Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission
NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~...
Saved in:
| Published in: | Remote sensing of environment Vol. 270; p. 112845 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Inc
01.03.2022
Elsevier BV Elsevier |
| Subjects: | |
| ISSN: | 0034-4257, 1879-0704, 1879-0704 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.
•NASA’s GEDI collects spaceborne lidar data used for mapping aboveground biomass.•A global database of field and airborne lidar was compiled.•Models stratified by Plant Functional Type and geographic region outperform a global model.•GEDI04_A models are OLS models predicting biomass as a function of RH metrics.•Maximum forest height is an important predictor of biomass across geographic domains. |
|---|---|
| AbstractList | NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available. NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available. •NASA’s GEDI collects spaceborne lidar data used for mapping aboveground biomass.•A global database of field and airborne lidar was compiled.•Models stratified by Plant Functional Type and geographic region outperform a global model.•GEDI04_A models are OLS models predicting biomass as a function of RH metrics.•Maximum forest height is an important predictor of biomass across geographic domains. NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (similar to 25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available. NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerablevariability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available. |
| ArticleNumber | 112845 |
| Author | Fekety, Patrick A. Saatchi, Sassan Bastin, Jean Francois Huang, Huabing Kljun, Natascha Philipson, Christopher Goetz, Scott J. Imbach, Benedikt Lewis, Simon L. Blair, Bryan Chave, Jérôme Marselis, Suzanne Heurich, Marco Král, Kamil Skidmore, Andrew Hofton, Michelle Fisher, Adrian G. Luthcke, Scott Boeckx, Pascal Bogaert, Jan Naidoo, Laven Minor, David M. de-Miguel, Sergio Clark, David B. Næsset, Erik Fischer, Rico Ellis, Peter Woods Patterson, Paul L. Kenfack, David Hudak, Andrew T. Manzanera, Jose A. Nilus, Reuben Lucas, Richard M. Fernandez-Landa, Alfredo Torresan, Chiara White, Lee J.T. Scholes, Robert Bruening, Jamis Andersen, Hans-Erik Tanase, Mihai García-Abril, Antonio Kellner, James R. Simard, Marc Dubayah, Ralph Healey, Sean P. Aplin, Paul Hopkinson, Chris Monerris, Alessandra Pisek, Jan Fatoyinbo, Lola Duncanson, Laura Boyd, Doreen S. Silva, Carlos A. Corona, Piermaria Dash, Jonathan Rüdiger, Christoph Stereńczak, Krzysztof Ferraz, Antonio Alonso, Alfonso Longo, Marcos Verbeeck, Hans Labrière, Nicolas Wessels, Konrad Jeffery, Kathryn J. A |
| Author_xml | – sequence: 1 givenname: Laura surname: Duncanson fullname: Duncanson, Laura email: lduncans@umd.edu organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA – sequence: 2 givenname: James R. surname: Kellner fullname: Kellner, James R. organization: Brown University, 75 Waterman St, Providence, RI 02912, USA – sequence: 4 givenname: Ralph surname: Dubayah fullname: Dubayah, Ralph organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA – sequence: 5 givenname: David M. surname: Minor fullname: Minor, David M. organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA – sequence: 6 givenname: Steven surname: Hancock fullname: Hancock, Steven organization: University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK – sequence: 7 givenname: Sean P. surname: Healey fullname: Healey, Sean P. organization: USDA Forest Service, Rocky Mountain Research Station, 507 25th St., Ogden, UT 84401, USA – sequence: 8 givenname: Paul L. surname: Patterson fullname: Patterson, Paul L. organization: USDA Forest Service, Rocky Mountain Research Station, 507 25th St., Ogden, UT 84401, USA – sequence: 9 givenname: Svetlana surname: Saarela fullname: Saarela, Svetlana organization: Swedish University of Agricultural Sciences, SLU Skogsmarksgränd 17, SE-901 83 Umeå, Sweden – sequence: 10 givenname: Suzanne surname: Marselis fullname: Marselis, Suzanne organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA – sequence: 11 givenname: Carlos E. surname: Silva fullname: Silva, Carlos E. organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA – sequence: 12 givenname: Jamis surname: Bruening fullname: Bruening, Jamis organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA – sequence: 13 givenname: Scott J. surname: Goetz fullname: Goetz, Scott J. organization: Northern Arizona University, 1295 S. Knoles Dr., Flagstaff, AZ 86011, USA – sequence: 14 givenname: Hao surname: Tang fullname: Tang, Hao organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA – sequence: 15 givenname: Michelle surname: Hofton fullname: Hofton, Michelle organization: University of Maryland, College Park, 2181 Lefrak Hall, College Park, Maryland 20742, USA – sequence: 16 givenname: Bryan surname: Blair fullname: Blair, Bryan organization: NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA – sequence: 17 givenname: Scott surname: Luthcke fullname: Luthcke, Scott organization: NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA – sequence: 18 givenname: Lola surname: Fatoyinbo fullname: Fatoyinbo, Lola organization: NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA – sequence: 20 givenname: Alfonso surname: Alonso fullname: Alonso, Alfonso organization: Smithsonian Conservation Biology Institute, PO Box 37012, MRC 5516, Washington, DC 20013, USA – sequence: 21 givenname: Hans-Erik surname: Andersen fullname: Andersen, Hans-Erik organization: USDA Forest Service, Pacific Northwest Research Station,University of Washington, Box 352100, Seattle, WA 98195-2100, USA – sequence: 22 givenname: Paul surname: Aplin fullname: Aplin, Paul organization: Edge Hill University, St Helens Road, Ormskirk, Lancashire L394QP, UK – sequence: 23 givenname: Timothy R. surname: Baker fullname: Baker, Timothy R. organization: University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK – sequence: 24 givenname: Nicolas surname: Barbier fullname: Barbier, Nicolas organization: AMAP, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, 34398 Montpellier cedex 5, France – sequence: 25 givenname: Jean Francois surname: Bastin fullname: Bastin, Jean Francois organization: TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium – sequence: 26 givenname: Peter surname: Biber fullname: Biber, Peter organization: Technical University Munich, Arcisstraße 21, D-80333 Munich, Germany – sequence: 27 givenname: Pascal surname: Boeckx fullname: Boeckx, Pascal organization: Ghent University, Coupure Links 653, 9000 Gent, Belgium – sequence: 28 givenname: Jan surname: Bogaert fullname: Bogaert, Jan organization: University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium – sequence: 29 givenname: Luigi surname: Boschetti fullname: Boschetti, Luigi organization: University of Idaho, 875 Perimeter Dr., MS 1133, Moscow, ID 83844, USA – sequence: 30 givenname: Peter Brehm surname: Boucher fullname: Boucher, Peter Brehm organization: Harvard University, 26 Oxford Street Cambridge, MA 02138, USA – sequence: 31 givenname: Doreen S. surname: Boyd fullname: Boyd, Doreen S. organization: University of Nottingham, University Park, Nottingham NG7 2RD, UK – sequence: 33 givenname: Sofia surname: Calvo-Rodriguez fullname: Calvo-Rodriguez, Sofia organization: University of Alberta, Edmonton, AB T6G 2E3, Canada – sequence: 35 givenname: Robin L. surname: Chazdon fullname: Chazdon, Robin L. organization: University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-2043, USA – sequence: 39 givenname: David A. surname: Coomes fullname: Coomes, David A. organization: University of Cambridge, Downing Street, Cambridge CB2 3EA, UK – sequence: 40 givenname: Piermaria surname: Corona fullname: Corona, Piermaria organization: Council for Agricultural Research and Economics, viale Santa Margherita 80, 52100 Arezzo, Italy – sequence: 41 givenname: K.C. surname: Cushman fullname: Cushman, K.C. organization: Brown University, 75 Waterman St, Providence, RI 02912, USA – sequence: 42 givenname: Mark E.J. surname: Cutler fullname: Cutler, Mark E.J. organization: University of Dundee, Nethergate, Dundee DD1 4HN, UK – sequence: 43 givenname: James W. surname: Dalling fullname: Dalling, James W. organization: Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Panama – sequence: 45 givenname: Jonathan surname: Dash fullname: Dash, Jonathan organization: Scion New Zealand Forest Research Institute, New Zealand – sequence: 46 givenname: Sergio surname: de-Miguel fullname: de-Miguel, Sergio organization: University of Lleida, Av. Alcalde Rovira Roure, 191, E-25198 Lleida, Spain – sequence: 47 givenname: Songqiu surname: Deng fullname: Deng, Songqiu organization: Shinshu University, 8304, Minamiminowa-Vill., Kamiina-County, Nagano 399-4598, Japan – sequence: 48 givenname: Peter Woods surname: Ellis fullname: Ellis, Peter Woods organization: The Nature Conservancy, 4245 North Fairfax Drive, Suite 100, Arlington, VA 22203, USA – sequence: 49 givenname: Barend surname: Erasmus fullname: Erasmus, Barend organization: University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000, Johannesburg, South Africa – sequence: 50 givenname: Patrick A. surname: Fekety fullname: Fekety, Patrick A. organization: Colorado State University, 1062 Campus Delivery, Fort Collins, CO 80523-1062, USA – sequence: 51 givenname: Alfredo surname: Fernandez-Landa fullname: Fernandez-Landa, Alfredo organization: Agresta Sociedad Cooperativa, St. Numancia 1, E-42001 Soria, Spain – sequence: 52 givenname: Antonio surname: Ferraz fullname: Ferraz, Antonio organization: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove, Pasadena, CA 91109, USA – sequence: 54 givenname: Adrian G. surname: Fisher fullname: Fisher, Adrian G. organization: University of New South Wales, Sydney, NSW 2052, Australia – sequence: 55 givenname: Antonio surname: García-Abril fullname: García-Abril, Antonio organization: Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28040 Madrid, Spain – sequence: 57 givenname: Jorg M. surname: Hacker fullname: Hacker, Jorg M. organization: Airborne Research Australia, Hangar 60, Dakota Drive, Parafield Airport, 5106, Australia – sequence: 58 givenname: Marco surname: Heurich fullname: Heurich, Marco organization: Bavarian Forest National Park, Freyunger Straße, 94481 Grafenau, Germany – sequence: 59 givenname: Ross A. surname: Hill fullname: Hill, Ross A. organization: Bournemouth University, Talbot Campus, Poole, Dorset BH12 5BB, UK – sequence: 60 givenname: Chris surname: Hopkinson fullname: Hopkinson, Chris organization: University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada – sequence: 61 givenname: Huabing surname: Huang fullname: Huang, Huabing organization: School of Geospatial Engineering and Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China – sequence: 62 givenname: Stephen P. surname: Hubbell fullname: Hubbell, Stephen P. organization: Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Panama – sequence: 63 givenname: Andrew T. surname: Hudak fullname: Hudak, Andrew T. organization: USDA Forest Service, Rocky Mountain Research Station, 1221 South Main St., Moscow, ID 83843, USA – sequence: 64 givenname: Andreas surname: Huth fullname: Huth, Andreas organization: Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany – sequence: 65 givenname: Benedikt surname: Imbach fullname: Imbach, Benedikt organization: Aeroscout, Hengstrain 14, 6280, Hochdorf, Switzerland – sequence: 66 givenname: Kathryn J. surname: Jeffery fullname: Jeffery, Kathryn J. organization: University of Stirling, University of Stirling, Stirling FK9 4LA, UK – sequence: 67 givenname: Masato surname: Katoh fullname: Katoh, Masato organization: Shinshu University, 8304, Minamiminowa-Vill., Kamiina-County, Nagano 399-4598, Japan – sequence: 68 givenname: Elizabeth surname: Kearsley fullname: Kearsley, Elizabeth organization: Ghent University, Coupure Links 653, 9000 Gent, Belgium – sequence: 