization: The Silva Tarouca Research Institute, Lidická 25/27, 602 00 Brno, Czech Republic
– sequence: 114
  givenname: Konrad
  surname: Wessels
  fullname: Wessels, Konrad
  organization: George Mason University, 4400 University Drive, MSN 6C3, Fairfax, VA 22030, USA
– sequence: 115
  givenname: Joanne C.
  surname: White
  fullname: White, Joanne C.
  organization: Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
– sequence: 116
  givenname: Lee J.T.
  surname: White
  fullname: White, Lee J.T.
  organization: University of Stirling, University of Stirling, Stirling FK9 4LA, UK
– sequence: 117
  givenname: Eliakimu
  surname: Zahabu
  fullname: Zahabu, Eliakimu
  organization: The Sokoine University of Agriculture, P.O. Box 3000, Chuo Kikuu, Morogoro, Tanzania
– sequence: 118
  givenname: Carlo
  surname: Zgraggen
  fullname: Zgraggen, Carlo
  organization: Aeroscout, Hengstrain 14, 6280, Hochdorf, Switzerland
BackLink https://hal.inrae.fr/hal-03516285$$DView record in HAL
https://www.osti.gov/servlets/purl/1893116$$D View this record in Osti.gov
https://res.slu.se/id/publ/116407$$DView record from Swedish Publication Index (Sveriges lantbruksuniversitet)
BookMark eNp9ksFu1DAQhiNUJNrCA3CL4NIedrEdx3HEadUubaUVHIDzyHYmu15548VOFu2N1-D1eBKcDUioEj3Zsv7P888_c5Gddb7DLHtNyZwSKt5t5yHinBFG55Qyyctn2TmVVT0jFeFn2TkhBZ9xVlYvsosYt4TQUlb0PHML7Q-4Dn7omlxbv1Mx5g120fbHfOcbdDFvfcg_Lj4vfv34GfM757Vy-dL4eIw97vLbY6d21sT8oTtg7O1a9dZ3-dXd8vbhOne2USHf2RjT48vseatcxFd_zsvs64fll5v72erT3cPNYjUzoij7WVnVnKlWaa0artqWl8RI2aqq5ZXhXOuKUYNtJauyEcIwqaRQtNEVlkha0xaX2Xz6N37H_aBhH-xOhSN4ZSG6QaswHhARKBWcVAlQ_wX2PvTKQcCIKpgNTGBSOWtOrUYoGaGmVgoIRQHctAwkExy0LFMDmtGmYKnGm6mGTyFBNLZHszG-69D0QGVdJC9JVEwiZ3GN4IO2cGAnH6f74NagDGgExoQEJlOdIlHXE7VJRv_1fr9YwfhGipIKJssDTdqrSbsP_tuQBgZpOAadUx36IUL6TxS1FGJM5e0j6dYPoUuTG1U1KQrG66SqJpUJPsaALaTWTsH0QVkHlMC4obCFtKEwbihMG5pI-oj86_0p5v3EpMXEg8UwJomdwcaGMcjG2yfo313lAek
CitedBy_id crossref_primary_10_1016_j_jag_2025_104614
crossref_primary_10_1111_2041_210X_14084
crossref_primary_10_1016_j_jag_2023_103403
crossref_primary_10_1016_j_rse_2025_114718
crossref_primary_10_1016_j_foreco_2024_122059
crossref_primary_10_1007_s10661_024_13610_1
crossref_primary_10_1016_j_rse_2023_113745
crossref_primary_10_1109_JSTARS_2025_3527631
crossref_primary_10_1109_LGRS_2022_3208744
crossref_primary_10_3390_rs14092096
crossref_primary_10_1111_nph_70457
crossref_primary_10_1371_journal_pclm_0000584
crossref_primary_10_3390_rs14102426
crossref_primary_10_1038_s41598_024_64615_2
crossref_primary_10_1080_17583004_2025_2465361
crossref_primary_10_1016_j_fecs_2025_100372
crossref_primary_10_1038_s41597_024_03092_8
crossref_primary_10_1007_s13253_024_00600_6
crossref_primary_10_1016_j_acags_2025_100289
crossref_primary_10_1038_s41893_025_01608_7
crossref_primary_10_1016_j_srs_2025_100195
crossref_primary_10_3390_rs17061076
crossref_primary_10_3390_land14081540
crossref_primary_10_3390_rs15040975
crossref_primary_10_3390_rs15081969
crossref_primary_10_1016_j_rse_2024_114557
crossref_primary_10_1109_JSTARS_2024_3425431
crossref_primary_10_1109_TGRS_2023_3318084
crossref_primary_10_1016_j_rse_2023_113619
crossref_primary_10_24072_pcjournal_625
crossref_primary_10_5194_essd_16_5267_2024
crossref_primary_10_1117_1_JRS_19_024502
crossref_primary_10_1080_2150704X_2025_2465914
crossref_primary_10_3390_rs17152623
crossref_primary_10_1038_s41598_023_50308_9
crossref_primary_10_3390_rs14133172
crossref_primary_10_1109_LGRS_2024_3390136
crossref_primary_10_1038_s41559_023_02206_6
crossref_primary_10_1080_07038992_2024_2351004
crossref_primary_10_1111_2041_210X_14416
crossref_primary_10_1007_s10980_023_01753_4
crossref_primary_10_1111_gcb_16497
crossref_primary_10_1007_s40725_024_00223_7
crossref_primary_10_1016_j_foreco_2024_122195
crossref_primary_10_1007_s10712_024_09866_4
crossref_primary_10_1016_j_rse_2024_114322
crossref_primary_10_1088_1748_9326_ad9aba
crossref_primary_10_1080_19479832_2024_2309615
crossref_primary_10_1007_s41748_025_00713_z
crossref_primary_10_1016_j_ecoinf_2025_103002
crossref_primary_10_1080_15481603_2025_2483027
crossref_primary_10_1016_j_jag_2022_103108
crossref_primary_10_1016_j_ecss_2025_109372
crossref_primary_10_3390_rs14122928
crossref_primary_10_1088_1748_9326_acba31
crossref_primary_10_1111_gcb_17493
crossref_primary_10_1109_JSTARS_2025_3567505
crossref_primary_10_1002_env_2892
crossref_primary_10_1016_j_rse_2025_114930
crossref_primary_10_1038_s43247_024_01893_8
crossref_primary_10_3390_rs17010047
crossref_primary_10_1016_j_measurement_2023_112593
crossref_primary_10_1016_j_jag_2024_103711
crossref_primary_10_1016_j_jag_2023_103538
crossref_primary_10_1016_j_rse_2025_114802
crossref_primary_10_1038_s41467_024_52468_2
crossref_primary_10_1364_AO_472881
crossref_primary_10_3390_rs14133035
crossref_primary_10_3390_rs16071229
crossref_primary_10_1038_s41467_025_56175_4
crossref_primary_10_1080_15481603_2023_2292374
crossref_primary_10_3390_rs14225741
crossref_primary_10_1029_2024GL110094
crossref_primary_10_3390_rs17020196
crossref_primary_10_3390_rs15051410
crossref_primary_10_1016_j_ecoinf_2023_102234
crossref_primary_10_2184_lsj_52_10_512
crossref_primary_10_1109_TGRS_2025_3572524
crossref_primary_10_1002_env_2883
crossref_primary_10_1016_j_foreco_2023_121583
crossref_primary_10_1111_1365_2745_70050
crossref_primary_10_1038_s41597_025_05021_9
crossref_primary_10_1109_JSTARS_2024_3461843
crossref_primary_10_3390_rs15112919
crossref_primary_10_1016_j_foreco_2025_122657
crossref_primary_10_1093_forestry_cpad024
crossref_primary_10_3390_f14061086
crossref_primary_10_3390_rs17091594
crossref_primary_10_3390_rs17152682
crossref_primary_10_1038_s41526_022_00231_6
crossref_primary_10_1080_21580103_2025_2481122
crossref_primary_10_1016_j_tfp_2024_100751
crossref_primary_10_1186_s13021_023_00221_5
crossref_primary_10_3389_ffgc_2025_1498430
crossref_primary_10_1016_j_cub_2023_04_019
crossref_primary_10_1088_1748_9326_ac8694
crossref_primary_10_1016_j_ecoinf_2022_101748
crossref_primary_10_1016_j_jag_2023_103275
crossref_primary_10_1007_s44391_025_00021_z
crossref_primary_10_1016_j_srs_2025_100204
crossref_primary_10_1016_j_tfp_2024_100763
crossref_primary_10_1016_j_rse_2022_113390
crossref_primary_10_1029_2024JG008108
crossref_primary_10_1038_s41597_024_03930_9
crossref_primary_10_1038_s41586_024_07629_0
crossref_primary_10_1016_j_rse_2024_114249
crossref_primary_10_1016_j_rse_2023_113530
crossref_primary_10_3390_rs16193550
crossref_primary_10_1109_JSTARS_2023_3298991
crossref_primary_10_3390_f16020214
crossref_primary_10_1080_01431161_2024_2307944
crossref_primary_10_1002_ece3_71341
crossref_primary_10_1016_j_jag_2025_104753
crossref_primary_10_1016_j_ecoinf_2024_102712
crossref_primary_10_1109_JSTARS_2025_3545482
crossref_primary_10_3390_rs16050861
crossref_primary_10_1016_j_srs_2024_100178
crossref_primary_10_1109_TGRS_2024_3382481
crossref_primary_10_1080_01431161_2023_2202340
crossref_primary_10_1088_2752_664X_adaaf9
crossref_primary_10_3390_land11101668
crossref_primary_10_3390_atmos16080954
crossref_primary_10_1186_s13595_025_01293_8
crossref_primary_10_1016_j_rse_2022_113367
crossref_primary_10_1088_2752_664X_ace723
crossref_primary_10_1016_j_habitatint_2025_103451
crossref_primary_10_1111_nph_70300
crossref_primary_10_3389_ffgc_2023_1149153
crossref_primary_10_1007_s12145_022_00915_3
crossref_primary_10_1016_j_rse_2023_113678
crossref_primary_10_1109_JSTARS_2024_3400218
crossref_primary_10_3390_f15101821
crossref_primary_10_1029_2023JG007465
crossref_primary_10_1007_s11273_025_10060_5
crossref_primary_10_3390_rs16234597
crossref_primary_10_1016_j_envsoft_2025_106565
crossref_primary_10_3390_rs15123029
crossref_primary_10_1016_j_rse_2024_114384
crossref_primary_10_1016_j_srs_2025_100221
crossref_primary_10_1016_j_pce_2024_103819
crossref_primary_10_3390_jmse11010175
crossref_primary_10_3390_rs15061522
crossref_primary_10_1002_env_2840
crossref_primary_10_1111_pce_15393
crossref_primary_10_1016_j_foreco_2024_122491
crossref_primary_10_3390_f15112024
crossref_primary_10_1038_s41586_025_08967_3
crossref_primary_10_1016_j_jag_2022_103088
crossref_primary_10_1038_s43247_024_01984_6
crossref_primary_10_1109_TGRS_2025_3600816
crossref_primary_10_1016_j_isprsjprs_2025_05_022
crossref_primary_10_3390_s25123696
crossref_primary_10_1088_1748_9326_ad0b60
crossref_primary_10_1016_j_jenvman_2024_123287
crossref_primary_10_1016_j_ecoinf_2023_102082
crossref_primary_10_3390_rs16142571
crossref_primary_10_3390_f16030390
crossref_primary_10_1002_rse2_416
crossref_primary_10_1016_j_foreco_2025_122964
crossref_primary_10_1016_j_jag_2023_103232
crossref_primary_10_1080_01431161_2024_2354072
crossref_primary_10_1007_s11069_024_06775_y
crossref_primary_10_1016_j_isprsjprs_2024_11_020
crossref_primary_10_1111_ecog_07587
crossref_primary_10_3390_rs17050796
crossref_primary_10_1016_j_rse_2022_113074
crossref_primary_10_1007_s40725_024_00242_4
crossref_primary_10_1002_rse2_419
crossref_primary_10_1088_1748_9326_acdf03
crossref_primary_10_1016_j_rse_2023_113571
crossref_primary_10_1016_j_ecolind_2025_113610
crossref_primary_10_1186_s13021_022_00214_w
crossref_primary_10_1016_j_ecolind_2025_113889
crossref_primary_10_1038_s41597_025_05464_0
crossref_primary_10_3389_ffgc_2023_1098901
crossref_primary_10_1016_j_rse_2024_114174
crossref_primary_10_3390_rs16132321
crossref_primary_10_1016_j_rse_2025_114890
crossref_primary_10_1016_j_jenvman_2025_124313
crossref_primary_10_1109_JSTARS_2023_3302026
crossref_primary_10_3390_rs16060978
crossref_primary_10_1016_j_foreco_2025_123175
crossref_primary_10_1016_j_rse_2025_114774
crossref_primary_10_1080_22797254_2025_2542870
crossref_primary_10_1016_j_jag_2024_103797
crossref_primary_10_1029_2022EA002516
crossref_primary_10_3390_rs17142340
crossref_primary_10_1016_j_jag_2022_103072
crossref_primary_10_1093_forestry_cpae003
crossref_primary_10_1016_j_foreco_2025_122747
crossref_primary_10_1186_s13021_024_00286_w
crossref_primary_10_1088_1748_9326_ad3661
crossref_primary_10_3390_s23010349
crossref_primary_10_1002_rse2_70019
crossref_primary_10_3390_land14030567
crossref_primary_10_3390_rs15030696
crossref_primary_10_3390_rs17162849
crossref_primary_10_1038_s41597_025_05354_5
crossref_primary_10_3390_f15081440
crossref_primary_10_1088_2752_664X_ad7f5a
crossref_primary_10_1016_j_agrformet_2025_110833
crossref_primary_10_1016_j_rse_2025_114644
crossref_primary_10_1088_2752_664X_add7e3
crossref_primary_10_5194_essd_15_4927_2023
crossref_primary_10_1080_17583004_2024_2390854
crossref_primary_10_7780_kjrs_2025_41_2_2_2
crossref_primary_10_1016_j_rse_2024_114518
crossref_primary_10_3390_f15061055
crossref_primary_10_5194_bg_20_3803_2023
crossref_primary_10_1016_j_jag_2025_104814
crossref_primary_10_1016_j_rse_2023_113703
crossref_primary_10_1016_j_rse_2024_114196
crossref_primary_10_1038_s43017_023_00508_8
crossref_primary_10_3390_rs14194911
crossref_primary_10_3390_s22052015
crossref_primary_10_3390_rs15153738
crossref_primary_10_1016_j_rse_2022_113420
crossref_primary_10_3390_f16040570
crossref_primary_10_1038_s41597_024_03162_x
crossref_primary_10_1016_j_jag_2023_103314
crossref_primary_10_1080_01431161_2024_2343134
crossref_primary_10_1088_1748_9326_ace464
crossref_primary_10_1007_s44392_025_00029_w
crossref_primary_10_1088_1748_9326_acd2ec
crossref_primary_10_1016_j_scitotenv_2024_173273
crossref_primary_10_1088_1748_9326_add60a
crossref_primary_10_1016_j_jag_2024_104148
crossref_primary_10_1002_rse2_330
crossref_primary_10_1007_s12524_023_01693_1
crossref_primary_10_1016_j_srs_2025_100286
crossref_primary_10_3390_s24113488
crossref_primary_10_1007_s40725_024_00225_5
crossref_primary_10_1016_j_rse_2022_113402
crossref_primary_10_1016_j_ecolind_2024_112157
crossref_primary_10_1109_TGRS_2024_3513641
crossref_primary_10_1002_fee_2585
crossref_primary_10_1038_s41467_023_38073_9
crossref_primary_10_1038_s41597_025_05739_6
crossref_primary_10_1088_2752_664X_acffcd
crossref_primary_10_5194_bg_21_1583_2024
crossref_primary_10_5194_bg_21_3289_2024
crossref_primary_10_1038_s41598_024_65954_w
crossref_primary_10_1109_LGRS_2023_3298142
crossref_primary_10_1371_journal_pone_0327895
crossref_primary_10_3390_rs16071281
crossref_primary_10_1007_s12518_025_00619_5
crossref_primary_10_1038_s41893_022_01020_5
crossref_primary_10_3390_rs14184466
crossref_primary_10_1080_01431161_2024_2396565
crossref_primary_10_1038_s41597_025_04655_z
crossref_primary_10_1007_s10980_023_01597_y
crossref_primary_10_1080_10106049_2024_2397468
crossref_primary_10_1016_j_jag_2024_104288
crossref_primary_10_1002_rse2_353
crossref_primary_10_1109_JSTARS_2024_3472096
crossref_primary_10_1016_j_foreco_2023_120975
crossref_primary_10_1080_15481603_2025_2497603
crossref_primary_10_1016_j_jenvman_2025_127197
Cites_doi 10.1016/j.envsci.2010.11.002
10.1016/j.ecolmodel.2017.10.009
10.1038/nclimate1354
10.5194/essd-11-1783-2019
10.1016/j.rse.2012.10.017
10.5589/m06-030
10.1088/1748-9326/3/4/045011
10.1080/01431160701736497
10.3390/rs12172840
10.1016/j.srs.2020.100002
10.1029/2009GL040692
10.1016/j.rse.2011.03.021
10.1016/j.isprsjprs.2015.04.007
10.1111/gcb.13139
10.1016/j.rse.2015.07.002
10.1016/S0034-4257(01)00281-4
10.1016/S0034-4257(99)00052-8
10.1126/science.aam5962
10.5194/bg-9-3381-2012
10.3390/rs10111832
10.1016/S0034-4257(96)00112-5
10.5194/bg-15-3377-2018
10.1080/07038992.2016.1217482
10.1016/j.rse.2017.03.017
10.1016/j.rse.2009.08.018
10.1111/ecog.02104
10.1046/j.1466-822X.2003.00010.x
10.1038/s41467-020-18321-y
10.1016/j.rse.2021.112533
10.3390/rs70100788
10.1109/36.134089
10.1109/LGRS.2005.856706
10.1016/j.rse.2008.09.009
10.1139/x91-101
10.1038/ncomms3269
10.1016/S0034-4257(97)00133-8
10.1007/s00468-006-0119-6
10.1073/pnas.1019576108
10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
10.1016/S0034-4257(03)00039-7
10.1016/j.rse.2011.07.012
10.5589/m12-003
10.1016/j.rse.2009.08.016
10.1098/rstb.2003.1425
10.1016/j.rse.2016.09.006
10.1111/1365-2745.12263
10.1088/1748-9326/ab18df
10.3832/ifor2735-012
10.1109/36.885208
10.1016/j.rse.2012.07.006
10.5194/gmd-4-993-2011
10.1186/s13021-020-00143-6
10.1139/cjfr-2015-0006
10.1088/1748-9326/abd2ef
10.1016/j.rse.2009.12.018
10.1038/s41561-018-0279-1
10.1029/1999GL010484
10.5194/gmd-5-413-2012
10.1016/j.rse.2010.08.027
10.5194/essd-8-605-2016
10.1029/2018EA000506
10.1111/gcb.13388
10.1016/j.rse.2006.09.036
10.1016/j.rse.2013.03.017
10.1016/j.rse.2012.05.005
10.1016/j.rse.2012.10.008
10.1016/j.rse.2020.112165
10.1038/s41598-017-15050-z
10.1038/s41598-020-73733-6
10.5194/bg-9-5125-2012
10.1007/s10712-019-09532-0
10.1016/j.rse.2015.04.013
10.1109/JSTARS.2018.2851606
10.1073/pnas.0812303106
10.2307/3237198
10.1186/s13021-019-0117-9
10.1088/1748-9326/aad782
10.1186/s13021-015-0021-x
10.1080/01431160903380664
10.1016/j.rse.2008.03.004
10.1016/S0269-7491(01)00255-X
10.3390/f8050170
10.1016/j.rse.2020.112234
10.1111/j.1654-1103.2012.01471.x
10.1088/1748-9326/10/12/123001
10.1016/j.tree.2005.12.002
10.3390/rs61010051
10.1016/j.rse.2019.111347
10.1111/gcb.12629
10.1016/j.rse.2019.111262
10.1016/j.rse.2012.02.001
10.1016/j.compag.2020.105815
10.1016/j.rse.2020.111779
10.1029/2009JG000936
10.1016/j.rse.2013.09.023
10.1016/j.rse.2008.06.003
10.1111/j.1365-2745.2009.01604.x
10.3390/rs8080653
10.1088/1748-9326/2/4/045023
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier BV Mar 1, 2022
Attribution
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier BV Mar 1, 2022
– notice: Attribution
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
MERGE: ModElling the Regional and Global Earth system
Strategiska forskningsområden (SFO)
Strategic research areas (SRA)
Profile areas and other strong research environments
Lunds universitet
Naturvetenskapliga fakulteten
BECC: Biodiversity and Ecosystem services in a Changing Climate
Faculty of Science
Lund University
Profilområden och andra starka forskningsmiljöer
Centre for Environmental and Climate Science (CEC)
Centrum för miljö- och klimatvetenskap (CEC)
Sveriges lantbruksuniversitet
CorporateAuthor_xml – sequence: 0
  name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
– name: Strategiska forskningsområden (SFO)
– name: Naturvetenskapliga fakulteten
– name: MERGE: ModElling the Regional and Global Earth system
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Centre for Environmental and Climate Science (CEC)
– name: BECC: Biodiversity and Ecosystem services in a Changing Climate
– name: Profile areas and other strong research environments
– name: Centrum för miljö- och klimatvetenskap (CEC)
– name: Strategic research areas (SRA)
– name: Lunds universitet
– name: Faculty of Science
– name: Sveriges lantbruksuniversitet
DBID 6I.
AAFTH
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
1XC
VOOES
Q33
OIOZB
OTOTI
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1016/j.rse.2021.112845
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Université de Liège - Open Repository and Bibliography (ORBI)
OSTI.GOV - Hybrid
OSTI.GOV
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA



Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID oai_slubar_slu_se_116407
oai_portal_research_lu_se_publications_5201c9aa_01e6_4cf2_8264_b85d4ab21d32
1893116
oai_orbi_ulg_ac_be_2268_288263
oai:HAL:hal-03516285v1
10_1016_j_rse_2021_112845
S0034425721005654
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
VOH
WUQ
XOL
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
1XC
VOOES
Q33
OIOZB
OTOTI
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c635t-57942afabbad4aff450c88fa7f47c44bb721cef7875d66c28a86a1db7e5e0fcf3
ISICitedReferencesCount 299
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760433300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
1879-0704
IngestDate Tue Nov 04 17:20:29 EST 2025
Wed Nov 19 03:23:14 EST 2025
Thu Dec 05 06:22:35 EST 2024
Sat Nov 29 01:28:14 EST 2025
Sat Nov 29 15:12:06 EST 2025
Sun Nov 09 13:25:04 EST 2025
Wed Aug 13 04:22:31 EDT 2025
Sat Nov 29 07:27:27 EST 2025
Tue Nov 18 21:39:22 EST 2025
Fri Feb 23 02:39:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Waveform
Forest
GEDI
Modeling
LiDAR
Aboveground biomass
Language English
License This is an open access article under the CC BY license.
Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c635t-57942afabbad4aff450c88fa7f47c44bb721cef7875d66c28a86a1db7e5e0fcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
scopus-id:2-s2.0-85123289336
National Aeronautics and Space Administration (NASA)
USDOE Office of Science (SC), High Energy Physics (HEP)
National Science Foundation (NSF)
AC02-05CH11231; NNL 15AA03C; NNH20ZDA001N; 80HQTR18T0016; RPO201523; NNH13AW621; DEB 0939907
ORCID 0000-0003-3998-0010
0000-0002-9738-0657
0000-0003-0396-2072
0000-0002-7766-1347
0000-0002-8037-2001
0000-0002-1532-9808
0000-0002-8993-6168
0000-0002-5323-3866
0000-0003-3995-6299
0000-0002-7349-5687
0000-0003-4375-4446
0000-0003-1490-0168
0000-0002-2632-0008
0000-0001-6253-8437
0000-0002-8261-2582
0000-0003-0493-7581
0000-0003-2602-7247
0000-0003-4465-6442
OpenAccessLink https://www.osti.gov/servlets/purl/1893116
PQID 2639033249
PQPubID 2045405
ParticipantIDs swepub_primary_oai_slubar_slu_se_116407
swepub_primary_oai_portal_research_lu_se_publications_5201c9aa_01e6_4cf2_8264_b85d4ab21d32
osti_scitechconnect_1893116
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_288263
hal_primary_oai_HAL_hal_03516285v1
proquest_miscellaneous_2636398667
proquest_journals_2639033249
crossref_citationtrail_10_1016_j_rse_2021_112845
crossref_primary_10_1016_j_rse_2021_112845
elsevier_sciencedirect_doi_10_1016_j_rse_2021_112845
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Remote sensing of environment
PublicationYear 2022
Publisher Elsevier Inc
Elsevier BV
Elsevier
Publisher_xml – sequence: 0
  name: Elsevier
– name: Elsevier Inc
– name: Elsevier BV
– name: Elsevier
References Le Toan, Beaudoin, Riom, Guyon (bb0550) 1992; 30
Saarela, Holm, Healey, Patterson, Duncanson, Armston, Kellner, Gobakken, Næsset, Ekström, Ståhl (bb0780) 2021
Boudreau, Nelson, Margolis, Beaudoin, Guindon, Kimes (bb0080) 2008
Meyer, Saatchi, Clark, Keller, Grégoire, Ferraz, Espírito-Santo, d’Oliveira, Kaki, Chave (bb0640) 2018; 15
Hancock, Armston, Hofton, Sun, Tang, Duncanson, Kellner, Dubayah (bb0390) 2019; 6
Swatantran, Dubayah, Roberts, Hofton, Bryan Blair (bb0870) 2011
Lefsky, Cohen, Acker, Parker, Spies, Harding (bb0555) 1999
Ploton, Mortier, Réjou-Méchain, Barbier, Picard, Rossi, Dormann, Cornu, Viennois, Bayol, Lyapustin, Gourlet-Fleury, Pélissier (bb0740) 2020; 11
Silva, Duncanson, Hancock, Neuenschwander, Thomas, Hofton, Fatoyinbo, Simard, Marshak, Armston, Lutchke, Dubayah (bb0805) 2021
Corlett, Primack (bb0170) 2006; 21
North, Rosette, Suárez, Los (bb0705) 2010
Zolkos, Goetz, Dubayah (bb0950) 2013
Mahoney, Kljun, Los, Chasmer, Hacker, Hopkinson, North, Rosette, van Gorsel (bb0605) 2014; 6
Duncanson, Neuenschwander, Hancock, Thomas, Fatoyinbo, Simard, Silva, Armston, Luthcke, Hofton, Kellner, Dubayah (bb0270) 2020; 242
Drake, Dubayah, Clark, Knox, Bryan Blair, Hofton, Chazdon, Weishampel, Prince (bb0220) 2002
Xu, Saatchi, Shapiro, Meyer, Ferraz, Yang, Bastin, Banks, Boeckx, Verbeeck, Lewis, Muanza, Bongwele, Kayembe, Mbenza, Kalau, Mukendi, Ilunga, Ebuta (bb0940) 2017; 7
Clark, Kellner (bb0130) 2012; 23
Wulder, White, Nelson, Næsset, Ørka, Coops, Hilker, Bater, Gobakken (bb0935) 2012
Gibbs, Brown, Niles, Foley (bb0365) 2007
Koetz, Morsdorf, Sun, Ranson, Itten, Allgower (bb0485) 2006
Smith (bb0825) 2002; 116
Friis, Balslev (bb0360) 2005; 55
Chave, Condit, Aguilar, Hernandez, Lao, Perez (bb0115) 2004; 359
Poulter, Ciais, Hodson, Lischke, Maignan, Plummer, Zimmermann (bb0750) 2011
Disney, Burt, Wilkes, Armston, Duncanson (bb0210) 2020; 10
Sun, Jon Ranson, Guo, Zhang, Montesano, Kimes (bb0865) 2011
Lucas, Lee, Bunting (bb0590) 2008
Corbera, Schroeder (bb0165) 2011; 14
Carlucci, Seger, Sheil, Amaral, Chuyong, Ferreira, Galatti, Hurtado, Kenfack, Leal, Lewis, Lovett, Marshall, Martin, Mugerwa, Munishi, Oliveira, Razafimahaimodison, Rovero, Sainge, Thomas, Pillar, Duarte (bb0110) 2017
Kellner, Armston, Duncanson (bb0475) 2021
Ferraz, Saatchi, Mallet, Jacquemoud, Gil, Silva, Soares, Tomé, Pereira (bb0325) 2016; 8
Vorster, Evangelista, Stovall, Ex (bb0915) 2020; 15
Jucker, Caspersen, Chave, Antin, Barbier, Bongers, Dalponte, van Ewijk, Forrester, Haeni, Higgins, Holdaway, Iida, Lorimer, Marshall, Momo, Moncrieff, Ploton, Poorter, Rahman, Schlund, Sonké, Sterck, Trugman, Usoltsev, Vanderwel, Waldner, Wedeux, Wirth, Wöll, Woods, Xiang, Zimmermann, Coomes (bb0455) 2017; 23
Kearsley, de Haulleville, Hufkens, Kidimbu, Toirambe, Baert, Huygens, Kebede, Defourny, Bogaert, Beeckman, Steppe, Boeckx, Verbeeck (bb0465) 2013; 4
Asner, Mascaro (bb0030) 2014
Hansen, Bollandsås, Zahabu, Næsset (bb0395) 2015; 7
Corte, Souza, Rex, Sanquetta, Mohan, Silva, Zambrano, Prata, de Almeida, Trautenmüller, Klauberg, de Moraes, Sanquetta, Wilkinson, Broadbent (bb0180) 2020
Valbuena, Hernando, Manzanera, Görgens, Almeida, Mauro, García-Abril, Coomes (bb0905) 2017; 366
Zhao, Popescu, Nelson (bb0945) 2009
Sun, Ranson, Kimes, Blair, Kovacs (bb0860) 2008
Mitchard, Saatchi, Woodhouse, Nangendo, Ribeiro, Williams, Ryan, Lewis, Feldpausch, Meir (bb0650) 2009
Næsset, Bollandsås, Gobakken, Gregoire, Ståhl (bb0685) 2013
Andersen, Reutebuch, McGaughey (bb0010) 2006
Tang, Armston, Hancock, Marselis, Goetz, Dubayah (bib951) 2019; 231
Rodríguez-Veiga, Quegan, Carreiras, Persson, Fransson, Hoscilo, Ziółkowski, Stereńczak, Lohberger, Stängel, Berninger, Siegert, Avitabile, Herold, Mermoz, Bouvet, Le Toan, Carvalhais, Santoro, Cartus, Rauste, Mathieu, Asner, Thiel, Pathe, Schmullius, Seifert, Tansey, Balzter (bb0770) 2019; 77
Drake, Dubayah, Clark, Knox, Blair, Hofton, Chazdon, Weishampel, Prince (bb0215) 2002; 79
Chave, Réjou-Méchain, Búrquez, Chidumayo, Colgan, Delitti, Duque, Eid, Fearnside, Goodman, Henry, Martínez-Yrízar, Mugasha, Muller-Landau, Mencuccini, Nelson, Ngomanda, Nogueira, Ortiz-Malavassi, Pélissier, Ploton, Ryan, Saldarriaga, Vieilledent (bb0125) 2014; 20
Le Quéré, Andrew, Canadell, Sitch, Korsbakken, Peters, Manning, Boden, Tans, Houghton, Keeling, Alin, Andrews, Anthoni, Barbero, Bopp, Chevallier, Chini, Ciais, Currie, Delire, Doney, Friedlingstein, Gkritzalis, Harris, Hauck, Haverd, Hoppema, Klein Goldewijk, Jain, Kato, Körtzinger, Landschutzer, Lefevre, Lenton, Lienert, Lombardozzi, Melton, Metzl, Millero, Monteiro, Munro, Nabel, Nakaoka, O’Brien, Olsen, Omar, Pierrot, Ono, Poulter, Rödenbeck, Salisbury, Schuster, Schwinger, Seferian, Skjelvan, Stocker, Sutton, Takahashi, Tian, Tilbrook, Van Der Laan-Luijkx, Van Der Werf, Viovy, Walker, Wiltshire, Zaehle (bb0545) 2016; 8
Avitabile, Herold, Heuvelink, Lewis, Phillips, Asner, Armston, Ashton, Banin, Bayol, Berry, Boeckx, de Jong, DeVries, Girardin, Kearsley, Lindsell, Lopez-Gonzalez, Lucas, Malhi, Morel, Mitchard, Nagy, Qie, Quinones, Ryan, Ferry, Sunderland, Laurin, Gatti, Valentini, Verbeeck, Wijaya, Willcock (bb0040) 2016; 22
Lefsky, Keller, Pang, De Camargo, Hunter (bb0565) 2007; 1
Powell, Cohen, Healey, Kennedy, Moisen, Pierce, Ohmann (bb0755) 2010; 114
Hudak, Bright, Pokswinski, Louise Loudermilk, O’Brien, Hornsby, Klauberg, Silva (bb0425) 2016
Huang, Sun, Dubayah, Cook, Montesano, Ni, Zhang (bb0420) 2013
Réjou-Méchain, Barbier, Couteron, Ploton, Vincent, Herold, Mermoz, Saatchi, Chave, de Boissieu, Féret, Takoudjou, Pélissier (bb0765) 2019
Mauya, Hansen, Gobakken, Bollandsås, Malimbwi, Næsset (bb0620) 2015
Ranson, Sun (bb0760) 2000
Diaz, Cabido (bb0205) 1997
Simard, Pinto, Fisher, Baccini (bb0815) 2011; 116
Baccini, Goetz, Walker, Laporte, Sun, Sulla-Menashe, Hackler, Beck, Dubayah, Friedl, Samanta, Houghton (bb0050) 2012
Coomes, Dalponte, Jucker, Asner, Banin, David, Lewis, Nilus, Phillips, Phua, Qie (bb0155) 2017
Baccini, Walker, Carvalho, Farina, Sulla-Menashe, Houghton (bb0055) 2017; 358
Blair, Hofton (bb0075) 1999
Foody, Boyd, Cutler (bb0340) 2003
Feldpausch, Lloyd, Lewis, Brienen, Gloor, Monteagudo Mendoza, Lopez-Gonzalez, Banin, Abu Salim, Affum-Baffoe, Alexiades, Almeida, Amaral, Andrade, Aragao, Araujo Murakami, Arets, Arroyo, Aymard, Baker, Banki, Berry, Cardozo, Chave, Comiskey, Alvarez, de Oliveira, Di Fiore, Djagbletey, Domingues, Erwin, Fearnside, Franca, Freitas, Higuchi, Honorio, Iida, Jimenez, Kassim, Killeen, Laurance, Lovett, Malhi, Marimon, Marimon-Junior, Lenza, Marshall, Mendoza, Metcalfe, Mitchard, Neill, Nelson, Nilus, Nogueira, Parada, Peh, Pena Cruz, Penuela, Pitman, Prieto, Quesada, Ramırez, Ramırez-Angulo, Reitsma, Rudas, Saiz, Salomao, Schwarz, Silva, Silva-Espejo, Silveira, Sonke, Stropp, Taedoumg, Tan, ter Steege, Terborgh, Torello-Raventos, van der Heijden, Vasquez, Vilanova, Vos, White, Willcock, Woell, Phillips (bb0315) 2012; 9
Simard, Fatoyinbo, Smetanka, Rivera-Monroy, Castañeda-Moya, Thomas, Van der Stocken (bb0820) 2018; 12
Drake, Knox, Dubayah, Clark, Condit, Bryan Blair, Hofton (bb0225) 2003
Duncanson, Armston, Disney, Avitabile, Barbier, Calders, Carter, Chave, Herold, MacBean (bb0275) 2021
Ene, Næsset, Gobakken, Mauya, Bollandsås, Gregoire, Ståhl, Zahabu (bb0290) 2016; 186
Tang, Ma, Lister, O’Neill-Dunne, Lu, Lamb, Dubayah, Hurtt (bb0880) 2021; 16
Houghton, R.A., House, J.I., Pongratz, J., Werf, G.R. van der, DeFries, R.S., Hansen, M.C., Le Quéré, C., Ramankutty, N., 2012. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142.
Naidoo, Mathieu, Main, Kleynhans, Wessels, Asner, Leblon (bb0695) 2015; 105
Los, Rosette, Kljun, North, Chasmer, Suárez, Hopkinson, Hill, van Gorsel, Mahoney, Berni (bb0585) 2012; 5
Ni-Meister, Lee, Strahler, Woodcock, Schaaf, Yao, Jon Ranson, Sun, Bryan Blair (bb0700) 2010
Margolis, Nelson, Montesano, Beaudoin, Sun, Andersen, Wulder (bb0610) 2015; 45
Labriere, Tao, Chave, Scipal, Le Toan, Abernethy, Alonso, Barbier, Bissiengou, Casal, Davies, Ferraz, Herault, Jaouen, Jeffery, Kenfack, Korte, Lewis, Malhi, Memiaghe, Poulsen, Rejou-Mechain, Villard, Vincent, White, Saatchi (bb0510) 2018
Dubayah, Blair, Goetz, Fatoyinbo, Hansen, Healey, Hofton, Hurtt, Kellner, Luthcke, Armston, Tang, Duncanson, Hancock, Jantz, Marselis, Patterson, Qi, Silva (bb0245) 2020
Potapov, Li, Hernandez-Serna, Tyukavina, Hansen, Kommareddy, Pickens, Turubanova, Tang, Silva, Armston, Dubayah, Blair, Hofton (bb0745) 2021; 253
Wood (bb0925) 2017
Healey, Yang, Gorelick, Ilyushchenko (bb0405) 2020; 12
Meyer, Saatchi, Ferraz, Xu, Duque, García, Chave (bb0645) 2019; 14
Friedl, Sulla-Menashe, Tan, Schneider, Ramankutty, Sibley, Huang (bb0350) 2010
Huete, Liu, Batchily, van Leeuwen (bb0430) 1997; 59
Hurtt, Pacala, Moorcroft, Caspersen, Shevliakova, Houghton, Moore (bb0435) 2002
Lang, Schindler, Wegner (bb0530) 2019; 233
Enquist, West, Brown (bb0300) 2009; 106
Hancock, Armston, Li, Gaulton, Lewis, Disney, Mark Danson, Strahler, Schaaf, Anderson, Gaston (bb0385) 2015
Snowdon (bb0830) 1991; 21
Ferry, Morneau, Bontemps, Blanc, Freycon (bb0335) 2010
Goetz, Hansen, Houghton, Walker, Laporte, Busch (bb0375) 2015; 10
Tubiello, Pekkarinen, Marklund, Wanner, Conchedda, Federici, Rossi, Grassi (bb0885) 2020
Coops, Hilker, Wulder, St-Onge, Newnham, Siggins, Trofymow (bb0160) 2007
Tang, Dubayah, Swatantran, Hofton, Sheldon, Clark, Blair (bb0875) 2012
Saatchi, Harris, Brown, Lefsky, Mitchard, Salas, Zutta, Buermann, Lewis, Hagen, Petrova, White, Silman, Morel (bb0785) 2011
Gleason, Im (bb0370) 2012
Laurin, Chen, Lindsell, Coomes, Del Frate, Guerriero, Pirotti, Valentini (bb0540) 2014
Næsset, Bollandsås, Gobakken, Solberg, McRoberts (bb0690) 2015; 168
Fatoyinbo, Armston, Simard, Saatchi, Denbina, Lavalle, Hofton, Tang, Marselis, Pinto, Hancock, Hawkins, Duncanson, Blair, Hansen, Lou, Dubayah, Hensley, Silva, Poulsen, Labrière, Barbier, Jeffery, Kenfack, Herve, Bissiengou, Alonso, Moussavou, White, Lewis, Hibbard (bb0305) 2021; 264
Næsset, Gobakken (bb0675) 2008; 112
Hancock, Disney, Muller, Lewis, Foster (bb0380) 2011
Saarela, Holm
Blair (10.1016/j.rse.2021.112845_bb0075) 1999
Boudreau (10.1016/j.rse.2021.112845_bb0080) 2008
Diaz (10.1016/j.rse.2021.112845_bb0205) 1997
Snowdon (10.1016/j.rse.2021.112845_bb0830) 1991; 21
Corlett (10.1016/j.rse.2021.112845_bb0170) 2006; 21
Drake (10.1016/j.rse.2021.112845_bb0225) 2003
Avitabile (10.1016/j.rse.2021.112845_bb0040) 2016; 22
Banin (10.1016/j.rse.2021.112845_bb0060) 2014; 102
Patterson (10.1016/j.rse.2021.112845_bb0725) 2019
Goetz (10.1016/j.rse.2021.112845_bb0375) 2015; 10
Smith (10.1016/j.rse.2021.112845_bb0825) 2002; 116
Carlucci (10.1016/j.rse.2021.112845_bb0110) 2017
Hernando (10.1016/j.rse.2021.112845_bb0410) 2019
Xu (10.1016/j.rse.2021.112845_bb0940) 2017; 7
Meyer (10.1016/j.rse.2021.112845_bb0645) 2019; 14
Healey (10.1016/j.rse.2021.112845_bb0405) 2020; 12
Mauya (10.1016/j.rse.2021.112845_bb0620) 2015
Hancock (10.1016/j.rse.2021.112845_bb0385) 2015
Kellner (10.1016/j.rse.2021.112845_bb0475) 2021
Coops (10.1016/j.rse.2021.112845_bb0160) 2007
Hurtt (10.1016/j.rse.2021.112845_bb0435) 2002
Feldpausch (10.1016/j.rse.2021.112845_bb0315) 2012; 9
Saarela (10.1016/j.rse.2021.112845_bb0780) 2021
Baccini (10.1016/j.rse.2021.112845_bb0055) 2017; 358
Ferry (10.1016/j.rse.2021.112845_bb0335) 2010
Ferraz (10.1016/j.rse.2021.112845_bb0330) 2018; 13
Ferraz (10.1016/j.rse.2021.112845_bb0325) 2016; 8
Chave (10.1016/j.rse.2021.112845_bb0125) 2014; 20
Naidoo (10.1016/j.rse.2021.112845_bb0695) 2015; 105
Saarela (10.1016/j.rse.2021.112845_bb0775) 2018
Duncanson (10.1016/j.rse.2021.112845_bb0275) 2021
Simard (10.1016/j.rse.2021.112845_bb0815) 2011; 116
Sun (10.1016/j.rse.2021.112845_bb0860) 2008
North (10.1016/j.rse.2021.112845_bb0705) 2010
Andersen (10.1016/j.rse.2021.112845_bb0010) 2006
Clark (10.1016/j.rse.2021.112845_bb0130) 2012; 23
Gleason (10.1016/j.rse.2021.112845_bb0370) 2012
Hancock (10.1016/j.rse.2021.112845_bb0380) 2011
Fatoyinbo (10.1016/j.rse.2021.112845_bb0305) 2021; 264
Friedl (10.1016/j.rse.2021.112845_bb0350) 2010
Kearsley (10.1016/j.rse.2021.112845_bb0465) 2013; 4
Ene (10.1016/j.rse.2021.112845_bb0290) 2016; 186
Luckman (10.1016/j.rse.2021.112845_bb0595) 1998
Corbera (10.1016/j.rse.2021.112845_bb0165) 2011; 14
Wulder (10.1016/j.rse.2021.112845_bb0935) 2012
Mahoney (10.1016/j.rse.2021.112845_bb0605) 2014; 6
Drake (10.1016/j.rse.2021.112845_bb0220) 2002
Los (10.1016/j.rse.2021.112845_bb0585) 2012; 5
Potapov (10.1016/j.rse.2021.112845_bb0745) 2021; 253
Tubiello (10.1016/j.rse.2021.112845_bb0885) 2020
Gibbs (10.1016/j.rse.2021.112845_bb0365) 2007
Ploton (10.1016/j.rse.2021.112845_bb0740) 2020; 11
Hansen (10.1016/j.rse.2021.112845_bb0395) 2015; 7
Poulter (10.1016/j.rse.2021.112845_bb0750) 2011
Jucker (10.1016/j.rse.2021.112845_bb0455) 2017; 23
Dubayah (10.1016/j.rse.2021.112845_bb0245) 2020
Duncanson (10.1016/j.rse.2021.112845_bb0270) 2020; 242
Friedlingstein (10.1016/j.rse.2021.112845_bb0355) 2019; 11
Hansen (10.1016/j.rse.2021.112845_bb0400) 2017
10.1016/j.rse.2021.112845_bb0415
Huete (10.1016/j.rse.2021.112845_bb0430) 1997; 59
Huang (10.1016/j.rse.2021.112845_bb0420) 2013
Lefsky (10.1016/j.rse.2021.112845_bb0555) 1999
Zolkos (10.1016/j.rse.2021.112845_bb0950) 2013
Drake (10.1016/j.rse.2021.112845_bb0215) 2002; 79
Tang (10.1016/j.rse.2021.112845_bb0880) 2021; 16
Labriere (10.1016/j.rse.2021.112845_bb0510) 2018
Tang (10.1016/j.rse.2021.112845_bib951) 2019; 231
Lefsky (10.1016/j.rse.2021.112845_bb0565) 2007; 1
Ranson (10.1016/j.rse.2021.112845_bb0760) 2000
Koetz (10.1016/j.rse.2021.112845_bb0485) 2006
Tang (10.1016/j.rse.2021.112845_bb0875) 2012
Laurin (10.1016/j.rse.2021.112845_bb0540) 2014
Corte (10.1016/j.rse.2021.112845_bb0180) 2020
Silva (10.1016/j.rse.2021.112845_bb0805) 2021
Næsset (10.1016/j.rse.2021.112845_bb0690) 2015; 168
Le Quéré (10.1016/j.rse.2021.112845_bb0545) 2016; 8
Chave (10.1016/j.rse.2021.112845_bb0115) 2004; 359
Sun (10.1016/j.rse.2021.112845_bb0865) 2011
Næsset (10.1016/j.rse.2021.112845_bb0675) 2008; 112
Lucas (10.1016/j.rse.2021.112845_bb0590) 2008
Saatchi (10.1016/j.rse.2021.112845_bb0785) 2011
Simard (10.1016/j.rse.2021.112845_bb0820) 2018; 12
Lang (10.1016/j.rse.2021.112845_bb0530) 2019; 233
Réjou-Méchain (10.1016/j.rse.2021.112845_bb0765) 2019
Andersen (10.1016/j.rse.2021.112845_bb0020) 2011; 37
Meyer (10.1016/j.rse.2021.112845_bb0640) 2018; 15
Swatantran (10.1016/j.rse.2021.112845_bb0870) 2011
Foody (10.1016/j.rse.2021.112845_bb0340) 2003
Margolis (10.1016/j.rse.2021.112845_bb0610) 2015; 45
Zhao (10.1016/j.rse.2021.112845_bb0945) 2009
Baccini (10.1016/j.rse.2021.112845_bb0045) 2008
Auscover (10.1016/j.rse.2021.112845_bb0035) 2016
Valbuena (10.1016/j.rse.2021.112845_bb0905) 2017; 366
Powell (10.1016/j.rse.2021.112845_bb0755) 2010; 114
Duncanson (10.1016/j.rse.2021.112845_bb0250) 2010
Baccini (10.1016/j.rse.2021.112845_bb0050) 2012
10.1016/j.rse.2021.112845_bb0560
Næsset (10.1016/j.rse.2021.112845_bb0685) 2013
Le Toan (10.1016/j.rse.2021.112845_bb0550) 1992; 30
Coomes (10.1016/j.rse.2021.112845_bb0155) 2017
Hudak (10.1016/j.rse.2021.112845_bb0425) 2016
Enquist (10.1016/j.rse.2021.112845_bb0300) 2009; 106
Asner (10.1016/j.rse.2021.112845_bb0030) 2014
Ni-Meister (10.1016/j.rse.2021.112845_bb0700) 2010
Rodríguez-Veiga (10.1016/j.rse.2021.112845_bb0770) 2019; 77
Mitchard (10.1016/j.rse.2021.112845_bb0650) 2009
Disney (10.1016/j.rse.2021.112845_bb0210) 2020; 10
Hancock (10.1016/j.rse.2021.112845_bb0390) 2019; 6
Vorster (10.1016/j.rse.2021.112845_bb0915) 2020; 15
Friis (10.1016/j.rse.2021.112845_bb0360) 2005; 55
Wood (10.1016/j.rse.2021.112845_bb0925) 2017
References_xml – year: 2006
  ident: bb0010
  article-title: A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods
  publication-title: Can. J. Remote. Sens.
– volume: 116
  year: 2011
  ident: bb0815
  article-title: Mapping forest canopy height globally with spaceborne lidar
  publication-title: J. Geophys. Res.
– year: 2020
  ident: bb0180
  article-title: Forest inventory with high-density UAV-Lidar: machine learning approaches for predicting individual tree attributes
  publication-title: Comput. Electron. Agric.
– volume: 30
  start-page: 403
  year: 1992
  end-page: 411
  ident: bb0550
  article-title: Relating forest biomass to SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2015
  ident: bb0620
  article-title: Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania
  publication-title: Carbon Balance Manag.
– volume: 11
  start-page: 4540
  year: 2020
  ident: bb0740
  article-title: Spatial validation reveals poor predictive performance of large-scale ecological mapping models
  publication-title: Nat. Commun.
– volume: 359
  start-page: 409
  year: 2004
  end-page: 420
  ident: bb0115
  article-title: Error propagation and scaling for tropical forest biomass estimates. Philos
  publication-title: Trans. R. Soc. Lond. B Biol. Sci.
– year: 2017
  ident: bb0925
  article-title: Generalized Additive Models: An Introduction with R
– year: 2009
  ident: bb0650
  article-title: Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes
  publication-title: Geophys. Res. Lett.
– year: 2017
  ident: bb0155
  article-title: Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data
  publication-title: Remote Sens. Environ.
– volume: 233
  start-page: 111347
  year: 2019
  ident: bb0530
  article-title: Country-wide high-resolution vegetation height mapping with Sentinel-2
  publication-title: Remote Sens. Environ.
– year: 2011
  ident: bb0865
  article-title: Forest biomass mapping from lidar and radar synergies
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 294
  year: 2019
  end-page: 310
  ident: bb0390
  article-title: The GEDI simulator: a large-footprint waveform lidar simulator for calibration and validation of spaceborne missions
  publication-title: Earth Space Sci.
– year: 1997
  ident: bb0205
  article-title: Plant functional types and ecosystem function in relation to global change
  publication-title: J. Veg. Sci.
– year: 2009
  ident: bb0945
  article-title: Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bb0510
  article-title: In situ reference datasets from the TropiSAR and AfriSAR campaigns in support of upcoming spaceborne biomass missions
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– year: 2012
  ident: bb0875
  article-title: Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 10051
  year: 2014
  end-page: 10069
  ident: bb0605
  article-title: Slope estimation from ICESat/GLAS
  publication-title: Remote Sens.
– year: 2010
  ident: bb0705
  article-title: A Monte Carlo radiative transfer model of satellite waveform LiDAR
  publication-title: Int. J. Remote Sens.
– year: 2021
  ident: bb0805
  article-title: Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping
  publication-title: Remote Sens. Environ.
– volume: 10
  year: 2015
  ident: bb0375
  article-title: Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+
  publication-title: Environ. Res. Lett.
– volume: 9
  start-page: 3381
  year: 2012
  end-page: 3403
  ident: bb0315
  article-title: Tree height integrated into pantropical forest biomass estimates
  publication-title: Biogeosciences
– volume: 116
  start-page: S233
  year: 2002
  end-page: S242
  ident: bb0825
  article-title: Forest inventory and analysis: a national inventory and monitoring program
  publication-title: Environ. Pollut.
– year: 2002
  ident: bb0435
  article-title: Projecting the Future of the U.S. Carbon Sink
  publication-title: Proceedings of the National Academy of Sciences
– volume: 8
  start-page: 653
  year: 2016
  ident: bb0325
  article-title: Airborne lidar estimation of aboveground forest biomass in the absence of field inventory
  publication-title: Remote Sens.
– volume: 16
  year: 2021
  ident: bb0880
  article-title: High-resolution forest carbon mapping for climate mitigation baselines over the RGGI region, USA
  publication-title: Environ. Res. Lett.
– year: 2021
  ident: bb0275
  article-title: Aboveground Woody Biomass Product Validation Good Practices Protocol.
– year: 1998
  ident: bb0595
  article-title: Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics
  publication-title: Remote Sens. Environ.
– volume: 55
  year: 2005
  ident: bb0360
  article-title: Plant diversity and complexity patterns: local, regional, and global dimensions
  publication-title: Biologiske Skrifter
– year: 2019
  ident: bb0725
  article-title: Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation
  publication-title: Environ. Res. Lett.
– volume: 37
  start-page: 1
  year: 2011
  end-page: 16
  ident: bb0020
  article-title: Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska
  publication-title: Can. J. Remote. Sens.
– volume: 59
  start-page: 440
  year: 1997
  end-page: 451
  ident: bb0430
  article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS
  publication-title: Remote Sens. Environ.
– volume: 77
  start-page: 53
  year: 2019
  end-page: 68
  ident: bb0770
  article-title: Forest biomass retrieval approaches from earth observation in different biomes
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2014
  ident: bb0030
  article-title: Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 1783
  year: 2019
  end-page: 1838
  ident: bb0355
  article-title: Global carbon budget 2019
  publication-title: Earth Syst. Sci. Data
– year: 2003
  ident: bb0225
  article-title: Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships
  publication-title: Glob. Ecol. Biogeogr.
– year: 2011
  ident: bb0750
  article-title: Plant functional type mapping for earth system models
  publication-title: Geosci. Model Dev.
– year: 2012
  ident: bb0370
  article-title: Forest biomass estimation from airborne LiDAR data using machine learning approaches
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 3377
  year: 2018
  end-page: 3390
  ident: bb0640
  article-title: Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes
  publication-title: Biogeosciences
– volume: 5
  start-page: 413
  year: 2012
  end-page: 432
  ident: bb0585
  article-title: Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data
  publication-title: Geosci. Model Dev.
– year: 2011
  ident: bb0380
  article-title: A threshold insensitive method for locating the forest canopy top with waveform lidar
  publication-title: Remote Sens. Environ.
– year: 2017
  ident: bb0400
  article-title: Comparing empirical and semi-empirical approaches to forest biomass modelling in different biomes using airborne laser scanner data
  publication-title: Forests.
– year: 2002
  ident: bb0220
  article-title: Estimation of tropical forest structural characteristics using large-footprint lidar
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 2269
  year: 2013
  ident: bb0465
  article-title: Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin
  publication-title: Nat. Commun.
– volume: 21
  start-page: 104
  year: 2006
  end-page: 110
  ident: bb0170
  article-title: Tropical rainforests and the need for cross-continental comparisons
  publication-title: Trends Ecol. Evol.
– volume: 20
  start-page: 3177
  year: 2014
  end-page: 3190
  ident: bb0125
  article-title: Improved allometric models to estimate the aboveground biomass of tropical trees
  publication-title: Glob. Chang. Biol.
– volume: 14
  start-page: 89
  year: 2011
  end-page: 99
  ident: bb0165
  article-title: Governing and implementing REDD+
  publication-title: Environ. Sci. Pol.
– year: 2007
  ident: bb0160
  article-title: Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR
  publication-title: Trees.
– year: 2014
  ident: bb0540
  article-title: Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 1999
  ident: bb0555
  article-title: Lidar remote sensing of the canopy structure and biophysical properties of douglas-fir western hemlock forests
  publication-title: Remote Sens. Environ.
– volume: 13
  year: 2018
  ident: bb0330
  article-title: Carbon storage potential in degraded forests of Kalimantan, Indonesia
  publication-title: Environ. Res. Lett.
– volume: 14
  start-page: 2
  year: 2019
  ident: bb0645
  article-title: Forest degradation and biomass loss along the Chocó region of Colombia
  publication-title: Carbon Balance Manag.
– volume: 45
  start-page: 838
  year: 2015
  end-page: 855
  ident: bb0610
  article-title: Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America
  publication-title: Can. J. For. Res.
– volume: 186
  start-page: 626
  year: 2016
  end-page: 636
  ident: bb0290
  article-title: Large-scale estimation of aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data
  publication-title: Remote Sens. Environ.
– year: 2020
  ident: bb0885
  article-title: Carbon emissions and removals by forests: New estimates 1990–2020
  publication-title: Earth Syst. Sci. Data.
– volume: 10
  start-page: 16721
  year: 2020
  ident: bb0210
  article-title: New 3D measurements of large redwood trees for biomass and structure
  publication-title: Sci. Rep.
– year: 2011
  ident: bb0870
  article-title: Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion
  publication-title: Remote Sens. Environ.
– year: 2019
  ident: bb0410
  article-title: Estimation of forest biomass components using airborne LiDAR and multispectral sensors
  publication-title: iForest - Biogeosci. Forestry
– volume: 23
  start-page: 1191
  year: 2012
  end-page: 1196
  ident: bb0130
  article-title: Tropical forest biomass estimation and the fallacy of misplaced concreteness
  publication-title: J. Veg. Sci.
– volume: 79
  start-page: 305
  year: 2002
  end-page: 319
  ident: bb0215
  article-title: Estimation of tropical forest structural characteristics using large-footprint lidar
  publication-title: Remote Sens. Environ.
– year: 2012
  ident: bb0935
  article-title: Lidar sampling for large-area forest characterization: a review
  publication-title: Remote Sens. Environ.
– reference: Houghton, R.A., House, J.I., Pongratz, J., Werf, G.R. van der, DeFries, R.S., Hansen, M.C., Le Quéré, C., Ramankutty, N., 2012. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142.
– volume: 112
  start-page: 3079
  year: 2008
  end-page: 3090
  ident: bb0675
  article-title: Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser
  publication-title: Remote Sens. Environ.
– year: 2010
  ident: bb0335
  article-title: Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest
  publication-title: J. Ecol.
– year: 2013
  ident: bb0685
  article-title: Model-assisted estimation of change in forest biomass over an 11year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data.”
  publication-title: Remote Sens. Environ.
– year: 2021
  ident: bb0780
  article-title: Effects of multicollinearity in model-based inference predicting aboveground biomass using NASA’s GEDI and Landsat missions (research note)
  publication-title: Silva Fennica.
– year: 2008
  ident: bb0045
  article-title: A first map of tropical Africa’s above-ground biomass derived from satellite imagery
  publication-title: Environ. Res. Lett.
– year: 2012
  ident: bb0050
  article-title: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps
  publication-title: Nat. Clim. Chang.
– year: 2019
  ident: bb0765
  article-title: Upscaling forest biomass from field to satellite measurements: sources of errors and ways to reduce them
  publication-title: Surv. Geophys.
– volume: 366
  start-page: 15
  year: 2017
  end-page: 26
  ident: bb0905
  article-title: Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation
  publication-title: Ecol. Model.
– volume: 15
  start-page: 8
  year: 2020
  ident: bb0915
  article-title: Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations
  publication-title: Carbon Balance Manag.
– reference: Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J., 2002. Lidar remote sensing for ecosystem studies. BioScience. doi:10.1641/0006-3568(2002)052[0019,lrsfes]2.0.co;2.
– year: 1999
  ident: bb0075
  article-title: Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data
  publication-title: Geophys. Res. Lett.
– year: 2010
  ident: bb0350
  article-title: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets
  publication-title: Remote Sens. Environ.
– volume: 242
  start-page: 111779
  year: 2020
  ident: bb0270
  article-title: Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California
  publication-title: Remote Sens. Environ.
– volume: 102
  start-page: 1025
  year: 2014
  end-page: 1037
  ident: bb0060
  article-title: Tropical forest wood production: a cross-continental comparison
  publication-title: J. Ecol.
– year: 2013
  ident: bb0420
  article-title: Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales
  publication-title: Remote Sens. Environ.
– volume: 105
  start-page: 234
  year: 2015
  end-page: 250
  ident: bb0695
  article-title: Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2007
  ident: bb0365
  article-title: Monitoring and estimating tropical forest carbon stocks: making REDD a reality
  publication-title: Environ. Res. Lett.
– year: 2008
  ident: bb0080
  article-title: Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec
  publication-title: Remote Sens. Environ.
– volume: 168
  start-page: 252
  year: 2015
  end-page: 264
  ident: bb0690
  article-title: The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 605
  year: 2016
  end-page: 649
  ident: bb0545
  article-title: Global Carbon Budget 2016
  publication-title: Earth Syst. Sci. Data
– volume: 106
  start-page: 7046
  year: 2009
  end-page: 7051
  ident: bb0300
  article-title: Extensions and evaluations of a general quantitative theory of forest structure and dynamics
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2021
  ident: bb0475
  article-title: Algorithm Theoretical Basis Document for GEDI Footprint Aboveground Biomass Density
– year: 2013
  ident: bb0950
  article-title: A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing
  publication-title: Remote Sens. Environ.
– volume: 253
  start-page: 112165
  year: 2021
  ident: bb0745
  article-title: Mapping global forest canopy height through integration of GEDI and Landsat data
  publication-title: Remote Sens. Environ.
– volume: 23
  start-page: 177
  year: 2017
  end-page: 190
  ident: bb0455
  article-title: Allometric equations for integrating remote sensing imagery into forest monitoring programmes
  publication-title: Glob. Chang. Biol.
– year: 2016
  ident: bb0035
  article-title: Biomass Plot Library-National collation of tree and shrub inventory data, allometric model predictions of above and below-ground biomass, Australia
– volume: 358
  start-page: 230
  year: 2017
  end-page: 234
  ident: bb0055
  article-title: Tropical forests are a net carbon source based on aboveground measurements of gain and loss
  publication-title: Science
– volume: 22
  start-page: 1406
  year: 2016
  end-page: 1420
  ident: bb0040
  article-title: An integrated pan-tropical biomass map using multiple reference datasets
  publication-title: Glob. Chang. Biol.
– year: 2018
  ident: bb0775
  article-title: Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and Landsat Data
  publication-title: Remote Sens.
– year: 2020
  ident: bb0245
  article-title: The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography
  publication-title: Sci. Remote Sens.
– year: 2003
  ident: bb0340
  article-title: Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: 720
  year: 1991
  end-page: 724
  ident: bb0830
  article-title: A ratio estimator for bias correction in logarithmic regressions
  publication-title: Can. J. For. Res.
– volume: 7
  start-page: 15030
  year: 2017
  ident: bb0940
  article-title: Spatial distribution of carbon stored in forests of the Democratic Republic of Congo
  publication-title: Sci. Rep.
– year: 2010
  ident: bb0700
  article-title: Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing
  publication-title: J. Geophys. Res. Biogeosci.
– year: 2010
  ident: bb0250
  article-title: Estimating forest canopy height and terrain relief from GLAS waveform metrics
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 2840
  year: 2020
  ident: bb0405
  article-title: Highly local model calibration with a new GEDI LiDAR asset on Google Earth Engine reduces landsat forest height signal saturation
  publication-title: Remote Sens.
– year: 2016
  ident: bb0425
  article-title: Mapping forest structure and composition from low-density LiDAR for informed forest, fuel, and fire management at Eglin Air Force Base, Florida, USA
  publication-title: Can. J. Remote. Sens.
– year: 2011
  ident: bb0785
  article-title: Benchmark map of forest carbon stocks in tropical regions across three continents
  publication-title: Proc. Natl. Acad. Sci.
– volume: 12
  start-page: 40
  year: 2018
  end-page: 45
  ident: bb0820
  article-title: Mangrove canopy height globally related to precipitation, temperature and cyclone frequency
  publication-title: Nat. Geosci.
– year: 2017
  ident: bb0110
  article-title: Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity
  publication-title: Ecography.
– volume: 264
  year: 2021
  ident: bb0305
  article-title: The NASA AfriSAR campaign: airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions
  publication-title: Remote Sens. Environ.
– volume: 1
  year: 2007
  ident: bb0565
  article-title: Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms
  publication-title: J. Appl. Remote. Sens.
– year: 2008
  ident: bb0590
  article-title: Retrieving forest biomass through integration of CASI and LiDAR data
  publication-title: Int. J. Remote Sens.
– year: 2008
  ident: bb0860
  article-title: Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data
  publication-title: Remote Sens. Environ.
– year: 2006
  ident: bb0485
  article-title: Inversion of a lidar waveform model for forest biophysical parameter estimation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2015
  ident: bb0385
  article-title: Waveform lidar over vegetation: an evaluation of inversion methods for estimating return energy
  publication-title: Remote Sens. Environ.
– volume: 231
  start-page: 111262
  year: 2019
  ident: bib951
  article-title: Characterizing global forest canopy cover distribution using spaceborne lidar
  publication-title: Remote. Sens. Environ.
– volume: 114
  start-page: 1053
  year: 2010
  end-page: 1068
  ident: bb0755
  article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches
  publication-title: Remote Sens. Environ.
– year: 2000
  ident: bb0760
  article-title: Modeling lidar returns from forest canopies
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 788
  year: 2015
  end-page: 807
  ident: bb0395
  article-title: Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data
  publication-title: Remote Sens.
– volume: 14
  start-page: 89
  year: 2011
  ident: 10.1016/j.rse.2021.112845_bb0165
  article-title: Governing and implementing REDD+
  publication-title: Environ. Sci. Pol.
  doi: 10.1016/j.envsci.2010.11.002
– volume: 366
  start-page: 15
  year: 2017
  ident: 10.1016/j.rse.2021.112845_bb0905
  article-title: Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2017.10.009
– year: 2012
  ident: 10.1016/j.rse.2021.112845_bb0050
  article-title: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1354
– volume: 11
  start-page: 1783
  year: 2019
  ident: 10.1016/j.rse.2021.112845_bb0355
  article-title: Global carbon budget 2019
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-11-1783-2019
– year: 2013
  ident: 10.1016/j.rse.2021.112845_bb0950
  article-title: A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.10.017
– volume: 77
  start-page: 53
  year: 2019
  ident: 10.1016/j.rse.2021.112845_bb0770
  article-title: Forest biomass retrieval approaches from earth observation in different biomes
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2006
  ident: 10.1016/j.rse.2021.112845_bb0010
  article-title: A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods
  publication-title: Can. J. Remote. Sens.
  doi: 10.5589/m06-030
– year: 2008
  ident: 10.1016/j.rse.2021.112845_bb0045
  article-title: A first map of tropical Africa’s above-ground biomass derived from satellite imagery
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/3/4/045011
– year: 2008
  ident: 10.1016/j.rse.2021.112845_bb0590
  article-title: Retrieving forest biomass through integration of CASI and LiDAR data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701736497
– volume: 12
  start-page: 2840
  issue: 17
  year: 2020
  ident: 10.1016/j.rse.2021.112845_bb0405
  article-title: Highly local model calibration with a new GEDI LiDAR asset on Google Earth Engine reduces landsat forest height signal saturation
  publication-title: Remote Sens.
  doi: 10.3390/rs12172840
– year: 2020
  ident: 10.1016/j.rse.2021.112845_bb0245
  article-title: The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography
  publication-title: Sci. Remote Sens.
  doi: 10.1016/j.srs.2020.100002
– year: 2009
  ident: 10.1016/j.rse.2021.112845_bb0650
  article-title: Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL040692
– year: 2011
  ident: 10.1016/j.rse.2021.112845_bb0865
  article-title: Forest biomass mapping from lidar and radar synergies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.03.021
– volume: 105
  start-page: 234
  year: 2015
  ident: 10.1016/j.rse.2021.112845_bb0695
  article-title: Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.04.007
– volume: 22
  start-page: 1406
  year: 2016
  ident: 10.1016/j.rse.2021.112845_bb0040
  article-title: An integrated pan-tropical biomass map using multiple reference datasets
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13139
– volume: 168
  start-page: 252
  year: 2015
  ident: 10.1016/j.rse.2021.112845_bb0690
  article-title: The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.07.002
– volume: 79
  start-page: 305
  year: 2002
  ident: 10.1016/j.rse.2021.112845_bb0215
  article-title: Estimation of tropical forest structural characteristics using large-footprint lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00281-4
– year: 1999
  ident: 10.1016/j.rse.2021.112845_bb0555
  article-title: Lidar remote sensing of the canopy structure and biophysical properties of douglas-fir western hemlock forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00052-8
– volume: 358
  start-page: 230
  year: 2017
  ident: 10.1016/j.rse.2021.112845_bb0055
  article-title: Tropical forests are a net carbon source based on aboveground measurements of gain and loss
  publication-title: Science
  doi: 10.1126/science.aam5962
– volume: 9
  start-page: 3381
  year: 2012
  ident: 10.1016/j.rse.2021.112845_bb0315
  article-title: Tree height integrated into pantropical forest biomass estimates
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-3381-2012
– year: 2018
  ident: 10.1016/j.rse.2021.112845_bb0775
  article-title: Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and Landsat Data
  publication-title: Remote Sens.
  doi: 10.3390/rs10111832
– volume: 59
  start-page: 440
  year: 1997
  ident: 10.1016/j.rse.2021.112845_bb0430
  article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00112-5
– volume: 15
  start-page: 3377
  year: 2018
  ident: 10.1016/j.rse.2021.112845_bb0640
  article-title: Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes
  publication-title: Biogeosciences
  doi: 10.5194/bg-15-3377-2018
– year: 2016
  ident: 10.1016/j.rse.2021.112845_bb0425
  article-title: Mapping forest structure and composition from low-density LiDAR for informed forest, fuel, and fire management at Eglin Air Force Base, Florida, USA
  publication-title: Can. J. Remote. Sens.
  doi: 10.1080/07038992.2016.1217482
– volume: 116
  year: 2011
  ident: 10.1016/j.rse.2021.112845_bb0815
  article-title: Mapping forest canopy height globally with spaceborne lidar
  publication-title: J. Geophys. Res.
– year: 2017
  ident: 10.1016/j.rse.2021.112845_bb0155
  article-title: Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.017
– year: 2010
  ident: 10.1016/j.rse.2021.112845_bb0250
  article-title: Estimating forest canopy height and terrain relief from GLAS waveform metrics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.018
– year: 2017
  ident: 10.1016/j.rse.2021.112845_bb0110
  article-title: Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity
  publication-title: Ecography.
  doi: 10.1111/ecog.02104
– year: 2003
  ident: 10.1016/j.rse.2021.112845_bb0225
  article-title: Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1046/j.1466-822X.2003.00010.x
– volume: 11
  start-page: 4540
  year: 2020
  ident: 10.1016/j.rse.2021.112845_bb0740
  article-title: Spatial validation reveals poor predictive performance of large-scale ecological mapping models
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18321-y
– year: 2021
  ident: 10.1016/j.rse.2021.112845_bb0780
  article-title: Effects of multicollinearity in model-based inference predicting aboveground biomass using NASA’s GEDI and Landsat missions (research note)
  publication-title: Silva Fennica.
– volume: 264
  year: 2021
  ident: 10.1016/j.rse.2021.112845_bb0305
  article-title: The NASA AfriSAR campaign: airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112533
– volume: 7
  start-page: 788
  year: 2015
  ident: 10.1016/j.rse.2021.112845_bb0395
  article-title: Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data
  publication-title: Remote Sens.
  doi: 10.3390/rs70100788
– volume: 30
  start-page: 403
  year: 1992
  ident: 10.1016/j.rse.2021.112845_bb0550
  article-title: Relating forest biomass to SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.134089
– year: 2006
  ident: 10.1016/j.rse.2021.112845_bb0485
  article-title: Inversion of a lidar waveform model for forest biophysical parameter estimation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.856706
– year: 2009
  ident: 10.1016/j.rse.2021.112845_bb0945
  article-title: Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.009
– volume: 21
  start-page: 720
  year: 1991
  ident: 10.1016/j.rse.2021.112845_bb0830
  article-title: A ratio estimator for bias correction in logarithmic regressions
  publication-title: Can. J. For. Res.
  doi: 10.1139/x91-101
– volume: 55
  year: 2005
  ident: 10.1016/j.rse.2021.112845_bb0360
  article-title: Plant diversity and complexity patterns: local, regional, and global dimensions
  publication-title: Biologiske Skrifter
– volume: 4
  start-page: 2269
  year: 2013
  ident: 10.1016/j.rse.2021.112845_bb0465
  article-title: Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3269
– year: 1998
  ident: 10.1016/j.rse.2021.112845_bb0595
  article-title: Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00133-8
– year: 2007
  ident: 10.1016/j.rse.2021.112845_bb0160
  article-title: Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR
  publication-title: Trees.
  doi: 10.1007/s00468-006-0119-6
– year: 2011
  ident: 10.1016/j.rse.2021.112845_bb0785
  article-title: Benchmark map of forest carbon stocks in tropical regions across three continents
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1019576108
– year: 2016
  ident: 10.1016/j.rse.2021.112845_bb0035
– ident: 10.1016/j.rse.2021.112845_bb0560
  doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
– year: 2003
  ident: 10.1016/j.rse.2021.112845_bb0340
  article-title: Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00039-7
– year: 2011
  ident: 10.1016/j.rse.2021.112845_bb0380
  article-title: A threshold insensitive method for locating the forest canopy top with waveform lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.07.012
– volume: 37
  start-page: 1
  issue: 6
  year: 2011
  ident: 10.1016/j.rse.2021.112845_bb0020
  article-title: Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska
  publication-title: Can. J. Remote. Sens.
  doi: 10.5589/m12-003
– year: 2010
  ident: 10.1016/j.rse.2021.112845_bb0350
  article-title: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.016
– year: 2020
  ident: 10.1016/j.rse.2021.112845_bb0885
  article-title: Carbon emissions and removals by forests: New estimates 1990–2020
  publication-title: Earth Syst. Sci. Data.
– volume: 359
  start-page: 409
  year: 2004
  ident: 10.1016/j.rse.2021.112845_bb0115
  article-title: Error propagation and scaling for tropical forest biomass estimates. Philos
  publication-title: Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2003.1425
– volume: 186
  start-page: 626
  year: 2016
  ident: 10.1016/j.rse.2021.112845_bb0290
  article-title: Large-scale estimation of aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.09.006
– year: 2002
  ident: 10.1016/j.rse.2021.112845_bb0220
  article-title: Estimation of tropical forest structural characteristics using large-footprint lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00281-4
– year: 2021
  ident: 10.1016/j.rse.2021.112845_bb0475
– volume: 102
  start-page: 1025
  year: 2014
  ident: 10.1016/j.rse.2021.112845_bb0060
  article-title: Tropical forest wood production: a cross-continental comparison
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12263
– year: 2019
  ident: 10.1016/j.rse.2021.112845_bb0725
  article-title: Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab18df
– year: 2019
  ident: 10.1016/j.rse.2021.112845_bb0410
  article-title: Estimation of forest biomass components using airborne LiDAR and multispectral sensors
  publication-title: iForest - Biogeosci. Forestry
  doi: 10.3832/ifor2735-012
– year: 2000
  ident: 10.1016/j.rse.2021.112845_bb0760
  article-title: Modeling lidar returns from forest canopies
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.885208
– year: 2012
  ident: 10.1016/j.rse.2021.112845_bb0370
  article-title: Forest biomass estimation from airborne LiDAR data using machine learning approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.07.006
– year: 2011
  ident: 10.1016/j.rse.2021.112845_bb0750
  article-title: Plant functional type mapping for earth system models
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-4-993-2011
– volume: 15
  start-page: 8
  year: 2020
  ident: 10.1016/j.rse.2021.112845_bb0915
  article-title: Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations
  publication-title: Carbon Balance Manag.
  doi: 10.1186/s13021-020-00143-6
– volume: 45
  start-page: 838
  year: 2015
  ident: 10.1016/j.rse.2021.112845_bb0610
  article-title: Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2015-0006
– volume: 16
  year: 2021
  ident: 10.1016/j.rse.2021.112845_bb0880
  article-title: High-resolution forest carbon mapping for climate mitigation baselines over the RGGI region, USA
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/abd2ef
– volume: 114
  start-page: 1053
  year: 2010
  ident: 10.1016/j.rse.2021.112845_bb0755
  article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.12.018
– volume: 12
  start-page: 40
  year: 2018
  ident: 10.1016/j.rse.2021.112845_bb0820
  article-title: Mangrove canopy height globally related to precipitation, temperature and cyclone frequency
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-018-0279-1
– year: 1999
  ident: 10.1016/j.rse.2021.112845_bb0075
  article-title: Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL010484
– volume: 5
  start-page: 413
  year: 2012
  ident: 10.1016/j.rse.2021.112845_bb0585
  article-title: Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-5-413-2012
– year: 2011
  ident: 10.1016/j.rse.2021.112845_bb0870
  article-title: Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.08.027
– volume: 8
  start-page: 605
  year: 2016
  ident: 10.1016/j.rse.2021.112845_bb0545
  article-title: Global Carbon Budget 2016
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-8-605-2016
– volume: 1
  year: 2007
  ident: 10.1016/j.rse.2021.112845_bb0565
  article-title: Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms
  publication-title: J. Appl. Remote. Sens.
– year: 2021
  ident: 10.1016/j.rse.2021.112845_bb0275
– volume: 6
  start-page: 294
  year: 2019
  ident: 10.1016/j.rse.2021.112845_bb0390
  article-title: The GEDI simulator: a large-footprint waveform lidar simulator for calibration and validation of spaceborne missions
  publication-title: Earth Space Sci.
  doi: 10.1029/2018EA000506
– volume: 23
  start-page: 177
  year: 2017
  ident: 10.1016/j.rse.2021.112845_bb0455
  article-title: Allometric equations for integrating remote sensing imagery into forest monitoring programmes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13388
– year: 2008
  ident: 10.1016/j.rse.2021.112845_bb0860
  article-title: Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.09.036
– year: 2013
  ident: 10.1016/j.rse.2021.112845_bb0420
  article-title: Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.03.017
– year: 2012
  ident: 10.1016/j.rse.2021.112845_bb0875
  article-title: Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.05.005
– year: 2014
  ident: 10.1016/j.rse.2021.112845_bb0540
  article-title: Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2013
  ident: 10.1016/j.rse.2021.112845_bb0685
  article-title: Model-assisted estimation of change in forest biomass over an 11year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data.”
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.10.008
– volume: 253
  start-page: 112165
  year: 2021
  ident: 10.1016/j.rse.2021.112845_bb0745
  article-title: Mapping global forest canopy height through integration of GEDI and Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112165
– volume: 7
  start-page: 15030
  year: 2017
  ident: 10.1016/j.rse.2021.112845_bb0940
  article-title: Spatial distribution of carbon stored in forests of the Democratic Republic of Congo
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15050-z
– volume: 10
  start-page: 16721
  year: 2020
  ident: 10.1016/j.rse.2021.112845_bb0210
  article-title: New 3D measurements of large redwood trees for biomass and structure
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73733-6
– ident: 10.1016/j.rse.2021.112845_bb0415
  doi: 10.5194/bg-9-5125-2012
– year: 2019
  ident: 10.1016/j.rse.2021.112845_bb0765
  article-title: Upscaling forest biomass from field to satellite measurements: sources of errors and ways to reduce them
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-019-09532-0
– year: 2015
  ident: 10.1016/j.rse.2021.112845_bb0385
  article-title: Waveform lidar over vegetation: an evaluation of inversion methods for estimating return energy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.04.013
– year: 2018
  ident: 10.1016/j.rse.2021.112845_bb0510
  article-title: In situ reference datasets from the TropiSAR and AfriSAR campaigns in support of upcoming spaceborne biomass missions
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2018.2851606
– volume: 106
  start-page: 7046
  year: 2009
  ident: 10.1016/j.rse.2021.112845_bb0300
  article-title: Extensions and evaluations of a general quantitative theory of forest structure and dynamics
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0812303106
– year: 1997
  ident: 10.1016/j.rse.2021.112845_bb0205
  article-title: Plant functional types and ecosystem function in relation to global change
  publication-title: J. Veg. Sci.
  doi: 10.2307/3237198
– volume: 14
  start-page: 2
  year: 2019
  ident: 10.1016/j.rse.2021.112845_bb0645
  article-title: Forest degradation and biomass loss along the Chocó region of Colombia
  publication-title: Carbon Balance Manag.
  doi: 10.1186/s13021-019-0117-9
– year: 2017
  ident: 10.1016/j.rse.2021.112845_bb0925
– volume: 13
  year: 2018
  ident: 10.1016/j.rse.2021.112845_bb0330
  article-title: Carbon storage potential in degraded forests of Kalimantan, Indonesia
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aad782
– year: 2015
  ident: 10.1016/j.rse.2021.112845_bb0620
  article-title: Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania
  publication-title: Carbon Balance Manag.
  doi: 10.1186/s13021-015-0021-x
– year: 2010
  ident: 10.1016/j.rse.2021.112845_bb0705
  article-title: A Monte Carlo radiative transfer model of satellite waveform LiDAR
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903380664
– volume: 112
  start-page: 3079
  year: 2008
  ident: 10.1016/j.rse.2021.112845_bb0675
  article-title: Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.03.004
– volume: 116
  start-page: S233
  year: 2002
  ident: 10.1016/j.rse.2021.112845_bb0825
  article-title: Forest inventory and analysis: a national inventory and monitoring program
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(01)00255-X
– year: 2017
  ident: 10.1016/j.rse.2021.112845_bb0400
  article-title: Comparing empirical and semi-empirical approaches to forest biomass modelling in different biomes using airborne laser scanner data
  publication-title: Forests.
  doi: 10.3390/f8050170
– year: 2021
  ident: 10.1016/j.rse.2021.112845_bb0805
  article-title: Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112234
– volume: 23
  start-page: 1191
  year: 2012
  ident: 10.1016/j.rse.2021.112845_bb0130
  article-title: Tropical forest biomass estimation and the fallacy of misplaced concreteness
  publication-title: J. Veg. Sci.
  doi: 10.1111/j.1654-1103.2012.01471.x
– volume: 10
  year: 2015
  ident: 10.1016/j.rse.2021.112845_bb0375
  article-title: Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/12/123001
– volume: 21
  start-page: 104
  year: 2006
  ident: 10.1016/j.rse.2021.112845_bb0170
  article-title: Tropical rainforests and the need for cross-continental comparisons
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2005.12.002
– volume: 6
  start-page: 10051
  year: 2014
  ident: 10.1016/j.rse.2021.112845_bb0605
  article-title: Slope estimation from ICESat/GLAS
  publication-title: Remote Sens.
  doi: 10.3390/rs61010051
– volume: 233
  start-page: 111347
  year: 2019
  ident: 10.1016/j.rse.2021.112845_bb0530
  article-title: Country-wide high-resolution vegetation height mapping with Sentinel-2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111347
– volume: 20
  start-page: 3177
  year: 2014
  ident: 10.1016/j.rse.2021.112845_bb0125
  article-title: Improved allometric models to estimate the aboveground biomass of tropical trees
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12629
– year: 2002
  ident: 10.1016/j.rse.2021.112845_bb0435
  article-title: Projecting the Future of the U.S. Carbon Sink
– volume: 231
  start-page: 111262
  year: 2019
  ident: 10.1016/j.rse.2021.112845_bib951
  article-title: Characterizing global forest canopy cover distribution using spaceborne lidar
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/j.rse.2019.111262
– year: 2012
  ident: 10.1016/j.rse.2021.112845_bb0935
  article-title: Lidar sampling for large-area forest characterization: a review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.001
– year: 2020
  ident: 10.1016/j.rse.2021.112845_bb0180
  article-title: Forest inventory with high-density UAV-Lidar: machine learning approaches for predicting individual tree attributes
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105815
– volume: 242
  start-page: 111779
  year: 2020
  ident: 10.1016/j.rse.2021.112845_bb0270
  article-title: Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111779
– year: 2010
  ident: 10.1016/j.rse.2021.112845_bb0700
  article-title: Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2009JG000936
– year: 2014
  ident: 10.1016/j.rse.2021.112845_bb0030
  article-title: Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.09.023
– year: 2008
  ident: 10.1016/j.rse.2021.112845_bb0080
  article-title: Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.06.003
– year: 2010
  ident: 10.1016/j.rse.2021.112845_bb0335
  article-title: Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2009.01604.x
– volume: 8
  start-page: 653
  year: 2016
  ident: 10.1016/j.rse.2021.112845_bb0325
  article-title: Airborne lidar estimation of aboveground forest biomass in the absence of field inventory
  publication-title: Remote Sens.
  doi: 10.3390/rs8080653
– year: 2007
  ident: 10.1016/j.rse.2021.112845_bb0365
  article-title: Monitoring and estimating tropical forest carbon stocks: making REDD a reality
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/2/4/045023
SSID ssj0015871
Score 2.7396924
Snippet NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate...
NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate...
SourceID swepub
osti
liege
hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112845
SubjectTerms Aboveground biomass
Biodiversity
Biodiversity and Ecology
Biomass
Biomass density
Botanics
Computers in Earth Sciences
data collection
Datasets
Density
Domains
Earth and Related Environmental Sciences
Ecology, environment
Ecosystem dynamics
Ecosystems
environment
Environment models
ENVIRONMENTAL SCIENCES
Environmental sciences & ecology
Fjärranalysteknik
Forest
Forest biomass
forests
GEDI
Geographics
Geology
Geovetenskap och relaterad miljövetenskap
Global ecosystem dynamic investigation
LiDAR
Life Sciences
Mathematical models
Meteorologi och atmosfärsvetenskap
Meteorology and Atmospheric Sciences
model validation
Modeling
Modeling performance
Modelling
Natural Sciences
Naturgeografi
Naturvetenskap
Performance degradation
Physical Geography
Remote Sensing
Sciences de l’environnement & écologie
Sciences du vivant
Soil Science
Strata
Stratification
Systematics, Phylogenetics and taxonomy
Training
Transformations (mathematics)
Vegetal Biology
Waveform
Waveforms
Title Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission
URI https://dx.doi.org/10.1016/j.rse.2021.112845
https://www.proquest.com/docview/2639033249
https://www.proquest.com/docview/2636398667
https://hal.inrae.fr/hal-03516285
https://orbi.uliege.be/handle/2268/288263
https://www.osti.gov/servlets/purl/1893116
https://res.slu.se/id/publ/116407
Volume 270
WOSCitedRecordID wos000760433300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3_T9QwFG8QNPqLUZQ4QTONCeo5snXd1v14kRMwhBhEQ_yl6bpNjiw7cuMu8Of4n_pe242hSDSRX-6Wret1-3zu9b32fSHklcRSdWUWeLJMlMcYk14W0sArY0A79cOc6ijXr7vJ3h4_PEw_LSz8aGNh5lVS1_zsLD25UajhHICNobP_AHfXKZyAYwAdPgF2-Pwr4IfZZF5gsEYNuuUY3X-aQY5u6qBu67o3OgPDYG_4eagX603Wf4xQNlmdB5umSH3Tz8GhOcK3Rps7uIxQjXM5HQBDmhbVNsV3AcgXgwZ_znhT9wLpejoz4GkjvTAuW15I_aqyATjae3ewv9EjZGM9_fvew5uzTJ5LvTS0j2HD_UUMsH87L65WMIfMQ_HRF8zUlBT5Tcib9YbjjWmDeU5pgGFQ3CSlvCJ3tjFjhM2ddCSqmWgKcdJbFBURaEEqlVL4QRELpkoqwOpiIuNRzmRGgzyEWX6JJlEKgnNpuDM6_NhtVUU8MWUZ7RO0W-faifCXIf5J-bl1hF64SxX6SYBuMAFsL1s8_Sy2WvM5eEDuW5PFHRqqPSQLRb1MVkYXwMJFO0U0y-TuVmGzoC-TO1u6bvT5I3LcY6VrWelaVrqGlS6w0kVWrjeu4aTbcdJtOele4qT7Ghn5xtV8dC0fH5MvH0YH77c9W-bDU6DtnnoRTAlUljLLJLztsmSRrzgvZVKyRDGWZQkNVFHCzBLlcawolzyWAaYFjwq_VGW4QhbrSV08IW4kMwb6uB_lpXYISGNepEnGikiFNOGBQ_z2_Qtlc-BjKZZKtM6OxwIgEwiZMJA55G13y4lJAHNdY9aCKqwGazRTAdy97raXQICue2Tt9nBX4Dnc6Mco5zmM_Z3mh5hMs7GYU91MH8-q70IqkUGfNOaCgtEchw5ZRRrhMDAbtEK3ORhHAPZJEMQOWWvZJazsagTV0hksrNQhL7rLAB7uIcq6mMx0G2jF4zhxyDfDykvj_k__NoesX9F5U4FQmeIXdgqPwfzk6U0OY5Xcu5BWa2TxdDornpHban46bqbPrST4CfIPOzQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aboveground+biomass+density+models+for+NASA%27s+Global+Ecosystem+Dynamics+Investigation+%28GEDI%29+lidar+mission&rft.jtitle=Remote+sensing+of+environment&rft.au=Duncanson%2C+Laura&rft.au=Kellner%2C+James+R.&rft.au=Armston%2C+John&rft.au=Dubayah%2C+Ralph&rft.date=2022-03-01&rft.issn=0034-4257&rft.volume=270&rft_id=info:doi/10.1016%2Fj.rse.2021.112845&rft.externalDocID=oai_portal_research_lu_se_publications_5201c9aa_01e6_4cf2_8264_b85d4ab21d32
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon