Out-of-distribution generalization for learning quantum dynamics

Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature communications Ročník 14; číslo 1; s. 3751 - 9
Hlavní autori: Caro, Matthias C., Huang, Hsin-Yuan, Ezzell, Nicholas, Gibbs, Joe, Sornborger, Andrew T., Cincio, Lukasz, Coles, Patrick J., Holmes, Zoë
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 05.07.2023
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2041-1723, 2041-1723
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.