69 givenname: David surname: Kenfack fullname: Kenfack, David organization: Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Panama – sequence: 70 givenname: Natascha surname: Kljun fullname: Kljun, Natascha organization: Lund University, Centre for Environmental and Climate Science, Sölvegatan 37, 223 62 Lund, Sweden – sequence: 72 givenname: Kamil surname: Král fullname: Král, Kamil organization: The Silva Tarouca Research Institute, Lidická 25/27, 602 00 Brno, Czech Republic – sequence: 73 givenname: Martin surname: Krůček fullname: Krůček, Martin organization: The Silva Tarouca Research Institute, Lidická 25/27, 602 00 Brno, Czech Republic – sequence: 74 givenname: Nicolas surname: Labrière fullname: Labrière, Nicolas organization: Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (CNRS/IRD/UPS), 118 route de Narbonne, 31062 Toulouse Cedex 9, France – sequence: 75 givenname: Simon L. surname: Lewis fullname: Lewis, Simon L. organization: University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK – sequence: 76 givenname: Marcos surname: Longo fullname: Longo, Marcos organization: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove, Pasadena, CA 91109, USA – sequence: 77 givenname: Richard M. surname: Lucas fullname: Lucas, Richard M. organization: Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion SY23 3DY, UK – sequence: 78 givenname: Russell surname: Main fullname: Main, Russell organization: University of Pretoria, Lynnwood Rd, Hatfield, Pretoria 0002, South Africa – sequence: 80 givenname: Rodolfo Vásquez surname: Martínez fullname: Martínez, Rodolfo Vásquez organization: Jardín Botánico de Missouri, Prolongación Bolognesi Mz.E-6, Peru – sequence: 81 givenname: Renaud surname: Mathieu fullname: Mathieu, Renaud organization: University of Pretoria, Lynnwood Rd, Hatfield, Pretoria 0002, South Africa – sequence: 82 givenname: Herve surname: Memiaghe fullname: Memiaghe, Herve organization: Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (CNRS/IRD/UPS), 118 route de Narbonne, 31062 Toulouse Cedex 9, France – sequence: 83 givenname: Victoria surname: Meyer fullname: Meyer, Victoria organization: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove, Pasadena, CA 91109, USA – sequence: 85 givenname: Alessandra surname: Monerris fullname: Monerris, Alessandra organization: University of Melbourne, Grattan Street, Parkville, Victoria, Australia – sequence: 86 givenname: Paul surname: Montesano fullname: Montesano, Paul organization: NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA – sequence: 87 givenname: Felix surname: Morsdorf fullname: Morsdorf, Felix organization: Department of Geography, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland – sequence: 88 givenname: Erik surname: Næsset fullname: Næsset, Erik organization: Norwegian University of Life Sciences, P.O. Box 5003, NMBU, 1432 Ås, Norway – sequence: 89 givenname: Laven surname: Naidoo fullname: Naidoo, Laven organization: Council for Scientific and Industrial Research, PO BOX 395, Pretoria 0001, South Africa – sequence: 90 givenname: Reuben surname: Nilus fullname: Nilus, Reuben organization: Sabah Forestry Department, P.O.Box 1407, 90715 Sandakan, Sabah, Malaysia – sequence: 91 givenname: Michael surname: O’Brien fullname: O’Brien, Michael organization: Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Spain – sequence: 92 givenname: David A. surname: Orwig fullname: Orwig, David A. organization: Harvard University, Harvard Forest, 324 North Main Street, Petersham, MA 01366, USA – sequence: 93 givenname: Konstantinos surname: Papathanassiou fullname: Papathanassiou, Konstantinos organization: DLR, Königswinterer Str. 522-524, D-53227 Bonn, Germany – sequence: 98 givenname: John R. surname: Poulsen fullname: Poulsen, John R. organization: Duke University, PO Box 90328, USA – sequence: 99 givenname: Hans surname: Pretzsch fullname: Pretzsch, Hans organization: Technical University Munich, Arcisstraße 21, D-80333 Munich, Germany – sequence: 101 givenname: Sassan surname: Saatchi fullname: Saatchi, Sassan organization: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove, Pasadena, CA 91109, USA – sequence: 102 givenname: Arturo surname: Sanchez-Azofeifa fullname: Sanchez-Azofeifa, Arturo organization: University of Alberta, Edmonton, AB T6G 2E3, Canada – sequence: 103 givenname: Nuria surname: Sanchez-Lopez fullname: Sanchez-Lopez, Nuria organization: University of Idaho, 875 Perimeter Dr., MS 1133, Moscow, ID 83844, USA – sequence: 104 givenname: Robert surname: Scholes fullname: Scholes, Robert organization: University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000, Johannesburg, South Africa – sequence: 105 givenname: Carlos A. surname: Silva fullname: Silva, Carlos A. organization: University of Florida, 342 Newins-Ziegler Hall, PO Box 110410, Gainesville, FL, USA – sequence: 106 givenname: Marc surname: Simard fullname: Simard, Marc organization: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove, Pasadena, CA 91109, USA – sequence: 107 givenname: Andrew surname: Skidmore fullname: Skidmore, Andrew organization: University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands – sequence: 108 givenname: Krzysztof surname: Stereńczak fullname: Stereńczak, Krzysztof organization: Forest Research Institute, Braci Leśnej 3 Street, Sękocin Stary, 05-090 Raszyn, Poland – sequence: 109 givenname: Mihai surname: Tanase fullname: Tanase, Mihai organization: University of Melbourne, Grattan Street, Parkville, Victoria, Australia – sequence: 110 givenname: Chiara surname: Torresan fullname: Torresan, Chiara organization: Council for Agricultural Research and Economics, viale Santa Margherita 80, 52100 Arezzo, Italy – sequence: 111 givenname: Ruben surname: Valbuena fullname: Valbuena, Ruben organization: Swedish University of Agricultural Sciences, SLU Skogsmarksgränd 17, SE-901 83 Umeå, Sweden – sequence: 112 givenname: Hans surname: Verbeeck fullname: Verbeeck, Hans organization: Ghent University, Coupure Links 653, 9000 Gent, Belgium – sequence: 113 givenname: Tomas surname: Vrska fullname: Vrska, Tomas organization: The Silva Tarouca Research Institute, Lidická 25/27, 602 00 Brno, Czech Republic – sequence: 114 givenname: Konrad surname: Wessels fullname: Wessels, Konrad organization: George Mason University, 4400 University Drive, MSN 6C3, Fairfax, VA 22030, USA – sequence: 115 givenname: Joanne C. surname: White fullname: White, Joanne C. organization: Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada – sequence: 116 givenname: Lee J.T. surname: White fullname: White, Lee J.T. organization: University of Stirling, University of Stirling, Stirling FK9 4LA, UK – sequence: 117 givenname: Eliakimu surname: Zahabu fullname: Zahabu, Eliakimu organization: The Sokoine University of Agriculture, P.O. Box 3000, Chuo Kikuu, Morogoro, Tanzania – sequence: 118 givenname: Carlo surname: Zgraggen fullname: Zgraggen, Carlo organization: Aeroscout, Hengstrain 14, 6280, Hochdorf, Switzerland |
| BackLink | https://hal.inrae.fr/hal-03516285$$DView record in HAL https://www.osti.gov/servlets/purl/1893116$$D View this record in Osti.gov https://res.slu.se/id/publ/116407$$DView record from Swedish Publication Index (Sveriges lantbruksuniversitet) |
| BookMark | eNp9ksFu1DAQhiNUJNrCA3CL4NIedrEdx3HEadUubaUVHIDzyHYmu15548VOFu2N1-D1eBKcDUioEj3Zsv7P888_c5Gddb7DLHtNyZwSKt5t5yHinBFG55Qyyctn2TmVVT0jFeFn2TkhBZ9xVlYvsosYt4TQUlb0PHML7Q-4Dn7omlxbv1Mx5g120fbHfOcbdDFvfcg_Lj4vfv34GfM757Vy-dL4eIw97vLbY6d21sT8oTtg7O1a9dZ3-dXd8vbhOne2USHf2RjT48vseatcxFd_zsvs64fll5v72erT3cPNYjUzoij7WVnVnKlWaa0artqWl8RI2aqq5ZXhXOuKUYNtJauyEcIwqaRQtNEVlkha0xaX2Xz6N37H_aBhH-xOhSN4ZSG6QaswHhARKBWcVAlQ_wX2PvTKQcCIKpgNTGBSOWtOrUYoGaGmVgoIRQHctAwkExy0LFMDmtGmYKnGm6mGTyFBNLZHszG-69D0QGVdJC9JVEwiZ3GN4IO2cGAnH6f74NagDGgExoQEJlOdIlHXE7VJRv_1fr9YwfhGipIKJssDTdqrSbsP_tuQBgZpOAadUx36IUL6TxS1FGJM5e0j6dYPoUuTG1U1KQrG66SqJpUJPsaALaTWTsH0QVkHlMC4obCFtKEwbihMG5pI-oj86_0p5v3EpMXEg8UwJomdwcaGMcjG2yfo313lAek |
| CitedBy_id | crossref_primary_10_1016_j_jag_2025_104614 crossref_primary_10_1111_2041_210X_14084 crossref_primary_10_1016_j_jag_2023_103403 crossref_primary_10_1016_j_rse_2025_114718 crossref_primary_10_1016_j_foreco_2024_122059 crossref_primary_10_1007_s10661_024_13610_1 crossref_primary_10_1016_j_rse_2023_113745 crossref_primary_10_1109_JSTARS_2025_3527631 crossref_primary_10_1109_LGRS_2022_3208744 crossref_primary_10_3390_rs14092096 crossref_primary_10_1111_nph_70457 crossref_primary_10_1371_journal_pclm_0000584 crossref_primary_10_3390_rs14102426 crossref_primary_10_1038_s41598_024_64615_2 crossref_primary_10_1080_17583004_2025_2465361 crossref_primary_10_1016_j_fecs_2025_100372 crossref_primary_10_1038_s41597_024_03092_8 crossref_primary_10_1007_s13253_024_00600_6 crossref_primary_10_1016_j_acags_2025_100289 crossref_primary_10_1038_s41893_025_01608_7 crossref_primary_10_1016_j_srs_2025_100195 crossref_primary_10_3390_rs17061076 crossref_primary_10_3390_land14081540 crossref_primary_10_3390_rs15040975 crossref_primary_10_3390_rs15081969 crossref_primary_10_1016_j_rse_2024_114557 crossref_primary_10_1109_JSTARS_2024_3425431 crossref_primary_10_1109_TGRS_2023_3318084 crossref_primary_10_1016_j_rse_2023_113619 crossref_primary_10_24072_pcjournal_625 crossref_primary_10_5194_essd_16_5267_2024 crossref_primary_10_1117_1_JRS_19_024502 crossref_primary_10_1080_2150704X_2025_2465914 crossref_primary_10_3390_rs17152623 crossref_primary_10_1038_s41598_023_50308_9 crossref_primary_10_3390_rs14133172 crossref_primary_10_1109_LGRS_2024_3390136 crossref_primary_10_1038_s41559_023_02206_6 crossref_primary_10_1080_07038992_2024_2351004 crossref_primary_10_1111_2041_210X_14416 crossref_primary_10_1007_s10980_023_01753_4 crossref_primary_10_1111_gcb_16497 crossref_primary_10_1007_s40725_024_00223_7 crossref_primary_10_1016_j_foreco_2024_122195 crossref_primary_10_1007_s10712_024_09866_4 crossref_primary_10_1016_j_rse_2024_114322 crossref_primary_10_1088_1748_9326_ad9aba crossref_primary_10_1080_19479832_2024_2309615 crossref_primary_10_1007_s41748_025_00713_z crossref_primary_10_1016_j_ecoinf_2025_103002 crossref_primary_10_1080_15481603_2025_2483027 crossref_primary_10_1016_j_jag_2022_103108 crossref_primary_10_1016_j_ecss_2025_109372 crossref_primary_10_3390_rs14122928 crossref_primary_10_1088_1748_9326_acba31 crossref_primary_10_1111_gcb_17493 crossref_primary_10_1109_JSTARS_2025_3567505 crossref_primary_10_1002_env_2892 crossref_primary_10_1016_j_rse_2025_114930 crossref_primary_10_1038_s43247_024_01893_8 crossref_primary_10_3390_rs17010047 crossref_primary_10_1016_j_measurement_2023_112593 crossref_primary_10_1016_j_jag_2024_103711 crossref_primary_10_1016_j_jag_2023_103538 crossref_primary_10_1016_j_rse_2025_114802 crossref_primary_10_1038_s41467_024_52468_2 crossref_primary_10_1364_AO_472881 crossref_primary_10_3390_rs14133035 crossref_primary_10_3390_rs16071229 crossref_primary_10_1038_s41467_025_56175_4 crossref_primary_10_1080_15481603_2023_2292374 crossref_primary_10_3390_rs14225741 crossref_primary_10_1029_2024GL110094 crossref_primary_10_3390_rs17020196 crossref_primary_10_3390_rs15051410 crossref_primary_10_1016_j_ecoinf_2023_102234 crossref_primary_10_2184_lsj_52_10_512 crossref_primary_10_1109_TGRS_2025_3572524 crossref_primary_10_1002_env_2883 crossref_primary_10_1016_j_foreco_2023_121583 crossref_primary_10_1111_1365_2745_70050 crossref_primary_10_1038_s41597_025_05021_9 crossref_primary_10_1109_JSTARS_2024_3461843 crossref_primary_10_3390_rs15112919 crossref_primary_10_1016_j_foreco_2025_122657 crossref_primary_10_1093_forestry_cpad024 crossref_primary_10_3390_f14061086 crossref_primary_10_3390_rs17091594 crossref_primary_10_3390_rs17152682 crossref_primary_10_1038_s41526_022_00231_6 crossref_primary_10_1080_21580103_2025_2481122 crossref_primary_10_1016_j_tfp_2024_100751 crossref_primary_10_1186_s13021_023_00221_5 crossref_primary_10_3389_ffgc_2025_1498430 crossref_primary_10_1016_j_cub_2023_04_019 crossref_primary_10_1088_1748_9326_ac8694 crossref_primary_10_1016_j_ecoinf_2022_101748 crossref_primary_10_1016_j_jag_2023_103275 crossref_primary_10_1007_s44391_025_00021_z crossref_primary_10_1016_j_srs_2025_100204 crossref_primary_10_1016_j_tfp_2024_100763 crossref_primary_10_1016_j_rse_2022_113390 crossref_primary_10_1029_2024JG008108 crossref_primary_10_1038_s41597_024_03930_9 crossref_primary_10_1038_s41586_024_07629_0 crossref_primary_10_1016_j_rse_2024_114249 crossref_primary_10_1016_j_rse_2023_113530 crossref_primary_10_3390_rs16193550 crossref_primary_10_1109_JSTARS_2023_3298991 crossref_primary_10_3390_f16020214 crossref_primary_10_1080_01431161_2024_2307944 crossref_primary_10_1002_ece3_71341 crossref_primary_10_1016_j_jag_2025_104753 crossref_primary_10_1016_j_ecoinf_2024_102712 crossref_primary_10_1109_JSTARS_2025_3545482 crossref_primary_10_3390_rs16050861 crossref_primary_10_1016_j_srs_2024_100178 crossref_primary_10_1109_TGRS_2024_3382481 crossref_primary_10_1080_01431161_2023_2202340 crossref_primary_10_1088_2752_664X_adaaf9 crossref_primary_10_3390_land11101668 crossref_primary_10_3390_atmos16080954 crossref_primary_10_1186_s13595_025_01293_8 crossref_primary_10_1016_j_rse_2022_113367 crossref_primary_10_1088_2752_664X_ace723 crossref_primary_10_1016_j_habitatint_2025_103451 crossref_primary_10_1111_nph_70300 crossref_primary_10_3389_ffgc_2023_1149153 crossref_primary_10_1007_s12145_022_00915_3 crossref_primary_10_1016_j_rse_2023_113678 crossref_primary_10_1109_JSTARS_2024_3400218 crossref_primary_10_3390_f15101821 crossref_primary_10_1029_2023JG007465 crossref_primary_10_1007_s11273_025_10060_5 crossref_primary_10_3390_rs16234597 crossref_primary_10_1016_j_envsoft_2025_106565 crossref_primary_10_3390_rs15123029 crossref_primary_10_1016_j_rse_2024_114384 crossref_primary_10_1016_j_srs_2025_100221 crossref_primary_10_1016_j_pce_2024_103819 crossref_primary_10_3390_jmse11010175 crossref_primary_10_3390_rs15061522 crossref_primary_10_1002_env_2840 crossref_primary_10_1111_pce_15393 crossref_primary_10_1016_j_foreco_2024_122491 crossref_primary_10_3390_f15112024 crossref_primary_10_1038_s41586_025_08967_3 crossref_primary_10_1016_j_jag_2022_103088 crossref_primary_10_1038_s43247_024_01984_6 crossref_primary_10_1109_TGRS_2025_3600816 crossref_primary_10_1016_j_isprsjprs_2025_05_022 crossref_primary_10_3390_s25123696 crossref_primary_10_1088_1748_9326_ad0b60 crossref_primary_10_1016_j_jenvman_2024_123287 crossref_primary_10_1016_j_ecoinf_2023_102082 crossref_primary_10_3390_rs16142571 crossref_primary_10_3390_f16030390 crossref_primary_10_1002_rse2_416 crossref_primary_10_1016_j_foreco_2025_122964 crossref_primary_10_1016_j_jag_2023_103232 crossref_primary_10_1080_01431161_2024_2354072 crossref_primary_10_1007_s11069_024_06775_y crossref_primary_10_1016_j_isprsjprs_2024_11_020 crossref_primary_10_1111_ecog_07587 crossref_primary_10_3390_rs17050796 crossref_primary_10_1016_j_rse_2022_113074 crossref_primary_10_1007_s40725_024_00242_4 crossref_primary_10_1002_rse2_419 crossref_primary_10_1088_1748_9326_acdf03 crossref_primary_10_1016_j_rse_2023_113571 crossref_primary_10_1016_j_ecolind_2025_113610 crossref_primary_10_1186_s13021_022_00214_w crossref_primary_10_1016_j_ecolind_2025_113889 crossref_primary_10_1038_s41597_025_05464_0 crossref_primary_10_3389_ffgc_2023_1098901 crossref_primary_10_1016_j_rse_2024_114174 crossref_primary_10_3390_rs16132321 crossref_primary_10_1016_j_rse_2025_114890 crossref_primary_10_1016_j_jenvman_2025_124313 crossref_primary_10_1109_JSTARS_2023_3302026 crossref_primary_10_3390_rs16060978 crossref_primary_10_1016_j_foreco_2025_123175 crossref_primary_10_1016_j_rse_2025_114774 crossref_primary_10_1080_22797254_2025_2542870 crossref_primary_10_1016_j_jag_2024_103797 crossref_primary_10_1029_2022EA002516 crossref_primary_10_3390_rs17142340 crossref_primary_10_1016_j_jag_2022_103072 crossref_primary_10_1093_forestry_cpae003 crossref_primary_10_1016_j_foreco_2025_122747 crossref_primary_10_1186_s13021_024_00286_w crossref_primary_10_1088_1748_9326_ad3661 crossref_primary_10_3390_s23010349 crossref_primary_10_1002_rse2_70019 crossref_primary_10_3390_land14030567 crossref_primary_10_3390_rs15030696 crossref_primary_10_3390_rs17162849 crossref_primary_10_1038_s41597_025_05354_5 crossref_primary_10_3390_f15081440 crossref_primary_10_1088_2752_664X_ad7f5a crossref_primary_10_1016_j_agrformet_2025_110833 crossref_primary_10_1016_j_rse_2025_114644 crossref_primary_10_1088_2752_664X_add7e3 crossref_primary_10_5194_essd_15_4927_2023 crossref_primary_10_1080_17583004_2024_2390854 crossref_primary_10_7780_kjrs_2025_41_2_2_2 crossref_primary_10_1016_j_rse_2024_114518 crossref_primary_10_3390_f15061055 crossref_primary_10_5194_bg_20_3803_2023 crossref_primary_10_1016_j_jag_2025_104814 crossref_primary_10_1016_j_rse_2023_113703 crossref_primary_10_1016_j_rse_2024_114196 crossref_primary_10_1038_s43017_023_00508_8 crossref_primary_10_3390_rs14194911 crossref_primary_10_3390_s22052015 crossref_primary_10_3390_rs15153738 crossref_primary_10_1016_j_rse_2022_113420 crossref_primary_10_3390_f16040570 crossref_primary_10_1038_s41597_024_03162_x crossref_primary_10_1016_j_jag_2023_103314 crossref_primary_10_1080_01431161_2024_2343134 crossref_primary_10_1088_1748_9326_ace464 crossref_primary_10_1007_s44392_025_00029_w crossref_primary_10_1088_1748_9326_acd2ec crossref_primary_10_1016_j_scitotenv_2024_173273 crossref_primary_10_1088_1748_9326_add60a crossref_primary_10_1016_j_jag_2024_104148 crossref_primary_10_1002_rse2_330 crossref_primary_10_1007_s12524_023_01693_1 crossref_primary_10_1016_j_srs_2025_100286 crossref_primary_10_3390_s24113488 crossref_primary_10_1007_s40725_024_00225_5 crossref_primary_10_1016_j_rse_2022_113402 crossref_primary_10_1016_j_ecolind_2024_112157 crossref_primary_10_1109_TGRS_2024_3513641 crossref_primary_10_1002_fee_2585 crossref_primary_10_1038_s41467_023_38073_9 crossref_primary_10_1038_s41597_025_05739_6 crossref_primary_10_1088_2752_664X_acffcd crossref_primary_10_5194_bg_21_1583_2024 crossref_primary_10_5194_bg_21_3289_2024 crossref_primary_10_1038_s41598_024_65954_w crossref_primary_10_1109_LGRS_2023_3298142 crossref_primary_10_1371_journal_pone_0327895 crossref_primary_10_3390_rs16071281 crossref_primary_10_1007_s12518_025_00619_5 crossref_primary_10_1038_s41893_022_01020_5 crossref_primary_10_3390_rs14184466 crossref_primary_10_1080_01431161_2024_2396565 crossref_primary_10_1038_s41597_025_04655_z crossref_primary_10_1007_s10980_023_01597_y crossref_primary_10_1080_10106049_2024_2397468 crossref_primary_10_1016_j_jag_2024_104288 crossref_primary_10_1002_rse2_353 crossref_primary_10_1109_JSTARS_2024_3472096 crossref_primary_10_1016_j_foreco_2023_120975 crossref_primary_10_1080_15481603_2025_2497603 crossref_primary_10_1016_j_jenvman_2025_127197 |
| Cites_doi | 10.1016/j.envsci.2010.11.002 10.1016/j.ecolmodel.2017.10.009 10.1038/nclimate1354 10.5194/essd-11-1783-2019 10.1016/j.rse.2012.10.017 10.5589/m06-030 10.1088/1748-9326/3/4/045011 10.1080/01431160701736497 10.3390/rs12172840 10.1016/j.srs.2020.100002 10.1029/2009GL040692 10.1016/j.rse.2011.03.021 10.1016/j.isprsjprs.2015.04.007 10.1111/gcb.13139 10.1016/j.rse.2015.07.002 10.1016/S0034-4257(01)00281-4 10.1016/S0034-4257(99)00052-8 10.1126/science.aam5962 10.5194/bg-9-3381-2012 10.3390/rs10111832 10.1016/S0034-4257(96)00112-5 10.5194/bg-15-3377-2018 10.1080/07038992.2016.1217482 10.1016/j.rse.2017.03.017 10.1016/j.rse.2009.08.018 10.1111/ecog.02104 10.1046/j.1466-822X.2003.00010.x 10.1038/s41467-020-18321-y 10.1016/j.rse.2021.112533 10.3390/rs70100788 10.1109/36.134089 10.1109/LGRS.2005.856706 10.1016/j.rse.2008.09.009 10.1139/x91-101 10.1038/ncomms3269 10.1016/S0034-4257(97)00133-8 10.1007/s00468-006-0119-6 10.1073/pnas.1019576108 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 10.1016/S0034-4257(03)00039-7 10.1016/j.rse.2011.07.012 10.5589/m12-003 10.1016/j.rse.2009.08.016 10.1098/rstb.2003.1425 10.1016/j.rse.2016.09.006 10.1111/1365-2745.12263 10.1088/1748-9326/ab18df 10.3832/ifor2735-012 10.1109/36.885208 10.1016/j.rse.2012.07.006 10.5194/gmd-4-993-2011 10.1186/s13021-020-00143-6 10.1139/cjfr-2015-0006 10.1088/1748-9326/abd2ef 10.1016/j.rse.2009.12.018 10.1038/s41561-018-0279-1 10.1029/1999GL010484 10.5194/gmd-5-413-2012 10.1016/j.rse.2010.08.027 10.5194/essd-8-605-2016 10.1029/2018EA000506 10.1111/gcb.13388 10.1016/j.rse.2006.09.036 10.1016/j.rse.2013.03.017 10.1016/j.rse.2012.05.005 10.1016/j.rse.2012.10.008 10.1016/j.rse.2020.112165 10.1038/s41598-017-15050-z 10.1038/s41598-020-73733-6 10.5194/bg-9-5125-2012 10.1007/s10712-019-09532-0 10.1016/j.rse.2015.04.013 10.1109/JSTARS.2018.2851606 10.1073/pnas.0812303106 10.2307/3237198 10.1186/s13021-019-0117-9 10.1088/1748-9326/aad782 10.1186/s13021-015-0021-x 10.1080/01431160903380664 10.1016/j.rse.2008.03.004 10.1016/S0269-7491(01)00255-X 10.3390/f8050170 10.1016/j.rse.2020.112234 10.1111/j.1654-1103.2012.01471.x 10.1088/1748-9326/10/12/123001 10.1016/j.tree.2005.12.002 10.3390/rs61010051 10.1016/j.rse.2019.111347 10.1111/gcb.12629 10.1016/j.rse.2019.111262 10.1016/j.rse.2012.02.001 10.1016/j.compag.2020.105815 10.1016/j.rse.2020.111779 10.1029/2009JG000936 10.1016/j.rse.2013.09.023 10.1016/j.rse.2008.06.003 10.1111/j.1365-2745.2009.01604.x 10.3390/rs8080653 10.1088/1748-9326/2/4/045023 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors Copyright Elsevier BV Mar 1, 2022 Attribution |
| Copyright_xml | – notice: 2021 The Authors – notice: Copyright Elsevier BV Mar 1, 2022 – notice: Attribution |
| CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) MERGE: ModElling the Regional and Global Earth system Strategiska forskningsområden (SFO) Strategic research areas (SRA) Profile areas and other strong research environments Lunds universitet Naturvetenskapliga fakulteten BECC: Biodiversity and Ecosystem services in a Changing Climate Faculty of Science Lund University Profilområden och andra starka forskningsmiljöer Centre for Environmental and Climate Science (CEC) Centrum för miljö- och klimatvetenskap (CEC) Sveriges lantbruksuniversitet |
| CorporateAuthor_xml | – sequence: 0 name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) – name: Strategiska forskningsområden (SFO) – name: Naturvetenskapliga fakulteten – name: MERGE: ModElling the Regional and Global Earth system – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Centre for Environmental and Climate Science (CEC) – name: BECC: Biodiversity and Ecosystem services in a Changing Climate – name: Profile areas and other strong research environments – name: Centrum för miljö- och klimatvetenskap (CEC) – name: Strategic research areas (SRA) – name: Lunds universitet – name: Faculty of Science – name: Sveriges lantbruksuniversitet |
| DBID | 6I. AAFTH AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 1XC VOOES Q33 OIOZB OTOTI ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| DOI | 10.1016/j.rse.2021.112845 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Université de Liège - Open Repository and Bibliography (ORBI) OSTI.GOV - Hybrid OSTI.GOV SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| ExternalDocumentID | oai_slubar_slu_se_116407 oai_portal_research_lu_se_publications_5201c9aa_01e6_4cf2_8264_b85d4ab21d32 1893116 oai_orbi_ulg_ac_be_2268_288263 oai:HAL:hal-03516285v1 10_1016_j_rse_2021_112845 S0034425721005654 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW VOH WUQ XOL ~HD 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 1XC VOOES Q33 OIOZB OTOTI ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| ID | FETCH-LOGICAL-c635t-57942afabbad4aff450c88fa7f47c44bb721cef7875d66c28a86a1db7e5e0fcf3 |
| ISICitedReferencesCount | 299 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760433300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 1879-0704 |
| IngestDate | Tue Nov 04 17:20:29 EST 2025 Wed Nov 19 03:23:14 EST 2025 Thu Dec 05 06:22:35 EST 2024 Sat Nov 29 01:28:14 EST 2025 Sat Nov 29 15:12:06 EST 2025 Sun Nov 09 13:25:04 EST 2025 Wed Aug 13 04:22:31 EDT 2025 Sat Nov 29 07:27:27 EST 2025 Tue Nov 18 21:39:22 EST 2025 Fri Feb 23 02:39:44 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Waveform Forest GEDI Modeling LiDAR Aboveground biomass |
| Language | English |
| License | This is an open access article under the CC BY license. Attribution: http://creativecommons.org/licenses/by |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c635t-57942afabbad4aff450c88fa7f47c44bb721cef7875d66c28a86a1db7e5e0fcf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 scopus-id:2-s2.0-85123289336 National Aeronautics and Space Administration (NASA) USDOE Office of Science (SC), High Energy Physics (HEP) National Science Foundation (NSF) AC02-05CH11231; NNL 15AA03C; NNH20ZDA001N; 80HQTR18T0016; RPO201523; NNH13AW621; DEB 0939907 |
| ORCID | 0000-0003-3998-0010 0000-0002-9738-0657 0000-0003-0396-2072 0000-0002-7766-1347 0000-0002-8037-2001 0000-0002-1532-9808 0000-0002-8993-6168 0000-0002-5323-3866 0000-0003-3995-6299 0000-0002-7349-5687 0000-0003-4375-4446 0000-0003-1490-0168 0000-0002-2632-0008 0000-0001-6253-8437 0000-0002-8261-2582 0000-0003-0493-7581 0000-0003-2602-7247 0000-0003-4465-6442 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1893116 |
| PQID | 2639033249 |
| PQPubID | 2045405 |
| ParticipantIDs | swepub_primary_oai_slubar_slu_se_116407 swepub_primary_oai_portal_research_lu_se_publications_5201c9aa_01e6_4cf2_8264_b85d4ab21d32 osti_scitechconnect_1893116 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_288263 hal_primary_oai_HAL_hal_03516285v1 proquest_miscellaneous_2636398667 proquest_journals_2639033249 crossref_citationtrail_10_1016_j_rse_2021_112845 crossref_primary_10_1016_j_rse_2021_112845 elsevier_sciencedirect_doi_10_1016_j_rse_2021_112845 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier BV Elsevier |
| Publisher_xml | – sequence: 0 name: Elsevier – name: Elsevier Inc – name: Elsevier BV – name: Elsevier |
| References | Le Toan, Beaudoin, Riom, Guyon (bb0550) 1992; 30 Saarela, Holm, Healey, Patterson, Duncanson, Armston, Kellner, Gobakken, Næsset, Ekström, Ståhl (bb0780) 2021 Boudreau, Nelson, Margolis, Beaudoin, Guindon, Kimes (bb0080) 2008 Meyer, Saatchi, Clark, Keller, Grégoire, Ferraz, Espírito-Santo, d’Oliveira, Kaki, Chave (bb0640) 2018; 15 Hancock, Armston, Hofton, Sun, Tang, Duncanson, Kellner, Dubayah (bb0390) 2019; 6 Swatantran, Dubayah, Roberts, Hofton, Bryan Blair (bb0870) 2011 Lefsky, Cohen, Acker, Parker, Spies, Harding (bb0555) 1999 Ploton, Mortier, Réjou-Méchain, Barbier, Picard, Rossi, Dormann, Cornu, Viennois, Bayol, Lyapustin, Gourlet-Fleury, Pélissier (bb0740) 2020; 11 Silva, Duncanson, Hancock, Neuenschwander, Thomas, Hofton, Fatoyinbo, Simard, Marshak, Armston, Lutchke, Dubayah (bb0805) 2021 Corlett, Primack (bb0170) 2006; 21 North, Rosette, Suárez, Los (bb0705) 2010 Zolkos, Goetz, Dubayah (bb0950) 2013 Mahoney, Kljun, Los, Chasmer, Hacker, Hopkinson, North, Rosette, van Gorsel (bb0605) 2014; 6 Duncanson, Neuenschwander, Hancock, Thomas, Fatoyinbo, Simard, Silva, Armston, Luthcke, Hofton, Kellner, Dubayah (bb0270) 2020; 242 Drake, Dubayah, Clark, Knox, Bryan Blair, Hofton, Chazdon, Weishampel, Prince (bb0220) 2002 Xu, Saatchi, Shapiro, Meyer, Ferraz, Yang, Bastin, Banks, Boeckx, Verbeeck, Lewis, Muanza, Bongwele, Kayembe, Mbenza, Kalau, Mukendi, Ilunga, Ebuta (bb0940) 2017; 7 Clark, Kellner (bb0130) 2012; 23 Wulder, White, Nelson, Næsset, Ørka, Coops, Hilker, Bater, Gobakken (bb0935) 2012 Gibbs, Brown, Niles, Foley (bb0365) 2007 Koetz, Morsdorf, Sun, Ranson, Itten, Allgower (bb0485) 2006 Smith (bb0825) 2002; 116 Friis, Balslev (bb0360) 2005; 55 Chave, Condit, Aguilar, Hernandez, Lao, Perez (bb0115) 2004; 359 Poulter, Ciais, Hodson, Lischke, Maignan, Plummer, Zimmermann (bb0750) 2011 Disney, Burt, Wilkes, Armston, Duncanson (bb0210) 2020; 10 Sun, Jon Ranson, Guo, Zhang, Montesano, Kimes (bb0865) 2011 Lucas, Lee, Bunting (bb0590) 2008 Corbera, Schroeder (bb0165) 2011; 14 Carlucci, Seger, Sheil, Amaral, Chuyong, Ferreira, Galatti, Hurtado, Kenfack, Leal, Lewis, Lovett, Marshall, Martin, Mugerwa, Munishi, Oliveira, Razafimahaimodison, Rovero, Sainge, Thomas, Pillar, Duarte (bb0110) 2017 Kellner, Armston, Duncanson (bb0475) 2021 Ferraz, Saatchi, Mallet, Jacquemoud, Gil, Silva, Soares, Tomé, Pereira (bb0325) 2016; 8 Vorster, Evangelista, Stovall, Ex (bb0915) 2020; 15 Jucker, Caspersen, Chave, Antin, Barbier, Bongers, Dalponte, van Ewijk, Forrester, Haeni, Higgins, Holdaway, Iida, Lorimer, Marshall, Momo, Moncrieff, Ploton, Poorter, Rahman, Schlund, Sonké, Sterck, Trugman, Usoltsev, Vanderwel, Waldner, Wedeux, Wirth, Wöll, Woods, Xiang, Zimmermann, Coomes (bb0455) 2017; 23 Kearsley, de Haulleville, Hufkens, Kidimbu, Toirambe, Baert, Huygens, Kebede, Defourny, Bogaert, Beeckman, Steppe, Boeckx, Verbeeck (bb0465) 2013; 4 Asner, Mascaro (bb0030) 2014 Hansen, Bollandsås, Zahabu, Næsset (bb0395) 2015; 7 Corte, Souza, Rex, Sanquetta, Mohan, Silva, Zambrano, Prata, de Almeida, Trautenmüller, Klauberg, de Moraes, Sanquetta, Wilkinson, Broadbent (bb0180) 2020 Valbuena, Hernando, Manzanera, Görgens, Almeida, Mauro, García-Abril, Coomes (bb0905) 2017; 366 Zhao, Popescu, Nelson (bb0945) 2009 Sun, Ranson, Kimes, Blair, Kovacs (bb0860) 2008 Mitchard, Saatchi, Woodhouse, Nangendo, Ribeiro, Williams, Ryan, Lewis, Feldpausch, Meir (bb0650) 2009 Næsset, Bollandsås, Gobakken, Gregoire, Ståhl (bb0685) 2013 Andersen, Reutebuch, McGaughey (bb0010) 2006 Tang, Armston, Hancock, Marselis, Goetz, Dubayah (bib951) 2019; 231 Rodríguez-Veiga, Quegan, Carreiras, Persson, Fransson, Hoscilo, Ziółkowski, Stereńczak, Lohberger, Stängel, Berninger, Siegert, Avitabile, Herold, Mermoz, Bouvet, Le Toan, Carvalhais, Santoro, Cartus, Rauste, Mathieu, Asner, Thiel, Pathe, Schmullius, Seifert, Tansey, Balzter (bb0770) 2019; 77 Drake, Dubayah, Clark, Knox, Blair, Hofton, Chazdon, Weishampel, Prince (bb0215) 2002; 79 Chave, Réjou-Méchain, Búrquez, Chidumayo, Colgan, Delitti, Duque, Eid, Fearnside, Goodman, Henry, Martínez-Yrízar, Mugasha, Muller-Landau, Mencuccini, Nelson, Ngomanda, Nogueira, Ortiz-Malavassi, Pélissier, Ploton, Ryan, Saldarriaga, Vieilledent (bb0125) 2014; 20 Le Quéré, Andrew, Canadell, Sitch, Korsbakken, Peters, Manning, Boden, Tans, Houghton, Keeling, Alin, Andrews, Anthoni, Barbero, Bopp, Chevallier, Chini, Ciais, Currie, Delire, Doney, Friedlingstein, Gkritzalis, Harris, Hauck, Haverd, Hoppema, Klein Goldewijk, Jain, Kato, Körtzinger, Landschutzer, Lefevre, Lenton, Lienert, Lombardozzi, Melton, Metzl, Millero, Monteiro, Munro, Nabel, Nakaoka, O’Brien, Olsen, Omar, Pierrot, Ono, Poulter, Rödenbeck, Salisbury, Schuster, Schwinger, Seferian, Skjelvan, Stocker, Sutton, Takahashi, Tian, Tilbrook, Van Der Laan-Luijkx, Van Der Werf, Viovy, Walker, Wiltshire, Zaehle (bb0545) 2016; 8 Avitabile, Herold, Heuvelink, Lewis, Phillips, Asner, Armston, Ashton, Banin, Bayol, Berry, Boeckx, de Jong, DeVries, Girardin, Kearsley, Lindsell, Lopez-Gonzalez, Lucas, Malhi, Morel, Mitchard, Nagy, Qie, Quinones, Ryan, Ferry, Sunderland, Laurin, Gatti, Valentini, Verbeeck, Wijaya, Willcock (bb0040) 2016; 22 Lefsky, Keller, Pang, De Camargo, Hunter (bb0565) 2007; 1 Powell, Cohen, Healey, Kennedy, Moisen, Pierce, Ohmann (bb0755) 2010; 114 Hudak, Bright, Pokswinski, Louise Loudermilk, O’Brien, Hornsby, Klauberg, Silva (bb0425) 2016 Huang, Sun, Dubayah, Cook, Montesano, Ni, Zhang (bb0420) 2013 Réjou-Méchain, Barbier, Couteron, Ploton, Vincent, Herold, Mermoz, Saatchi, Chave, de Boissieu, Féret, Takoudjou, Pélissier (bb0765) 2019 Mauya, Hansen, Gobakken, Bollandsås, Malimbwi, Næsset (bb0620) 2015 Ranson, Sun (bb0760) 2000 Diaz, Cabido (bb0205) 1997 Simard, Pinto, Fisher, Baccini (bb0815) 2011; 116 Baccini, Goetz, Walker, Laporte, Sun, Sulla-Menashe, Hackler, Beck, Dubayah, Friedl, Samanta, Houghton (bb0050) 2012 Coomes, Dalponte, Jucker, Asner, Banin, David, Lewis, Nilus, Phillips, Phua, Qie (bb0155) 2017 Baccini, Walker, Carvalho, Farina, Sulla-Menashe, Houghton (bb0055) 2017; 358 Blair, Hofton (bb0075) 1999 Foody, Boyd, Cutler (bb0340) 2003 Feldpausch, Lloyd, Lewis, Brienen, Gloor, Monteagudo Mendoza, Lopez-Gonzalez, Banin, Abu Salim, Affum-Baffoe, Alexiades, Almeida, Amaral, Andrade, Aragao, Araujo Murakami, Arets, Arroyo, Aymard, Baker, Banki, Berry, Cardozo, Chave, Comiskey, Alvarez, de Oliveira, Di Fiore, Djagbletey, Domingues, Erwin, Fearnside, Franca, Freitas, Higuchi, Honorio, Iida, Jimenez, Kassim, Killeen, Laurance, Lovett, Malhi, Marimon, Marimon-Junior, Lenza, Marshall, Mendoza, Metcalfe, Mitchard, Neill, Nelson, Nilus, Nogueira, Parada, Peh, Pena Cruz, Penuela, Pitman, Prieto, Quesada, Ramırez, Ramırez-Angulo, Reitsma, Rudas, Saiz, Salomao, Schwarz, Silva, Silva-Espejo, Silveira, Sonke, Stropp, Taedoumg, Tan, ter Steege, Terborgh, Torello-Raventos, van der Heijden, Vasquez, Vilanova, Vos, White, Willcock, Woell, Phillips (bb0315) 2012; 9 Simard, Fatoyinbo, Smetanka, Rivera-Monroy, Castañeda-Moya, Thomas, Van der Stocken (bb0820) 2018; 12 Drake, Knox, Dubayah, Clark, Condit, Bryan Blair, Hofton (bb0225) 2003 Duncanson, Armston, Disney, Avitabile, Barbier, Calders, Carter, Chave, Herold, MacBean (bb0275) 2021 Ene, Næsset, Gobakken, Mauya, Bollandsås, Gregoire, Ståhl, Zahabu (bb0290) 2016; 186 Tang, Ma, Lister, O’Neill-Dunne, Lu, Lamb, Dubayah, Hurtt (bb0880) 2021; 16 Houghton, R.A., House, J.I., Pongratz, J., Werf, G.R. van der, DeFries, R.S., Hansen, M.C., Le Quéré, C., Ramankutty, N., 2012. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142. Naidoo, Mathieu, Main, Kleynhans, Wessels, Asner, Leblon (bb0695) 2015; 105 Los, Rosette, Kljun, North, Chasmer, Suárez, Hopkinson, Hill, van Gorsel, Mahoney, Berni (bb0585) 2012; 5 Ni-Meister, Lee, Strahler, Woodcock, Schaaf, Yao, Jon Ranson, Sun, Bryan Blair (bb0700) 2010 Margolis, Nelson, Montesano, Beaudoin, Sun, Andersen, Wulder (bb0610) 2015; 45 Labriere, Tao, Chave, Scipal, Le Toan, Abernethy, Alonso, Barbier, Bissiengou, Casal, Davies, Ferraz, Herault, Jaouen, Jeffery, Kenfack, Korte, Lewis, Malhi, Memiaghe, Poulsen, Rejou-Mechain, Villard, Vincent, White, Saatchi (bb0510) 2018 Dubayah, Blair, Goetz, Fatoyinbo, Hansen, Healey, Hofton, Hurtt, Kellner, Luthcke, Armston, Tang, Duncanson, Hancock, Jantz, Marselis, Patterson, Qi, Silva (bb0245) 2020 Potapov, Li, Hernandez-Serna, Tyukavina, Hansen, Kommareddy, Pickens, Turubanova, Tang, Silva, Armston, Dubayah, Blair, Hofton (bb0745) 2021; 253 Wood (bb0925) 2017 Healey, Yang, Gorelick, Ilyushchenko (bb0405) 2020; 12 Meyer, Saatchi, Ferraz, Xu, Duque, García, Chave (bb0645) 2019; 14 Friedl, Sulla-Menashe, Tan, Schneider, Ramankutty, Sibley, Huang (bb0350) 2010 Huete, Liu, Batchily, van Leeuwen (bb0430) 1997; 59 Hurtt, Pacala, Moorcroft, Caspersen, Shevliakova, Houghton, Moore (bb0435) 2002 Lang, Schindler, Wegner (bb0530) 2019; 233 Enquist, West, Brown (bb0300) 2009; 106 Hancock, Armston, Li, Gaulton, Lewis, Disney, Mark Danson, Strahler, Schaaf, Anderson, Gaston (bb0385) 2015 Snowdon (bb0830) 1991; 21 Ferry, Morneau, Bontemps, Blanc, Freycon (bb0335) 2010 Goetz, Hansen, Houghton, Walker, Laporte, Busch (bb0375) 2015; 10 Tubiello, Pekkarinen, Marklund, Wanner, Conchedda, Federici, Rossi, Grassi (bb0885) 2020 Coops, Hilker, Wulder, St-Onge, Newnham, Siggins, Trofymow (bb0160) 2007 Tang, Dubayah, Swatantran, Hofton, Sheldon, Clark, Blair (bb0875) 2012 Saatchi, Harris, Brown, Lefsky, Mitchard, Salas, Zutta, Buermann, Lewis, Hagen, Petrova, White, Silman, Morel (bb0785) 2011 Gleason, Im (bb0370) 2012 Laurin, Chen, Lindsell, Coomes, Del Frate, Guerriero, Pirotti, Valentini (bb0540) 2014 Næsset, Bollandsås, Gobakken, Solberg, McRoberts (bb0690) 2015; 168 Fatoyinbo, Armston, Simard, Saatchi, Denbina, Lavalle, Hofton, Tang, Marselis, Pinto, Hancock, Hawkins, Duncanson, Blair, Hansen, Lou, Dubayah, Hensley, Silva, Poulsen, Labrière, Barbier, Jeffery, Kenfack, Herve, Bissiengou, Alonso, Moussavou, White, Lewis, Hibbard (bb0305) 2021; 264 Næsset, Gobakken (bb0675) 2008; 112 Hancock, Disney, Muller, Lewis, Foster (bb0380) 2011 Saarela, Holm Blair (10.1016/j.rse.2021.112845_bb0075) 1999 Boudreau (10.1016/j.rse.2021.112845_bb0080) 2008 Diaz (10.1016/j.rse.2021.112845_bb0205) 1997 Snowdon (10.1016/j.rse.2021.112845_bb0830) 1991; 21 Corlett (10.1016/j.rse.2021.112845_bb0170) 2006; 21 Drake (10.1016/j.rse.2021.112845_bb0225) 2003 Avitabile (10.1016/j.rse.2021.112845_bb0040) 2016; 22 Banin (10.1016/j.rse.2021.112845_bb0060) 2014; 102 Patterson (10.1016/j.rse.2021.112845_bb0725) 2019 Goetz (10.1016/j.rse.2021.112845_bb0375) 2015; 10 Smith (10.1016/j.rse.2021.112845_bb0825) 2002; 116 Carlucci (10.1016/j.rse.2021.112845_bb0110) 2017 Hernando (10.1016/j.rse.2021.112845_bb0410) 2019 Xu (10.1016/j.rse.2021.112845_bb0940) 2017; 7 Meyer (10.1016/j.rse.2021.112845_bb0645) 2019; 14 Healey (10.1016/j.rse.2021.112845_bb0405) 2020; 12 Mauya (10.1016/j.rse.2021.112845_bb0620) 2015 Hancock (10.1016/j.rse.2021.112845_bb0385) 2015 Kellner (10.1016/j.rse.2021.112845_bb0475) 2021 Coops (10.1016/j.rse.2021.112845_bb0160) 2007 Hurtt (10.1016/j.rse.2021.112845_bb0435) 2002 Feldpausch (10.1016/j.rse.2021.112845_bb0315) 2012; 9 Saarela (10.1016/j.rse.2021.112845_bb0780) 2021 Baccini (10.1016/j.rse.2021.112845_bb0055) 2017; 358 Ferry (10.1016/j.rse.2021.112845_bb0335) 2010 Ferraz (10.1016/j.rse.2021.112845_bb0330) 2018; 13 Ferraz (10.1016/j.rse.2021.112845_bb0325) 2016; 8 Chave (10.1016/j.rse.2021.112845_bb0125) 2014; 20 Naidoo (10.1016/j.rse.2021.112845_bb0695) 2015; 105 Saarela (10.1016/j.rse.2021.112845_bb0775) 2018 Duncanson (10.1016/j.rse.2021.112845_bb0275) 2021 Simard (10.1016/j.rse.2021.112845_bb0815) 2011; 116 Sun (10.1016/j.rse.2021.112845_bb0860) 2008 North (10.1016/j.rse.2021.112845_bb0705) 2010 Andersen (10.1016/j.rse.2021.112845_bb0010) 2006 Clark (10.1016/j.rse.2021.112845_bb0130) 2012; 23 Gleason (10.1016/j.rse.2021.112845_bb0370) 2012 Hancock (10.1016/j.rse.2021.112845_bb0380) 2011 Fatoyinbo (10.1016/j.rse.2021.112845_bb0305) 2021; 264 Friedl (10.1016/j.rse.2021.112845_bb0350) 2010 Kearsley (10.1016/j.rse.2021.112845_bb0465) 2013; 4 Ene (10.1016/j.rse.2021.112845_bb0290) 2016; 186 Luckman (10.1016/j.rse.2021.112845_bb0595) 1998 Corbera (10.1016/j.rse.2021.112845_bb0165) 2011; 14 Wulder (10.1016/j.rse.2021.112845_bb0935) 2012 Mahoney (10.1016/j.rse.2021.112845_bb0605) 2014; 6 Drake (10.1016/j.rse.2021.112845_bb0220) 2002 Los (10.1016/j.rse.2021.112845_bb0585) 2012; 5 Potapov (10.1016/j.rse.2021.112845_bb0745) 2021; 253 Tubiello (10.1016/j.rse.2021.112845_bb0885) 2020 Gibbs (10.1016/j.rse.2021.112845_bb0365) 2007 Ploton (10.1016/j.rse.2021.112845_bb0740) 2020; 11 Hansen (10.1016/j.rse.2021.112845_bb0395) 2015; 7 Poulter (10.1016/j.rse.2021.112845_bb0750) 2011 Jucker (10.1016/j.rse.2021.112845_bb0455) 2017; 23 Dubayah (10.1016/j.rse.2021.112845_bb0245) 2020 Duncanson (10.1016/j.rse.2021.112845_bb0270) 2020; 242 Friedlingstein (10.1016/j.rse.2021.112845_bb0355) 2019; 11 Hansen (10.1016/j.rse.2021.112845_bb0400) 2017 10.1016/j.rse.2021.112845_bb0415 Huete (10.1016/j.rse.2021.112845_bb0430) 1997; 59 Huang (10.1016/j.rse.2021.112845_bb0420) 2013 Lefsky (10.1016/j.rse.2021.112845_bb0555) 1999 Zolkos (10.1016/j.rse.2021.112845_bb0950) 2013 Drake (10.1016/j.rse.2021.112845_bb0215) 2002; 79 Tang (10.1016/j.rse.2021.112845_bb0880) 2021; 16 Labriere (10.1016/j.rse.2021.112845_bb0510) 2018 Tang (10.1016/j.rse.2021.112845_bib951) 2019; 231 Lefsky (10.1016/j.rse.2021.112845_bb0565) 2007; 1 Ranson (10.1016/j.rse.2021.112845_bb0760) 2000 Koetz (10.1016/j.rse.2021.112845_bb0485) 2006 Tang (10.1016/j.rse.2021.112845_bb0875) 2012 Laurin (10.1016/j.rse.2021.112845_bb0540) 2014 Corte (10.1016/j.rse.2021.112845_bb0180) 2020 Silva (10.1016/j.rse.2021.112845_bb0805) 2021 Næsset (10.1016/j.rse.2021.112845_bb0690) 2015; 168 Le Quéré (10.1016/j.rse.2021.112845_bb0545) 2016; 8 Chave (10.1016/j.rse.2021.112845_bb0115) 2004; 359 Sun (10.1016/j.rse.2021.112845_bb0865) 2011 Næsset (10.1016/j.rse.2021.112845_bb0675) 2008; 112 Lucas (10.1016/j.rse.2021.112845_bb0590) 2008 Saatchi (10.1016/j.rse.2021.112845_bb0785) 2011 Simard (10.1016/j.rse.2021.112845_bb0820) 2018; 12 Lang (10.1016/j.rse.2021.112845_bb0530) 2019; 233 Réjou-Méchain (10.1016/j.rse.2021.112845_bb0765) 2019 Andersen (10.1016/j.rse.2021.112845_bb0020) 2011; 37 Meyer (10.1016/j.rse.2021.112845_bb0640) 2018; 15 Swatantran (10.1016/j.rse.2021.112845_bb0870) 2011 Foody (10.1016/j.rse.2021.112845_bb0340) 2003 Margolis (10.1016/j.rse.2021.112845_bb0610) 2015; 45 Zhao (10.1016/j.rse.2021.112845_bb0945) 2009 Baccini (10.1016/j.rse.2021.112845_bb0045) 2008 Auscover (10.1016/j.rse.2021.112845_bb0035) 2016 Valbuena (10.1016/j.rse.2021.112845_bb0905) 2017; 366 Powell (10.1016/j.rse.2021.112845_bb0755) 2010; 114 Duncanson (10.1016/j.rse.2021.112845_bb0250) 2010 Baccini (10.1016/j.rse.2021.112845_bb0050) 2012 10.1016/j.rse.2021.112845_bb0560 Næsset (10.1016/j.rse.2021.112845_bb0685) 2013 Le Toan (10.1016/j.rse.2021.112845_bb0550) 1992; 30 Coomes (10.1016/j.rse.2021.112845_bb0155) 2017 Hudak (10.1016/j.rse.2021.112845_bb0425) 2016 Enquist (10.1016/j.rse.2021.112845_bb0300) 2009; 106 Asner (10.1016/j.rse.2021.112845_bb0030) 2014 Ni-Meister (10.1016/j.rse.2021.112845_bb0700) 2010 Rodríguez-Veiga (10.1016/j.rse.2021.112845_bb0770) 2019; 77 Mitchard (10.1016/j.rse.2021.112845_bb0650) 2009 Disney (10.1016/j.rse.2021.112845_bb0210) 2020; 10 Hancock (10.1016/j.rse.2021.112845_bb0390) 2019; 6 Vorster (10.1016/j.rse.2021.112845_bb0915) 2020; 15 Friis (10.1016/j.rse.2021.112845_bb0360) 2005; 55 Wood (10.1016/j.rse.2021.112845_bb0925) 2017 |
| References_xml | – year: 2006 ident: bb0010 article-title: A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods publication-title: Can. J. Remote. Sens. – volume: 116 year: 2011 ident: bb0815 article-title: Mapping forest canopy height globally with spaceborne lidar publication-title: J. Geophys. Res. – year: 2020 ident: bb0180 article-title: Forest inventory with high-density UAV-Lidar: machine learning approaches for predicting individual tree attributes publication-title: Comput. Electron. Agric. – volume: 30 start-page: 403 year: 1992 end-page: 411 ident: bb0550 article-title: Relating forest biomass to SAR data publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2015 ident: bb0620 article-title: Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania publication-title: Carbon Balance Manag. – volume: 11 start-page: 4540 year: 2020 ident: bb0740 article-title: Spatial validation reveals poor predictive performance of large-scale ecological mapping models publication-title: Nat. Commun. – volume: 359 start-page: 409 year: 2004 end-page: 420 ident: bb0115 article-title: Error propagation and scaling for tropical forest biomass estimates. Philos publication-title: Trans. R. Soc. Lond. B Biol. Sci. – year: 2017 ident: bb0925 article-title: Generalized Additive Models: An Introduction with R – year: 2009 ident: bb0650 article-title: Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes publication-title: Geophys. Res. Lett. – year: 2017 ident: bb0155 article-title: Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data publication-title: Remote Sens. Environ. – volume: 233 start-page: 111347 year: 2019 ident: bb0530 article-title: Country-wide high-resolution vegetation height mapping with Sentinel-2 publication-title: Remote Sens. Environ. – year: 2011 ident: bb0865 article-title: Forest biomass mapping from lidar and radar synergies publication-title: Remote Sens. Environ. – volume: 6 start-page: 294 year: 2019 end-page: 310 ident: bb0390 article-title: The GEDI simulator: a large-footprint waveform lidar simulator for calibration and validation of spaceborne missions publication-title: Earth Space Sci. – year: 1997 ident: bb0205 article-title: Plant functional types and ecosystem function in relation to global change publication-title: J. Veg. Sci. – year: 2009 ident: bb0945 article-title: Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers publication-title: Remote Sens. Environ. – year: 2018 ident: bb0510 article-title: In situ reference datasets from the TropiSAR and AfriSAR campaigns in support of upcoming spaceborne biomass missions publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – year: 2012 ident: bb0875 article-title: Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica publication-title: Remote Sens. Environ. – volume: 6 start-page: 10051 year: 2014 end-page: 10069 ident: bb0605 article-title: Slope estimation from ICESat/GLAS publication-title: Remote Sens. – year: 2010 ident: bb0705 article-title: A Monte Carlo radiative transfer model of satellite waveform LiDAR publication-title: Int. J. Remote Sens. – year: 2021 ident: bb0805 article-title: Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping publication-title: Remote Sens. Environ. – volume: 10 year: 2015 ident: bb0375 article-title: Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+ publication-title: Environ. Res. Lett. – volume: 9 start-page: 3381 year: 2012 end-page: 3403 ident: bb0315 article-title: Tree height integrated into pantropical forest biomass estimates publication-title: Biogeosciences – volume: 116 start-page: S233 year: 2002 end-page: S242 ident: bb0825 article-title: Forest inventory and analysis: a national inventory and monitoring program publication-title: Environ. Pollut. – year: 2002 ident: bb0435 article-title: Projecting the Future of the U.S. Carbon Sink publication-title: Proceedings of the National Academy of Sciences – volume: 8 start-page: 653 year: 2016 ident: bb0325 article-title: Airborne lidar estimation of aboveground forest biomass in the absence of field inventory publication-title: Remote Sens. – volume: 16 year: 2021 ident: bb0880 article-title: High-resolution forest carbon mapping for climate mitigation baselines over the RGGI region, USA publication-title: Environ. Res. Lett. – year: 2021 ident: bb0275 article-title: Aboveground Woody Biomass Product Validation Good Practices Protocol. – year: 1998 ident: bb0595 article-title: Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics publication-title: Remote Sens. Environ. – volume: 55 year: 2005 ident: bb0360 article-title: Plant diversity and complexity patterns: local, regional, and global dimensions publication-title: Biologiske Skrifter – year: 2019 ident: bb0725 article-title: Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation publication-title: Environ. Res. Lett. – volume: 37 start-page: 1 year: 2011 end-page: 16 ident: bb0020 article-title: Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska publication-title: Can. J. Remote. Sens. – volume: 59 start-page: 440 year: 1997 end-page: 451 ident: bb0430 article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS publication-title: Remote Sens. Environ. – volume: 77 start-page: 53 year: 2019 end-page: 68 ident: bb0770 article-title: Forest biomass retrieval approaches from earth observation in different biomes publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2014 ident: bb0030 article-title: Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric publication-title: Remote Sens. Environ. – volume: 11 start-page: 1783 year: 2019 end-page: 1838 ident: bb0355 article-title: Global carbon budget 2019 publication-title: Earth Syst. Sci. Data – year: 2003 ident: bb0225 article-title: Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships publication-title: Glob. Ecol. Biogeogr. – year: 2011 ident: bb0750 article-title: Plant functional type mapping for earth system models publication-title: Geosci. Model Dev. – year: 2012 ident: bb0370 article-title: Forest biomass estimation from airborne LiDAR data using machine learning approaches publication-title: Remote Sens. Environ. – volume: 15 start-page: 3377 year: 2018 end-page: 3390 ident: bb0640 article-title: Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes publication-title: Biogeosciences – volume: 5 start-page: 413 year: 2012 end-page: 432 ident: bb0585 article-title: Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data publication-title: Geosci. Model Dev. – year: 2011 ident: bb0380 article-title: A threshold insensitive method for locating the forest canopy top with waveform lidar publication-title: Remote Sens. Environ. – year: 2017 ident: bb0400 article-title: Comparing empirical and semi-empirical approaches to forest biomass modelling in different biomes using airborne laser scanner data publication-title: Forests. – year: 2002 ident: bb0220 article-title: Estimation of tropical forest structural characteristics using large-footprint lidar publication-title: Remote Sens. Environ. – volume: 4 start-page: 2269 year: 2013 ident: bb0465 article-title: Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin publication-title: Nat. Commun. – volume: 21 start-page: 104 year: 2006 end-page: 110 ident: bb0170 article-title: Tropical rainforests and the need for cross-continental comparisons publication-title: Trends Ecol. Evol. – volume: 20 start-page: 3177 year: 2014 end-page: 3190 ident: bb0125 article-title: Improved allometric models to estimate the aboveground biomass of tropical trees publication-title: Glob. Chang. Biol. – volume: 14 start-page: 89 year: 2011 end-page: 99 ident: bb0165 article-title: Governing and implementing REDD+ publication-title: Environ. Sci. Pol. – year: 2007 ident: bb0160 article-title: Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR publication-title: Trees. – year: 2014 ident: bb0540 article-title: Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data publication-title: ISPRS J. Photogramm. Remote Sens. – year: 1999 ident: bb0555 article-title: Lidar remote sensing of the canopy structure and biophysical properties of douglas-fir western hemlock forests publication-title: Remote Sens. Environ. – volume: 13 year: 2018 ident: bb0330 article-title: Carbon storage potential in degraded forests of Kalimantan, Indonesia publication-title: Environ. Res. Lett. – volume: 14 start-page: 2 year: 2019 ident: bb0645 article-title: Forest degradation and biomass loss along the Chocó region of Colombia publication-title: Carbon Balance Manag. – volume: 45 start-page: 838 year: 2015 end-page: 855 ident: bb0610 article-title: Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America publication-title: Can. J. For. Res. – volume: 186 start-page: 626 year: 2016 end-page: 636 ident: bb0290 article-title: Large-scale estimation of aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data publication-title: Remote Sens. Environ. – year: 2020 ident: bb0885 article-title: Carbon emissions and removals by forests: New estimates 1990–2020 publication-title: Earth Syst. Sci. Data. – volume: 10 start-page: 16721 year: 2020 ident: bb0210 article-title: New 3D measurements of large redwood trees for biomass and structure publication-title: Sci. Rep. – year: 2011 ident: bb0870 article-title: Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion publication-title: Remote Sens. Environ. – year: 2019 ident: bb0410 article-title: Estimation of forest biomass components using airborne LiDAR and multispectral sensors publication-title: iForest - Biogeosci. Forestry – volume: 23 start-page: 1191 year: 2012 end-page: 1196 ident: bb0130 article-title: Tropical forest biomass estimation and the fallacy of misplaced concreteness publication-title: J. Veg. Sci. – volume: 79 start-page: 305 year: 2002 end-page: 319 ident: bb0215 article-title: Estimation of tropical forest structural characteristics using large-footprint lidar publication-title: Remote Sens. Environ. – year: 2012 ident: bb0935 article-title: Lidar sampling for large-area forest characterization: a review publication-title: Remote Sens. Environ. – reference: Houghton, R.A., House, J.I., Pongratz, J., Werf, G.R. van der, DeFries, R.S., Hansen, M.C., Le Quéré, C., Ramankutty, N., 2012. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142. – volume: 112 start-page: 3079 year: 2008 end-page: 3090 ident: bb0675 article-title: Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser publication-title: Remote Sens. Environ. – year: 2010 ident: bb0335 article-title: Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest publication-title: J. Ecol. – year: 2013 ident: bb0685 article-title: Model-assisted estimation of change in forest biomass over an 11year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data.” publication-title: Remote Sens. Environ. – year: 2021 ident: bb0780 article-title: Effects of multicollinearity in model-based inference predicting aboveground biomass using NASA’s GEDI and Landsat missions (research note) publication-title: Silva Fennica. – year: 2008 ident: bb0045 article-title: A first map of tropical Africa’s above-ground biomass derived from satellite imagery publication-title: Environ. Res. Lett. – year: 2012 ident: bb0050 article-title: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps publication-title: Nat. Clim. Chang. – year: 2019 ident: bb0765 article-title: Upscaling forest biomass from field to satellite measurements: sources of errors and ways to reduce them publication-title: Surv. Geophys. – volume: 366 start-page: 15 year: 2017 end-page: 26 ident: bb0905 article-title: Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation publication-title: Ecol. Model. – volume: 15 start-page: 8 year: 2020 ident: bb0915 article-title: Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations publication-title: Carbon Balance Manag. – reference: Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J., 2002. Lidar remote sensing for ecosystem studies. BioScience. doi:10.1641/0006-3568(2002)052[0019,lrsfes]2.0.co;2. – year: 1999 ident: bb0075 article-title: Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data publication-title: Geophys. Res. Lett. – year: 2010 ident: bb0350 article-title: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets publication-title: Remote Sens. Environ. – volume: 242 start-page: 111779 year: 2020 ident: bb0270 article-title: Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California publication-title: Remote Sens. Environ. – volume: 102 start-page: 1025 year: 2014 end-page: 1037 ident: bb0060 article-title: Tropical forest wood production: a cross-continental comparison publication-title: J. Ecol. – year: 2013 ident: bb0420 article-title: Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales publication-title: Remote Sens. Environ. – volume: 105 start-page: 234 year: 2015 end-page: 250 ident: bb0695 article-title: Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2007 ident: bb0365 article-title: Monitoring and estimating tropical forest carbon stocks: making REDD a reality publication-title: Environ. Res. Lett. – year: 2008 ident: bb0080 article-title: Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec publication-title: Remote Sens. Environ. – volume: 168 start-page: 252 year: 2015 end-page: 264 ident: bb0690 article-title: The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data publication-title: Remote Sens. Environ. – volume: 8 start-page: 605 year: 2016 end-page: 649 ident: bb0545 article-title: Global Carbon Budget 2016 publication-title: Earth Syst. Sci. Data – volume: 106 start-page: 7046 year: 2009 end-page: 7051 ident: bb0300 article-title: Extensions and evaluations of a general quantitative theory of forest structure and dynamics publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2021 ident: bb0475 article-title: Algorithm Theoretical Basis Document for GEDI Footprint Aboveground Biomass Density – year: 2013 ident: bb0950 article-title: A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing publication-title: Remote Sens. Environ. – volume: 253 start-page: 112165 year: 2021 ident: bb0745 article-title: Mapping global forest canopy height through integration of GEDI and Landsat data publication-title: Remote Sens. Environ. – volume: 23 start-page: 177 year: 2017 end-page: 190 ident: bb0455 article-title: Allometric equations for integrating remote sensing imagery into forest monitoring programmes publication-title: Glob. Chang. Biol. – year: 2016 ident: bb0035 article-title: Biomass Plot Library-National collation of tree and shrub inventory data, allometric model predictions of above and below-ground biomass, Australia – volume: 358 start-page: 230 year: 2017 end-page: 234 ident: bb0055 article-title: Tropical forests are a net carbon source based on aboveground measurements of gain and loss publication-title: Science – volume: 22 start-page: 1406 year: 2016 end-page: 1420 ident: bb0040 article-title: An integrated pan-tropical biomass map using multiple reference datasets publication-title: Glob. Chang. Biol. – year: 2018 ident: bb0775 article-title: Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and Landsat Data publication-title: Remote Sens. – year: 2020 ident: bb0245 article-title: The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography publication-title: Sci. Remote Sens. – year: 2003 ident: bb0340 article-title: Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions publication-title: Remote Sens. Environ. – volume: 21 start-page: 720 year: 1991 end-page: 724 ident: bb0830 article-title: A ratio estimator for bias correction in logarithmic regressions publication-title: Can. J. For. Res. – volume: 7 start-page: 15030 year: 2017 ident: bb0940 article-title: Spatial distribution of carbon stored in forests of the Democratic Republic of Congo publication-title: Sci. Rep. – year: 2010 ident: bb0700 article-title: Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing publication-title: J. Geophys. Res. Biogeosci. – year: 2010 ident: bb0250 article-title: Estimating forest canopy height and terrain relief from GLAS waveform metrics publication-title: Remote Sens. Environ. – volume: 12 start-page: 2840 year: 2020 ident: bb0405 article-title: Highly local model calibration with a new GEDI LiDAR asset on Google Earth Engine reduces landsat forest height signal saturation publication-title: Remote Sens. – year: 2016 ident: bb0425 article-title: Mapping forest structure and composition from low-density LiDAR for informed forest, fuel, and fire management at Eglin Air Force Base, Florida, USA publication-title: Can. J. Remote. Sens. – year: 2011 ident: bb0785 article-title: Benchmark map of forest carbon stocks in tropical regions across three continents publication-title: Proc. Natl. Acad. Sci. – volume: 12 start-page: 40 year: 2018 end-page: 45 ident: bb0820 article-title: Mangrove canopy height globally related to precipitation, temperature and cyclone frequency publication-title: Nat. Geosci. – year: 2017 ident: bb0110 article-title: Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity publication-title: Ecography. – volume: 264 year: 2021 ident: bb0305 article-title: The NASA AfriSAR campaign: airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions publication-title: Remote Sens. Environ. – volume: 1 year: 2007 ident: bb0565 article-title: Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms publication-title: J. Appl. Remote. Sens. – year: 2008 ident: bb0590 article-title: Retrieving forest biomass through integration of CASI and LiDAR data publication-title: Int. J. Remote Sens. – year: 2008 ident: bb0860 article-title: Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data publication-title: Remote Sens. Environ. – year: 2006 ident: bb0485 article-title: Inversion of a lidar waveform model for forest biophysical parameter estimation publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2015 ident: bb0385 article-title: Waveform lidar over vegetation: an evaluation of inversion methods for estimating return energy publication-title: Remote Sens. Environ. – volume: 231 start-page: 111262 year: 2019 ident: bib951 article-title: Characterizing global forest canopy cover distribution using spaceborne lidar publication-title: Remote. Sens. Environ. – volume: 114 start-page: 1053 year: 2010 end-page: 1068 ident: bb0755 article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches publication-title: Remote Sens. Environ. – year: 2000 ident: bb0760 article-title: Modeling lidar returns from forest canopies publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 7 start-page: 788 year: 2015 end-page: 807 ident: bb0395 article-title: Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data publication-title: Remote Sens. – volume: 14 start-page: 89 year: 2011 ident: 10.1016/j.rse.2021.112845_bb0165 article-title: Governing and implementing REDD+ publication-title: Environ. Sci. Pol. doi: 10.1016/j.envsci.2010.11.002 – volume: 366 start-page: 15 year: 2017 ident: 10.1016/j.rse.2021.112845_bb0905 article-title: Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2017.10.009 – year: 2012 ident: 10.1016/j.rse.2021.112845_bb0050 article-title: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1354 – volume: 11 start-page: 1783 year: 2019 ident: 10.1016/j.rse.2021.112845_bb0355 article-title: Global carbon budget 2019 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-11-1783-2019 – year: 2013 ident: 10.1016/j.rse.2021.112845_bb0950 article-title: A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.10.017 – volume: 77 start-page: 53 year: 2019 ident: 10.1016/j.rse.2021.112845_bb0770 article-title: Forest biomass retrieval approaches from earth observation in different biomes publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2006 ident: 10.1016/j.rse.2021.112845_bb0010 article-title: A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods publication-title: Can. J. Remote. Sens. doi: 10.5589/m06-030 – year: 2008 ident: 10.1016/j.rse.2021.112845_bb0045 article-title: A first map of tropical Africa’s above-ground biomass derived from satellite imagery publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/3/4/045011 – year: 2008 ident: 10.1016/j.rse.2021.112845_bb0590 article-title: Retrieving forest biomass through integration of CASI and LiDAR data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701736497 – volume: 12 start-page: 2840 issue: 17 year: 2020 ident: 10.1016/j.rse.2021.112845_bb0405 article-title: Highly local model calibration with a new GEDI LiDAR asset on Google Earth Engine reduces landsat forest height signal saturation publication-title: Remote Sens. doi: 10.3390/rs12172840 – year: 2020 ident: 10.1016/j.rse.2021.112845_bb0245 article-title: The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography publication-title: Sci. Remote Sens. doi: 10.1016/j.srs.2020.100002 – year: 2009 ident: 10.1016/j.rse.2021.112845_bb0650 article-title: Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL040692 – year: 2011 ident: 10.1016/j.rse.2021.112845_bb0865 article-title: Forest biomass mapping from lidar and radar synergies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.03.021 – volume: 105 start-page: 234 year: 2015 ident: 10.1016/j.rse.2021.112845_bb0695 article-title: Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.04.007 – volume: 22 start-page: 1406 year: 2016 ident: 10.1016/j.rse.2021.112845_bb0040 article-title: An integrated pan-tropical biomass map using multiple reference datasets publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13139 – volume: 168 start-page: 252 year: 2015 ident: 10.1016/j.rse.2021.112845_bb0690 article-title: The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.07.002 – volume: 79 start-page: 305 year: 2002 ident: 10.1016/j.rse.2021.112845_bb0215 article-title: Estimation of tropical forest structural characteristics using large-footprint lidar publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00281-4 – year: 1999 ident: 10.1016/j.rse.2021.112845_bb0555 article-title: Lidar remote sensing of the canopy structure and biophysical properties of douglas-fir western hemlock forests publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00052-8 – volume: 358 start-page: 230 year: 2017 ident: 10.1016/j.rse.2021.112845_bb0055 article-title: Tropical forests are a net carbon source based on aboveground measurements of gain and loss publication-title: Science doi: 10.1126/science.aam5962 – volume: 9 start-page: 3381 year: 2012 ident: 10.1016/j.rse.2021.112845_bb0315 article-title: Tree height integrated into pantropical forest biomass estimates publication-title: Biogeosciences doi: 10.5194/bg-9-3381-2012 – year: 2018 ident: 10.1016/j.rse.2021.112845_bb0775 article-title: Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and Landsat Data publication-title: Remote Sens. doi: 10.3390/rs10111832 – volume: 59 start-page: 440 year: 1997 ident: 10.1016/j.rse.2021.112845_bb0430 article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00112-5 – volume: 15 start-page: 3377 year: 2018 ident: 10.1016/j.rse.2021.112845_bb0640 article-title: Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes publication-title: Biogeosciences doi: 10.5194/bg-15-3377-2018 – year: 2016 ident: 10.1016/j.rse.2021.112845_bb0425 article-title: Mapping forest structure and composition from low-density LiDAR for informed forest, fuel, and fire management at Eglin Air Force Base, Florida, USA publication-title: Can. J. Remote. Sens. doi: 10.1080/07038992.2016.1217482 – volume: 116 year: 2011 ident: 10.1016/j.rse.2021.112845_bb0815 article-title: Mapping forest canopy height globally with spaceborne lidar publication-title: J. Geophys. Res. – year: 2017 ident: 10.1016/j.rse.2021.112845_bb0155 article-title: Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.017 – year: 2010 ident: 10.1016/j.rse.2021.112845_bb0250 article-title: Estimating forest canopy height and terrain relief from GLAS waveform metrics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.018 – year: 2017 ident: 10.1016/j.rse.2021.112845_bb0110 article-title: Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity publication-title: Ecography. doi: 10.1111/ecog.02104 – year: 2003 ident: 10.1016/j.rse.2021.112845_bb0225 article-title: Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships publication-title: Glob. Ecol. Biogeogr. doi: 10.1046/j.1466-822X.2003.00010.x – volume: 11 start-page: 4540 year: 2020 ident: 10.1016/j.rse.2021.112845_bb0740 article-title: Spatial validation reveals poor predictive performance of large-scale ecological mapping models publication-title: Nat. Commun. doi: 10.1038/s41467-020-18321-y – year: 2021 ident: 10.1016/j.rse.2021.112845_bb0780 article-title: Effects of multicollinearity in model-based inference predicting aboveground biomass using NASA’s GEDI and Landsat missions (research note) publication-title: Silva Fennica. – volume: 264 year: 2021 ident: 10.1016/j.rse.2021.112845_bb0305 article-title: The NASA AfriSAR campaign: airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112533 – volume: 7 start-page: 788 year: 2015 ident: 10.1016/j.rse.2021.112845_bb0395 article-title: Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data publication-title: Remote Sens. doi: 10.3390/rs70100788 – volume: 30 start-page: 403 year: 1992 ident: 10.1016/j.rse.2021.112845_bb0550 article-title: Relating forest biomass to SAR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.134089 – year: 2006 ident: 10.1016/j.rse.2021.112845_bb0485 article-title: Inversion of a lidar waveform model for forest biophysical parameter estimation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.856706 – year: 2009 ident: 10.1016/j.rse.2021.112845_bb0945 article-title: Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.009 – volume: 21 start-page: 720 year: 1991 ident: 10.1016/j.rse.2021.112845_bb0830 article-title: A ratio estimator for bias correction in logarithmic regressions publication-title: Can. J. For. Res. doi: 10.1139/x91-101 – volume: 55 year: 2005 ident: 10.1016/j.rse.2021.112845_bb0360 article-title: Plant diversity and complexity patterns: local, regional, and global dimensions publication-title: Biologiske Skrifter – volume: 4 start-page: 2269 year: 2013 ident: 10.1016/j.rse.2021.112845_bb0465 article-title: Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin publication-title: Nat. Commun. doi: 10.1038/ncomms3269 – year: 1998 ident: 10.1016/j.rse.2021.112845_bb0595 article-title: Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00133-8 – year: 2007 ident: 10.1016/j.rse.2021.112845_bb0160 article-title: Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR publication-title: Trees. doi: 10.1007/s00468-006-0119-6 – year: 2011 ident: 10.1016/j.rse.2021.112845_bb0785 article-title: Benchmark map of forest carbon stocks in tropical regions across three continents publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1019576108 – year: 2016 ident: 10.1016/j.rse.2021.112845_bb0035 – ident: 10.1016/j.rse.2021.112845_bb0560 doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 – year: 2003 ident: 10.1016/j.rse.2021.112845_bb0340 article-title: Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00039-7 – year: 2011 ident: 10.1016/j.rse.2021.112845_bb0380 article-title: A threshold insensitive method for locating the forest canopy top with waveform lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.07.012 – volume: 37 start-page: 1 issue: 6 year: 2011 ident: 10.1016/j.rse.2021.112845_bb0020 article-title: Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska publication-title: Can. J. Remote. Sens. doi: 10.5589/m12-003 – year: 2010 ident: 10.1016/j.rse.2021.112845_bb0350 article-title: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.016 – year: 2020 ident: 10.1016/j.rse.2021.112845_bb0885 article-title: Carbon emissions and removals by forests: New estimates 1990–2020 publication-title: Earth Syst. Sci. Data. – volume: 359 start-page: 409 year: 2004 ident: 10.1016/j.rse.2021.112845_bb0115 article-title: Error propagation and scaling for tropical forest biomass estimates. Philos publication-title: Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2003.1425 – volume: 186 start-page: 626 year: 2016 ident: 10.1016/j.rse.2021.112845_bb0290 article-title: Large-scale estimation of aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.09.006 – year: 2002 ident: 10.1016/j.rse.2021.112845_bb0220 article-title: Estimation of tropical forest structural characteristics using large-footprint lidar publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00281-4 – year: 2021 ident: 10.1016/j.rse.2021.112845_bb0475 – volume: 102 start-page: 1025 year: 2014 ident: 10.1016/j.rse.2021.112845_bb0060 article-title: Tropical forest wood production: a cross-continental comparison publication-title: J. Ecol. doi: 10.1111/1365-2745.12263 – year: 2019 ident: 10.1016/j.rse.2021.112845_bb0725 article-title: Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab18df – year: 2019 ident: 10.1016/j.rse.2021.112845_bb0410 article-title: Estimation of forest biomass components using airborne LiDAR and multispectral sensors publication-title: iForest - Biogeosci. Forestry doi: 10.3832/ifor2735-012 – year: 2000 ident: 10.1016/j.rse.2021.112845_bb0760 article-title: Modeling lidar returns from forest canopies publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.885208 – year: 2012 ident: 10.1016/j.rse.2021.112845_bb0370 article-title: Forest biomass estimation from airborne LiDAR data using machine learning approaches publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.07.006 – year: 2011 ident: 10.1016/j.rse.2021.112845_bb0750 article-title: Plant functional type mapping for earth system models publication-title: Geosci. Model Dev. doi: 10.5194/gmd-4-993-2011 – volume: 15 start-page: 8 year: 2020 ident: 10.1016/j.rse.2021.112845_bb0915 article-title: Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations publication-title: Carbon Balance Manag. doi: 10.1186/s13021-020-00143-6 – volume: 45 start-page: 838 year: 2015 ident: 10.1016/j.rse.2021.112845_bb0610 article-title: Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2015-0006 – volume: 16 year: 2021 ident: 10.1016/j.rse.2021.112845_bb0880 article-title: High-resolution forest carbon mapping for climate mitigation baselines over the RGGI region, USA publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/abd2ef – volume: 114 start-page: 1053 year: 2010 ident: 10.1016/j.rse.2021.112845_bb0755 article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.12.018 – volume: 12 start-page: 40 year: 2018 ident: 10.1016/j.rse.2021.112845_bb0820 article-title: Mangrove canopy height globally related to precipitation, temperature and cyclone frequency publication-title: Nat. Geosci. doi: 10.1038/s41561-018-0279-1 – year: 1999 ident: 10.1016/j.rse.2021.112845_bb0075 article-title: Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL010484 – volume: 5 start-page: 413 year: 2012 ident: 10.1016/j.rse.2021.112845_bb0585 article-title: Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data publication-title: Geosci. Model Dev. doi: 10.5194/gmd-5-413-2012 – year: 2011 ident: 10.1016/j.rse.2021.112845_bb0870 article-title: Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.08.027 – volume: 8 start-page: 605 year: 2016 ident: 10.1016/j.rse.2021.112845_bb0545 article-title: Global Carbon Budget 2016 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-8-605-2016 – volume: 1 year: 2007 ident: 10.1016/j.rse.2021.112845_bb0565 article-title: Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms publication-title: J. Appl. Remote. Sens. – year: 2021 ident: 10.1016/j.rse.2021.112845_bb0275 – volume: 6 start-page: 294 year: 2019 ident: 10.1016/j.rse.2021.112845_bb0390 article-title: The GEDI simulator: a large-footprint waveform lidar simulator for calibration and validation of spaceborne missions publication-title: Earth Space Sci. doi: 10.1029/2018EA000506 – volume: 23 start-page: 177 year: 2017 ident: 10.1016/j.rse.2021.112845_bb0455 article-title: Allometric equations for integrating remote sensing imagery into forest monitoring programmes publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13388 – year: 2008 ident: 10.1016/j.rse.2021.112845_bb0860 article-title: Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.09.036 – year: 2013 ident: 10.1016/j.rse.2021.112845_bb0420 article-title: Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.03.017 – year: 2012 ident: 10.1016/j.rse.2021.112845_bb0875 article-title: Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.05.005 – year: 2014 ident: 10.1016/j.rse.2021.112845_bb0540 article-title: Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2013 ident: 10.1016/j.rse.2021.112845_bb0685 article-title: Model-assisted estimation of change in forest biomass over an 11year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data.” publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.10.008 – volume: 253 start-page: 112165 year: 2021 ident: 10.1016/j.rse.2021.112845_bb0745 article-title: Mapping global forest canopy height through integration of GEDI and Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112165 – volume: 7 start-page: 15030 year: 2017 ident: 10.1016/j.rse.2021.112845_bb0940 article-title: Spatial distribution of carbon stored in forests of the Democratic Republic of Congo publication-title: Sci. Rep. doi: 10.1038/s41598-017-15050-z – volume: 10 start-page: 16721 year: 2020 ident: 10.1016/j.rse.2021.112845_bb0210 article-title: New 3D measurements of large redwood trees for biomass and structure publication-title: Sci. Rep. doi: 10.1038/s41598-020-73733-6 – ident: 10.1016/j.rse.2021.112845_bb0415 doi: 10.5194/bg-9-5125-2012 – year: 2019 ident: 10.1016/j.rse.2021.112845_bb0765 article-title: Upscaling forest biomass from field to satellite measurements: sources of errors and ways to reduce them publication-title: Surv. Geophys. doi: 10.1007/s10712-019-09532-0 – year: 2015 ident: 10.1016/j.rse.2021.112845_bb0385 article-title: Waveform lidar over vegetation: an evaluation of inversion methods for estimating return energy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.04.013 – year: 2018 ident: 10.1016/j.rse.2021.112845_bb0510 article-title: In situ reference datasets from the TropiSAR and AfriSAR campaigns in support of upcoming spaceborne biomass missions publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2018.2851606 – volume: 106 start-page: 7046 year: 2009 ident: 10.1016/j.rse.2021.112845_bb0300 article-title: Extensions and evaluations of a general quantitative theory of forest structure and dynamics publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0812303106 – year: 1997 ident: 10.1016/j.rse.2021.112845_bb0205 article-title: Plant functional types and ecosystem function in relation to global change publication-title: J. Veg. Sci. doi: 10.2307/3237198 – volume: 14 start-page: 2 year: 2019 ident: 10.1016/j.rse.2021.112845_bb0645 article-title: Forest degradation and biomass loss along the Chocó region of Colombia publication-title: Carbon Balance Manag. doi: 10.1186/s13021-019-0117-9 – year: 2017 ident: 10.1016/j.rse.2021.112845_bb0925 – volume: 13 year: 2018 ident: 10.1016/j.rse.2021.112845_bb0330 article-title: Carbon storage potential in degraded forests of Kalimantan, Indonesia publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aad782 – year: 2015 ident: 10.1016/j.rse.2021.112845_bb0620 article-title: Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania publication-title: Carbon Balance Manag. doi: 10.1186/s13021-015-0021-x – year: 2010 ident: 10.1016/j.rse.2021.112845_bb0705 article-title: A Monte Carlo radiative transfer model of satellite waveform LiDAR publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903380664 – volume: 112 start-page: 3079 year: 2008 ident: 10.1016/j.rse.2021.112845_bb0675 article-title: Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.03.004 – volume: 116 start-page: S233 year: 2002 ident: 10.1016/j.rse.2021.112845_bb0825 article-title: Forest inventory and analysis: a national inventory and monitoring program publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(01)00255-X – year: 2017 ident: 10.1016/j.rse.2021.112845_bb0400 article-title: Comparing empirical and semi-empirical approaches to forest biomass modelling in different biomes using airborne laser scanner data publication-title: Forests. doi: 10.3390/f8050170 – year: 2021 ident: 10.1016/j.rse.2021.112845_bb0805 article-title: Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112234 – volume: 23 start-page: 1191 year: 2012 ident: 10.1016/j.rse.2021.112845_bb0130 article-title: Tropical forest biomass estimation and the fallacy of misplaced concreteness publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2012.01471.x – volume: 10 year: 2015 ident: 10.1016/j.rse.2021.112845_bb0375 article-title: Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+ publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/12/123001 – volume: 21 start-page: 104 year: 2006 ident: 10.1016/j.rse.2021.112845_bb0170 article-title: Tropical rainforests and the need for cross-continental comparisons publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2005.12.002 – volume: 6 start-page: 10051 year: 2014 ident: 10.1016/j.rse.2021.112845_bb0605 article-title: Slope estimation from ICESat/GLAS publication-title: Remote Sens. doi: 10.3390/rs61010051 – volume: 233 start-page: 111347 year: 2019 ident: 10.1016/j.rse.2021.112845_bb0530 article-title: Country-wide high-resolution vegetation height mapping with Sentinel-2 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111347 – volume: 20 start-page: 3177 year: 2014 ident: 10.1016/j.rse.2021.112845_bb0125 article-title: Improved allometric models to estimate the aboveground biomass of tropical trees publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12629 – year: 2002 ident: 10.1016/j.rse.2021.112845_bb0435 article-title: Projecting the Future of the U.S. Carbon Sink – volume: 231 start-page: 111262 year: 2019 ident: 10.1016/j.rse.2021.112845_bib951 article-title: Characterizing global forest canopy cover distribution using spaceborne lidar publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2019.111262 – year: 2012 ident: 10.1016/j.rse.2021.112845_bb0935 article-title: Lidar sampling for large-area forest characterization: a review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.02.001 – year: 2020 ident: 10.1016/j.rse.2021.112845_bb0180 article-title: Forest inventory with high-density UAV-Lidar: machine learning approaches for predicting individual tree attributes publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105815 – volume: 242 start-page: 111779 year: 2020 ident: 10.1016/j.rse.2021.112845_bb0270 article-title: Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111779 – year: 2010 ident: 10.1016/j.rse.2021.112845_bb0700 article-title: Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2009JG000936 – year: 2014 ident: 10.1016/j.rse.2021.112845_bb0030 article-title: Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.09.023 – year: 2008 ident: 10.1016/j.rse.2021.112845_bb0080 article-title: Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.06.003 – year: 2010 ident: 10.1016/j.rse.2021.112845_bb0335 article-title: Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2009.01604.x – volume: 8 start-page: 653 year: 2016 ident: 10.1016/j.rse.2021.112845_bb0325 article-title: Airborne lidar estimation of aboveground forest biomass in the absence of field inventory publication-title: Remote Sens. doi: 10.3390/rs8080653 – year: 2007 ident: 10.1016/j.rse.2021.112845_bb0365 article-title: Monitoring and estimating tropical forest carbon stocks: making REDD a reality publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/2/4/045023 |
| SSID | ssj0015871 |
| Score | 2.7396924 |
| Snippet | NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate... NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate... |
| SourceID | swepub osti liege hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112845 |
| SubjectTerms | Aboveground biomass Biodiversity Biodiversity and Ecology Biomass Biomass density Botanics Computers in Earth Sciences data collection Datasets Density Domains Earth and Related Environmental Sciences Ecology, environment Ecosystem dynamics Ecosystems environment Environment models ENVIRONMENTAL SCIENCES Environmental sciences & ecology Fjärranalysteknik Forest Forest biomass forests GEDI Geographics Geology Geovetenskap och relaterad miljövetenskap Global ecosystem dynamic investigation LiDAR Life Sciences Mathematical models Meteorologi och atmosfärsvetenskap Meteorology and Atmospheric Sciences model validation Modeling Modeling performance Modelling Natural Sciences Naturgeografi Naturvetenskap Performance degradation Physical Geography Remote Sensing Sciences de l’environnement & écologie Sciences du vivant Soil Science Strata Stratification Systematics, Phylogenetics and taxonomy Training Transformations (mathematics) Vegetal Biology Waveform Waveforms |
| Title | Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission |
| URI | https://dx.doi.org/10.1016/j.rse.2021.112845 https://www.proquest.com/docview/2639033249 https://www.proquest.com/docview/2636398667 https://hal.inrae.fr/hal-03516285 https://orbi.uliege.be/handle/2268/288263 https://www.osti.gov/servlets/purl/1893116 https://res.slu.se/id/publ/116407 |
| Volume | 270 |
| WOSCitedRecordID | wos000760433300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb5UwFG72Q6MvRqeLuGnQmPgDWaAUKI837rrNbIvRaRZfmhaKuwvhLpfdm_nmv-G_51_iObTcsamLPvgCBEop-T4Op-05Xwl5yvOSySyC7xt-dj4rQumrhGV-rFMaR5JmtJUv_rSb7u_zw8Ps3cLCtMuFmVVpXfOzs-zkv0IN5wBsTJ39B7jnlcIJOAbQYQuww_avgB-o8UxjskYNvuUIw38ar8AwdXC323VvWgUGb3_wYdBFOmSNZ7T_MU_ZaDt7m2ap-qavxNEyhW8NN3dwMKEaFXLiAU-aDttO6FsD_tpr8KEmprqXTtfznAFVm--F2dny3PZXlU3DaWN4vfcbPVo2Nt6_H0O8N6rNqEMboe_tbfTHMqAbPA_mMgNs1hvoG-yI-WhW-gabmqVGfjH-ZhzieGPSoP4pDTE9ihuxykua2iF4aWGYLJJlmsYZGMPlwc7w8O18-inmqVlq0T69mw5vAwMvVf8nh2bxCCNrlyuMfYD__RiQutiL6SvTtt7MwW1yy3ZD3IGhzx2yoOsVsjo8hwkuWrPfrJAbW9oqm6-Q61vtWtBf75KqxzTXMs21THMN01xgmotM-_Hte-Majrlzjrkdx9wLHHOfI8NeuC2_XMuve-Tjm-HB623fLt7h5-DDnvoxGHoqS6mULJgsSxYHOeelTEuW5owpldIw1yX8L-IiSXLKJU9kiGLfsQ7KvIxWyVI9rvV94gYSurE80gmTkoVaqTBIVSm5jlJecKUcEnQIiNwq2-MCK5XoQhiPBYAmEDRhQHPIy_ktJ0bW5arCrINVWL_U-JsCmHfVbU-AAvPqUcd9e7Ar8BxO32Pu8ix0yKuWIWI8USMxo22x9nhafREyFwrqpAkXFLrCSeSQNSQSNgM1nnMMhoN2WD47ZL3jl7AWqRFwVxZE0G_KHPJ4fhnAw5lBWevxtC0DpXiSpA75bHh5od1mKEBY_bEjUU0FvOtJb2JBxNCTyDMpRRDqRLC8pAIazITiMeCvaFhE1CHPflN5U02VnOAOK4XXYEH64Mr3XCM3z63HOlk6nUz1Q3Itn52Omskj-zH_BD29FW0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aboveground+biomass+density+models+for+NASA%E2%80%99s+Global+Ecosystem+Dynamics+Investigation+%28GEDI%29+lidar+mission&rft.jtitle=Remote+sensing+of+environment&rft.au=Duncanson%2C+Laura&rft.au=Kellner%2C+James+R.&rft.au=Armston%2C+John&rft.au=Minor%2C+David+M.&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=0034-4257&rft.volume=270&rft_id=info:doi/10.1016%2Fj.rse.2021.112845&rft.externalDocID=1893116 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |