Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming

► We investigated dispatching and relocation decisions of emergency service providers. ► ADP is powerful in solving the underlying stochastic and dynamic optimization problem. ► Average response time can be improved by using more flexible dispatching rules. ► Relocating ambulances proactively improv...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research Ročník 219; číslo 3; s. 611 - 621
Hlavný autor: Schmid, Verena
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 16.06.2012
Elsevier
Elsevier Sequoia S.A
North-Holland Pub. Co
Predmet:
ISSN:0377-2217, 1872-6860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ► We investigated dispatching and relocation decisions of emergency service providers. ► ADP is powerful in solving the underlying stochastic and dynamic optimization problem. ► Average response time can be improved by using more flexible dispatching rules. ► Relocating ambulances proactively improves service quality. ► Essential to take into account time-dependent information. Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests’ site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions.
AbstractList Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests' site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions.
► We investigated dispatching and relocation decisions of emergency service providers. ► ADP is powerful in solving the underlying stochastic and dynamic optimization problem. ► Average response time can be improved by using more flexible dispatching rules. ► Relocating ambulances proactively improves service quality. ► Essential to take into account time-dependent information. Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests’ site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions.
► We investigated dispatching and relocation decisions of emergency service providers. ► ADP is powerful in solving the underlying stochastic and dynamic optimization problem. ► Average response time can be improved by using more flexible dispatching rules. ► Relocating ambulances proactively improves service quality. ► Essential to take into account time-dependent information. Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests’ site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions.
Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests' site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions. [PUBLICATION ABSTRACT]
Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests' site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions.Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests' site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions.
Author Schmid, Verena
AuthorAffiliation Department of Business Administration, University of Vienna, Bruenner Strasse 72, 1210 Vienna, Austria
AuthorAffiliation_xml – name: Department of Business Administration, University of Vienna, Bruenner Strasse 72, 1210 Vienna, Austria
Author_xml – sequence: 1
  givenname: Verena
  surname: Schmid
  fullname: Schmid, Verena
  email: verena.schmid@univie.ac.at
  organization: Department of Business Administration, University of Vienna, Bruenner Strasse 72, 1210 Vienna, Austria
BackLink http://www.econis.eu/PPNSET?PPN=715021362$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25660437$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/25540476$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1rGzEQFSWlcdz-gR7apRDoZV1Jq481hEIJ_YJAD23PQqsd2zK7kivtmubfZ7Z2WjeHnIRm3nu8mXkX5CzEAIS8ZHTBKFPvtgvYxrTglDEsLKionpAZqzUvVa3oGZnRSuuSc6bPyUXOW0opk0w-I-dcSkGFVjOy-h67vQ_rYthA0d4G23tX2L4ZOxscFAm66OzgYyhsaIvW550d3GYi7FJsOuiLMU8_u8P_b9_b4Z8MVtbJ9j32n5OnK9tleHF85-Tnp48_rr-UN98-f73-cFM6VVVD2VJuZc1VI2QrrIOlVlVTy0ZqJahkQgoNDWMWVKuWUnEhVOUoXXFOQVDg1Zy8P-juxqaH1kEYku3MLqGzdGui9eb_TvAbs457IzjuTAoUeHsUSPHXCHkwvc8OOlwHxDEbVsulQltod07ePIBu45gCjmeWHLWoppPeq1NDf53cXwABl0eAzc52q4R79_kEpxTKaMS9PuDAxXAC0ExSzio1zV4fEC7FnBOsjPPDn9vhpL4zjJopNmZrptiYKTZTDdWRyh9Q7-UfJV0dHeFB9x6Syc4Dpqb1Cdxg2ugfo98BBybbFA
CODEN EJORDT
CitedBy_id crossref_primary_10_1016_j_compbiomed_2016_11_016
crossref_primary_10_1080_19488300_2015_1094758
crossref_primary_10_1177_0361198118781645
crossref_primary_10_1007_s12351_019_00458_4
crossref_primary_10_1016_j_trpro_2017_03_015
crossref_primary_10_1287_ijoc_2015_0645
crossref_primary_10_1016_j_elerap_2021_101065
crossref_primary_10_1016_j_eswa_2023_119751
crossref_primary_10_1007_s10729_015_9341_3
crossref_primary_10_1080_01605682_2023_2168570
crossref_primary_10_3390_su141610247
crossref_primary_10_1016_j_ejor_2021_11_051
crossref_primary_10_1016_j_ejor_2015_05_040
crossref_primary_10_1016_j_cie_2020_106327
crossref_primary_10_1109_TASE_2018_2859349
crossref_primary_10_1038_s41598_023_33831_7
crossref_primary_10_1016_j_ins_2022_06_052
crossref_primary_10_1007_s10729_025_09699_6
crossref_primary_10_1007_s11135_020_01064_9
crossref_primary_10_1016_j_ins_2021_08_062
crossref_primary_10_1007_s00779_019_01212_5
crossref_primary_10_1016_j_ejor_2020_02_014
crossref_primary_10_1016_j_seps_2023_101652
crossref_primary_10_1177_03611981221082574
crossref_primary_10_1080_24725854_2018_1446105
crossref_primary_10_1016_j_tre_2014_06_005
crossref_primary_10_33461_uybisbbd_929432
crossref_primary_10_1109_TMC_2025_3569757
crossref_primary_10_1287_msom_2015_0555
crossref_primary_10_1155_2019_6031789
crossref_primary_10_1109_TITS_2019_2934423
crossref_primary_10_1016_j_ejor_2022_06_031
crossref_primary_10_1016_j_eswa_2022_118773
crossref_primary_10_1057_hs_2012_18
crossref_primary_10_1016_j_ejor_2020_03_041
crossref_primary_10_1177_10591478251369598
crossref_primary_10_1287_inte_2017_0936
crossref_primary_10_1007_s12652_020_01889_0
crossref_primary_10_1002_nav_21831
crossref_primary_10_3390_app14177433
crossref_primary_10_1016_j_ejor_2016_04_017
crossref_primary_10_1287_ijoc_2019_0930
crossref_primary_10_1007_s12652_021_02918_2
crossref_primary_10_1016_j_cor_2020_104974
crossref_primary_10_1080_23249935_2024_2444327
crossref_primary_10_1016_j_cor_2024_106639
crossref_primary_10_1016_j_ejor_2020_08_004
crossref_primary_10_1080_01605682_2022_2139646
crossref_primary_10_1016_j_orhc_2017_03_001
crossref_primary_10_1016_j_ejor_2024_05_049
crossref_primary_10_1016_j_omega_2017_08_001
crossref_primary_10_1016_j_cor_2016_05_018
crossref_primary_10_1080_01605682_2020_1718020
crossref_primary_10_1016_j_trc_2019_12_010
crossref_primary_10_3389_frobt_2018_00031
crossref_primary_10_1016_j_trb_2016_05_009
crossref_primary_10_1080_00207179_2013_788215
crossref_primary_10_1177_00375497211006175
crossref_primary_10_1287_msom_2022_0166
crossref_primary_10_1016_j_ejor_2016_08_061
crossref_primary_10_1016_j_trpro_2017_05_134
crossref_primary_10_1287_msom_2017_0649
crossref_primary_10_1287_trsc_2019_0947
crossref_primary_10_1080_00207543_2021_1933644
crossref_primary_10_1111_poms_13190
crossref_primary_10_1016_j_orhc_2016_12_001
crossref_primary_10_1109_TKDE_2019_2914206
crossref_primary_10_1007_s10479_017_2569_1
crossref_primary_10_3390_pr10122643
crossref_primary_10_1080_20476965_2024_2444954
crossref_primary_10_3390_math12010028
crossref_primary_10_1080_13675567_2017_1361390
crossref_primary_10_3390_aerospace8100306
crossref_primary_10_1016_j_cie_2014_04_020
crossref_primary_10_1016_j_ejor_2012_11_030
crossref_primary_10_1016_j_cor_2019_104829
crossref_primary_10_1016_j_ejor_2018_02_055
crossref_primary_10_1007_s10696_017_9286_6
crossref_primary_10_1016_j_aci_2017_04_003
crossref_primary_10_1007_s10479_024_06061_x
crossref_primary_10_1007_s10729_021_09576_y
crossref_primary_10_1016_j_ejor_2012_03_049
crossref_primary_10_1016_j_omega_2015_05_007
crossref_primary_10_1016_j_ress_2025_111133
crossref_primary_10_3390_futuretransp1030027
crossref_primary_10_1007_s11590_015_0929_9
crossref_primary_10_1016_j_procs_2025_08_107
crossref_primary_10_1080_00207543_2015_1037405
crossref_primary_10_1287_ijoc_2015_0687
crossref_primary_10_1016_j_cor_2016_09_016
crossref_primary_10_1016_j_cie_2025_111044
crossref_primary_10_1016_j_omega_2018_12_009
crossref_primary_10_22581_muet1982_1904_15
crossref_primary_10_1017_S0269964818000402
crossref_primary_10_1080_00207543_2020_1735663
crossref_primary_10_1111_jonm_13547
crossref_primary_10_1134_S1990478921020058
crossref_primary_10_1016_j_cie_2023_109250
crossref_primary_10_1080_00207543_2015_1043403
crossref_primary_10_1007_s10696_015_9219_1
crossref_primary_10_1016_j_cie_2016_01_023
crossref_primary_10_1016_j_ijpe_2015_02_015
crossref_primary_10_1038_s41598_025_95048_0
crossref_primary_10_1109_TR_2019_2916898
crossref_primary_10_1016_j_trc_2018_05_003
crossref_primary_10_1016_j_seps_2019_100747
crossref_primary_10_1007_s10729_014_9271_5
crossref_primary_10_1016_j_seps_2015_09_002
crossref_primary_10_1016_j_tre_2021_102358
crossref_primary_10_1016_j_sbspro_2013_08_078
crossref_primary_10_1109_TITS_2017_2740438
crossref_primary_10_1016_j_cie_2021_107859
crossref_primary_10_1109_TSM_2023_3237917
crossref_primary_10_1007_s12293_016_0210_5
crossref_primary_10_1016_j_eswa_2022_116716
crossref_primary_10_1155_2014_239868
crossref_primary_10_1016_j_trc_2019_09_016
crossref_primary_10_1016_j_cor_2016_07_015
crossref_primary_10_1007_s11067_023_09589_w
crossref_primary_10_1016_j_ejor_2015_12_022
crossref_primary_10_1016_j_cie_2014_05_019
crossref_primary_10_1016_j_cie_2014_03_008
crossref_primary_10_3390_su13063194
crossref_primary_10_1016_j_ejor_2019_11_056
crossref_primary_10_1057_hs_2012_27
crossref_primary_10_1080_23249935_2022_2046203
crossref_primary_10_1016_j_cor_2025_107208
crossref_primary_10_1016_j_future_2019_07_066
crossref_primary_10_1590_0104_530x2452_16
crossref_primary_10_1016_j_ress_2022_109029
crossref_primary_10_1016_j_cor_2022_106071
crossref_primary_10_1016_j_ejor_2016_01_004
crossref_primary_10_1016_j_cor_2014_11_006
crossref_primary_10_1016_j_ejor_2016_01_006
crossref_primary_10_1016_j_seps_2025_102279
crossref_primary_10_1016_j_ejor_2021_07_014
crossref_primary_10_1016_j_trb_2014_12_011
crossref_primary_10_1287_trsc_2024_0827
crossref_primary_10_17230_ingciencia_12_23_9
crossref_primary_10_3389_ffutr_2025_1540502
crossref_primary_10_1057_s41306_017_0023_x
crossref_primary_10_3390_ijgi11020109
crossref_primary_10_1007_s10479_018_2918_8
crossref_primary_10_1109_ACCESS_2020_2969519
crossref_primary_10_1016_j_ejor_2019_08_003
crossref_primary_10_1016_j_eswa_2024_123665
crossref_primary_10_1016_j_omega_2021_102448
crossref_primary_10_1016_j_trb_2021_12_016
crossref_primary_10_1145_3314402
crossref_primary_10_1007_s10288_023_00539_3
crossref_primary_10_1007_s10696_020_09402_7
crossref_primary_10_1016_j_compbiomed_2019_103567
crossref_primary_10_1016_j_ijmedinf_2017_06_005
crossref_primary_10_1016_j_seps_2017_11_001
crossref_primary_10_1177_1687814017698110
crossref_primary_10_2139_ssrn_4386239
crossref_primary_10_1287_trsc_2020_1007
crossref_primary_10_3390_ijgi9050336
crossref_primary_10_1007_s10729_014_9297_8
crossref_primary_10_1016_j_ejor_2019_04_029
crossref_primary_10_1007_s10479_022_04560_3
crossref_primary_10_1057_jors_2014_83
crossref_primary_10_2478_pcr_2023_0003
crossref_primary_10_1016_j_omega_2015_06_001
crossref_primary_10_1016_j_trd_2018_03_002
crossref_primary_10_1016_j_ejor_2021_09_019
crossref_primary_10_1016_j_ejor_2020_11_007
Cites_doi 10.1287/ijoc.1090.0345
10.1016/j.ejor.2010.06.033
10.1287/trsc.1080.0238
10.1016/S0167-8191(01)00103-X
10.1016/j.cor.2006.04.003
10.1109/WSC.2009.5429196
10.1287/trsc.17.1.48
10.1023/A:1013111608059
10.1287/opre.19.6.1363
10.1287/trsc.36.1.40.572
10.1016/S0966-8349(97)00015-6
10.1057/palgrave.jors.2601991
10.1287/ijoc.1090.0351
10.1287/ijoc.1090.0349
10.1287/trsc.36.1.21.570
10.1016/0377-2217(94)90297-6
10.1007/BF01942293
10.1016/S0377-2217(02)00364-8
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Jun 16, 2012
2011 Elsevier B.V. All rights reserved. 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Jun 16, 2012
– notice: 2011 Elsevier B.V. All rights reserved. 2011 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
OQ6
IQODW
NPM
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1016/j.ejor.2011.10.043
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
ECONIS
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed


Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1872-6860
EndPage 621
ExternalDocumentID PMC4268654
2603795411
25540476
25660437
715021362
10_1016_j_ejor_2011_10_043
S0377221711009830
Genre Journal Article
Feature
GeographicLocations Austria
GeographicLocations_xml – name: Austria
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
R2-
SEW
VH1
WUQ
~HD
AAYOK
OQ6
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
NPM
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c633t-d02a5826b45d4ace9763b85b57640514547eb11ae6d695624463c00f220e40e23
ISICitedReferencesCount 208
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302199300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Tue Sep 30 16:59:21 EDT 2025
Sat Sep 27 18:08:22 EDT 2025
Mon Jul 14 07:28:47 EDT 2025
Thu Apr 03 07:07:59 EDT 2025
Mon Jul 21 09:15:00 EDT 2025
Sat Mar 08 16:22:13 EST 2025
Tue Nov 18 21:24:21 EST 2025
Sat Nov 29 01:41:04 EST 2025
Fri Feb 23 02:32:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Ambulance location
Approximate dynamic programming
Emergency vehicles
Stochastic optimization
OR in health services
Dispatching problem
Operations research
Medical transport
Transit time
Modeling
Location problem
Optimization
Time dependence
Emergency department
Ambulance
Dynamic programming
Localization
Mathematical programming
Travel time
Hospital management
Empirical method
Routing
Real time
Stochastic programming
Response time
Time average
Emergency
Service Proposal
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Open Access under CC BY-NC-ND 3.0 license
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c633t-d02a5826b45d4ace9763b85b57640514547eb11ae6d695624463c00f220e40e23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4268654
PMID 25540476
PQID 926540704
PQPubID 45678
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268654
proquest_miscellaneous_1859697663
proquest_journals_926540704
pubmed_primary_25540476
pascalfrancis_primary_25660437
econis_primary_715021362
crossref_citationtrail_10_1016_j_ejor_2011_10_043
crossref_primary_10_1016_j_ejor_2011_10_043
elsevier_sciencedirect_doi_10_1016_j_ejor_2011_10_043
PublicationCentury 2000
PublicationDate 2012-06-16
PublicationDateYYYYMMDD 2012-06-16
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle European journal of operational research
PublicationTitleAlternate Eur J Oper Res
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
North-Holland Pub. Co
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
– name: North-Holland Pub. Co
References Thirion, A., 2006. ModFles de localisation et de rTallocation d’ambulances: Application aux communes en provinces de Namur et Brabant Wallon. Ph.D. thesis, FacultTs Universitaires Notre-Dame de la Paix, Namur, Belgium.
Powell, Topaloglu (b0080) 2005
Simão, Day, George, Gifford, Nienow, Powell (b0110) 2009; 43
Brotcorne, Laporte, Semet (b0010) 2003; 147
Daskin (b0020) 1983; 17
Powell (b0070) 2007
Powell, Shapiro, Simao (b0085) 2001; 104
Repede, Bernardo (b0095) 1994; 75
Doerner, Gutjahr, Hartl, Karall, Reimann (b0025) 2005; 13
Laporte, Louveaux, Semet, Thirion (b0055) 2009
Rajagopalan, Saydam, Xiao (b0090) 2008; 35
Gendreau, Laporte, Semet (b0040) 2006; 57
Godfrey, Powell (b0050) 2002; 36
Gendreau, Laporte, Semet (b0035) 2001; 27
Maxwell, Restrepo, Henderson, Topaloglu (b0065) 2010; 22
Ruszczyński (b0100) 2010; 22
Godfrey, Powell (b0045) 2002; 36
Toregas, Swain, ReVelle, Bergman (b0125) 1971; 19
Sutton, Barto (b0115) 1998
Gendreau, Laporte, Semet (b0030) 1997; 5
Bertsekas, Tsitsiklis (b0005) 1996
Powell (b0075) 2010; 22
Schmid, Doerner (b0105) 2010; 207
Church, ReVelle (b0015) 1974; 32
Maxwell, M.S., Henderson, S.G., Topaloglu, H., 2009. Ambulance redeployment: An approximate dynamic programming approach. In: Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A., Ingalls, R.G. (Ed.), Proceedings of the 2009 Winter Simulation Conference.
Maxwell (10.1016/j.ejor.2011.10.043_b0065) 2010; 22
Gendreau (10.1016/j.ejor.2011.10.043_b0040) 2006; 57
Brotcorne (10.1016/j.ejor.2011.10.043_b0010) 2003; 147
Powell (10.1016/j.ejor.2011.10.043_b0075) 2010; 22
Powell (10.1016/j.ejor.2011.10.043_b0070) 2007
Toregas (10.1016/j.ejor.2011.10.043_b0125) 1971; 19
Powell (10.1016/j.ejor.2011.10.043_b0080) 2005
Gendreau (10.1016/j.ejor.2011.10.043_b0035) 2001; 27
Sutton (10.1016/j.ejor.2011.10.043_b0115) 1998
Bertsekas (10.1016/j.ejor.2011.10.043_b0005) 1996
Daskin (10.1016/j.ejor.2011.10.043_b0020) 1983; 17
Simão (10.1016/j.ejor.2011.10.043_b0110) 2009; 43
Church (10.1016/j.ejor.2011.10.043_b0015) 1974; 32
Laporte (10.1016/j.ejor.2011.10.043_b0055) 2009
Repede (10.1016/j.ejor.2011.10.043_b0095) 1994; 75
10.1016/j.ejor.2011.10.043_b0120
Gendreau (10.1016/j.ejor.2011.10.043_b0030) 1997; 5
Rajagopalan (10.1016/j.ejor.2011.10.043_b0090) 2008; 35
10.1016/j.ejor.2011.10.043_b0060
Godfrey (10.1016/j.ejor.2011.10.043_b0045) 2002; 36
Godfrey (10.1016/j.ejor.2011.10.043_b0050) 2002; 36
Powell (10.1016/j.ejor.2011.10.043_b0085) 2001; 104
Schmid (10.1016/j.ejor.2011.10.043_b0105) 2010; 207
Ruszczyński (10.1016/j.ejor.2011.10.043_b0100) 2010; 22
Doerner (10.1016/j.ejor.2011.10.043_b0025) 2005; 13
21151327 - Eur J Oper Res. 2010 Dec 16;207(3):1293-1303
References_xml – volume: 19
  start-page: 1363
  year: 1971
  end-page: 1373
  ident: b0125
  article-title: The location of emergency service facilities
  publication-title: Operations Research
– volume: 32
  start-page: 101
  year: 1974
  end-page: 118
  ident: b0015
  article-title: The maximal covering location problem
  publication-title: Papers in Regional Science
– year: 1996
  ident: b0005
  article-title: Neuro-Dynamic Programming
– volume: 5
  start-page: 75
  year: 1997
  end-page: 88
  ident: b0030
  article-title: Solving an ambulance location model by tabu search
  publication-title: Location Science
– volume: 57
  start-page: 22
  year: 2006
  end-page: 28
  ident: b0040
  article-title: The maximal expected coverage relocation problem for emergency vehicles
  publication-title: Journal of the Operational Research Society
– volume: 147
  start-page: 451
  year: 2003
  end-page: 463
  ident: b0010
  article-title: Ambulance location and relocation models
  publication-title: European Journal of Operational Research
– volume: 13
  start-page: 325
  year: 2005
  end-page: 340
  ident: b0025
  article-title: Heuristic solution of an extended double-coverage ambulance location problem for Austria
  publication-title: Central European Journal of Operations Research
– volume: 36
  start-page: 40
  year: 2002
  end-page: 54
  ident: b0050
  article-title: An adaptive dynamic programming algorithm for dynamic fleet management, II: Multiperiod travel times
  publication-title: Transportation Science
– volume: 43
  start-page: 178
  year: 2009
  end-page: 197
  ident: b0110
  article-title: An approximate dynamic programming algorithm for large-scale fleet management: A case application
  publication-title: Transportation Science
– start-page: 185
  year: 2005
  end-page: 215
  ident: b0080
  article-title: Fleet management
  publication-title: Applications of Stochastic Programming
– reference: Maxwell, M.S., Henderson, S.G., Topaloglu, H., 2009. Ambulance redeployment: An approximate dynamic programming approach. In: Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A., Ingalls, R.G. (Ed.), Proceedings of the 2009 Winter Simulation Conference.
– volume: 22
  start-page: 266
  year: 2010
  end-page: 281
  ident: b0065
  article-title: Approximate dynamic programming for ambulance redeployment
  publication-title: INFORMS Journal on Computing
– volume: 75
  start-page: 567
  year: 1994
  end-page: 581
  ident: b0095
  article-title: Developing and validating a decision support system for location emergency medical vehicles in louisville, kentucky
  publication-title: European Journal of Operational Research
– volume: 22
  start-page: 20
  year: 2010
  end-page: 22
  ident: b0100
  article-title: Post-decision states and separable approximations are powerful tools of approximate dynamic programming
  publication-title: INFORMS Journal on Computing
– year: 1998
  ident: b0115
  article-title: Reinforcement Learning: An Introduction
– volume: 104
  start-page: 231
  year: 2001
  end-page: 279
  ident: b0085
  article-title: A representational paradigm for dynamic resource transformation problems
  publication-title: Annals of Operations Research
– volume: 207
  start-page: 1293
  year: 2010
  end-page: 1303
  ident: b0105
  article-title: Ambulance location and relocation problems with time-dependent travel times
  publication-title: European Journal Of Operational Research
– start-page: 235
  year: 2009
  end-page: 249
  ident: b0055
  article-title: Applications of the double standard model for ambulance location
  publication-title: Innovations in Distribution Logistics
– volume: 22
  start-page: 2
  year: 2010
  end-page: 17
  ident: b0075
  article-title: Merging AI and OR to solve high-dimensional stochastic optimization problems using approximate dynamic programming
  publication-title: INFORMS Journal on Computing
– volume: 17
  start-page: 48
  year: 1983
  end-page: 70
  ident: b0020
  article-title: A maximum expected covering location model: Formulation, properties and heuristic solution
  publication-title: Transportation Science
– volume: 36
  start-page: 21
  year: 2002
  end-page: 39
  ident: b0045
  article-title: An adaptive dynamic programming algorithm for dynamic fleet management, I: Single period travel times
  publication-title: Transportation Science
– year: 2007
  ident: b0070
  article-title: Approximate Dynamic Programming: Solving the Curses of Dimensionality
– volume: 27
  start-page: 1641
  year: 2001
  end-page: 1653
  ident: b0035
  article-title: A dynamic model and parallel tabu search heuristic for real-time ambulance relocation
  publication-title: Parallel Computing
– volume: 35
  start-page: 814
  year: 2008
  end-page: 826
  ident: b0090
  article-title: A multiperiod set covering location model for dynamic redeployment of ambulances
  publication-title: Computers and Operations Research
– reference: Thirion, A., 2006. ModFles de localisation et de rTallocation d’ambulances: Application aux communes en provinces de Namur et Brabant Wallon. Ph.D. thesis, FacultTs Universitaires Notre-Dame de la Paix, Namur, Belgium.
– start-page: 185
  year: 2005
  ident: 10.1016/j.ejor.2011.10.043_b0080
  article-title: Fleet management
– volume: 22
  start-page: 266
  issue: 2
  year: 2010
  ident: 10.1016/j.ejor.2011.10.043_b0065
  article-title: Approximate dynamic programming for ambulance redeployment
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1090.0345
– volume: 207
  start-page: 1293
  issue: 3
  year: 2010
  ident: 10.1016/j.ejor.2011.10.043_b0105
  article-title: Ambulance location and relocation problems with time-dependent travel times
  publication-title: European Journal Of Operational Research
  doi: 10.1016/j.ejor.2010.06.033
– volume: 43
  start-page: 178
  issue: 2
  year: 2009
  ident: 10.1016/j.ejor.2011.10.043_b0110
  article-title: An approximate dynamic programming algorithm for large-scale fleet management: A case application
  publication-title: Transportation Science
  doi: 10.1287/trsc.1080.0238
– volume: 27
  start-page: 1641
  issue: 12
  year: 2001
  ident: 10.1016/j.ejor.2011.10.043_b0035
  article-title: A dynamic model and parallel tabu search heuristic for real-time ambulance relocation
  publication-title: Parallel Computing
  doi: 10.1016/S0167-8191(01)00103-X
– volume: 35
  start-page: 814
  issue: 3
  year: 2008
  ident: 10.1016/j.ejor.2011.10.043_b0090
  article-title: A multiperiod set covering location model for dynamic redeployment of ambulances
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2006.04.003
– ident: 10.1016/j.ejor.2011.10.043_b0060
  doi: 10.1109/WSC.2009.5429196
– volume: 13
  start-page: 325
  issue: 4
  year: 2005
  ident: 10.1016/j.ejor.2011.10.043_b0025
  article-title: Heuristic solution of an extended double-coverage ambulance location problem for Austria
  publication-title: Central European Journal of Operations Research
– ident: 10.1016/j.ejor.2011.10.043_b0120
– start-page: 235
  year: 2009
  ident: 10.1016/j.ejor.2011.10.043_b0055
  article-title: Applications of the double standard model for ambulance location
– volume: 17
  start-page: 48
  issue: 1
  year: 1983
  ident: 10.1016/j.ejor.2011.10.043_b0020
  article-title: A maximum expected covering location model: Formulation, properties and heuristic solution
  publication-title: Transportation Science
  doi: 10.1287/trsc.17.1.48
– volume: 104
  start-page: 231
  year: 2001
  ident: 10.1016/j.ejor.2011.10.043_b0085
  article-title: A representational paradigm for dynamic resource transformation problems
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1013111608059
– volume: 19
  start-page: 1363
  issue: 6
  year: 1971
  ident: 10.1016/j.ejor.2011.10.043_b0125
  article-title: The location of emergency service facilities
  publication-title: Operations Research
  doi: 10.1287/opre.19.6.1363
– volume: 36
  start-page: 40
  year: 2002
  ident: 10.1016/j.ejor.2011.10.043_b0050
  article-title: An adaptive dynamic programming algorithm for dynamic fleet management, II: Multiperiod travel times
  publication-title: Transportation Science
  doi: 10.1287/trsc.36.1.40.572
– volume: 5
  start-page: 75
  issue: 2
  year: 1997
  ident: 10.1016/j.ejor.2011.10.043_b0030
  article-title: Solving an ambulance location model by tabu search
  publication-title: Location Science
  doi: 10.1016/S0966-8349(97)00015-6
– year: 2007
  ident: 10.1016/j.ejor.2011.10.043_b0070
– volume: 57
  start-page: 22
  year: 2006
  ident: 10.1016/j.ejor.2011.10.043_b0040
  article-title: The maximal expected coverage relocation problem for emergency vehicles
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2601991
– volume: 22
  start-page: 20
  issue: 1
  year: 2010
  ident: 10.1016/j.ejor.2011.10.043_b0100
  article-title: Post-decision states and separable approximations are powerful tools of approximate dynamic programming
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1090.0351
– volume: 22
  start-page: 2
  issue: 1
  year: 2010
  ident: 10.1016/j.ejor.2011.10.043_b0075
  article-title: Merging AI and OR to solve high-dimensional stochastic optimization problems using approximate dynamic programming
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1090.0349
– year: 1996
  ident: 10.1016/j.ejor.2011.10.043_b0005
– volume: 36
  start-page: 21
  year: 2002
  ident: 10.1016/j.ejor.2011.10.043_b0045
  article-title: An adaptive dynamic programming algorithm for dynamic fleet management, I: Single period travel times
  publication-title: Transportation Science
  doi: 10.1287/trsc.36.1.21.570
– volume: 75
  start-page: 567
  issue: 3
  year: 1994
  ident: 10.1016/j.ejor.2011.10.043_b0095
  article-title: Developing and validating a decision support system for location emergency medical vehicles in louisville, kentucky
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(94)90297-6
– volume: 32
  start-page: 101
  issue: 1
  year: 1974
  ident: 10.1016/j.ejor.2011.10.043_b0015
  article-title: The maximal covering location problem
  publication-title: Papers in Regional Science
  doi: 10.1007/BF01942293
– volume: 147
  start-page: 451
  issue: 3
  year: 2003
  ident: 10.1016/j.ejor.2011.10.043_b0010
  article-title: Ambulance location and relocation models
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(02)00364-8
– year: 1998
  ident: 10.1016/j.ejor.2011.10.043_b0115
– reference: 21151327 - Eur J Oper Res. 2010 Dec 16;207(3):1293-1303
SSID ssj0001515
Score 2.498848
Snippet ► We investigated dispatching and relocation decisions of emergency service providers. ► ADP is powerful in solving the underlying stochastic and dynamic...
Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
econis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 611
SubjectTerms Ambulance location
Ambulance services
Applied sciences
Approximate dynamic programming
Approximation
Biological and medical sciences
Dynamic programming
Economy. Management
Emergency vehicles
Exact sciences and technology
Health and social institutions
Mathematical programming
Medical sciences
Operational research and scientific management
Operational research. Management science
Optimization algorithms
OR in health services
Public health. Hygiene
Public health. Hygiene-occupational medicine
Stochastic optimization
Studies
Title Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming
URI https://dx.doi.org/10.1016/j.ejor.2011.10.043
http://www.econis.eu/PPNSET?PPN=715021362
https://www.ncbi.nlm.nih.gov/pubmed/25540476
https://www.proquest.com/docview/926540704
https://www.proquest.com/docview/1859697663
https://pubmed.ncbi.nlm.nih.gov/PMC4268654
Volume 219
WOSCitedRecordID wos000302199300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Za9tAEB4aJ5SW0sM9oqY1W-ibUZB17EqPoaS0pYRC0uI3oWNFZGzZSHbwz--s9rDkpqF56IswK2kkaz7NpTkAPuaZaH2b57aTTqiNoCjsxI8cu6AIJ3TFwjRoC4W_s4uLcDqNfqhc1aYdJ8CqKtxuo9V_ZTWuIbNF6ew92G2I4gL-RqbjFtmO239i_OVyfqNroHI5b36cLNLNvC0OqLnQXmudhJyXKFHWMp9SzZYZb9rwQdtsfFuiQbsjo5K5Flrd3RbRV9YtLtQ6zqgaCpnA82V2vShbZP0SxYZJN_IgUjioLQsjdcUVY7brytpLLU21BCy73nYrG6mSqlLNUlkY_YcEl8GE2SmfLWvZYVUk38lWTv122XtqzCQX6ry1WSxoxIIGLsRI4wAOEZhROIDDs6_n029GZQurrv3cpP6Qqq6SiYD7d9KzYI5E2KJseqbMk1XS4AtWyMkot7ku-xm4HZPm6jk8Vb4IOZMYegEPeDWEh7oUYgjP9MgPojTAEB53-le-hEJhjSDWiAIJMVgjO6wRxBrpYI0orJEWa6SDNUOmg7VX8PPz-dWnL7Ya3GFn1PPWdu64SYB-a-oHuZ9kHE1eLw2DFH1bX_TbD3yGJsIk4TSn6J-jhUm9zHEK13W473DXew2DalnxYyCeV2SpVzDuZ65PizCMCpZlKHecInR44Fgw0cyIM9XVXgxXmcd_h4EFY3POSvZ0ufPoY8ljcyxDJ8qdoOVnQaC5HiuDVRqiMaL5TpKjHkQMZfQ_qGg2ZsGJxkysXt0mjlwqumU6vgUfzF5UBuILX1Lx5aaJ0fiOKD5tipd4IxHWoY1n-4xawHrYMweIRvP9PVV53TacRys-xGu_vddzO4FHO6HxDgbresPfw1F2sy6begQHbBqO1Hv4G0z3-WE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+the+dynamic+ambulance+relocation+and+dispatching+problem+using+approximate+dynamic+programming&rft.jtitle=European+journal+of+operational+research&rft.au=Schmid%2C+Verena&rft.date=2012-06-16&rft.issn=0377-2217&rft.volume=219&rft.issue=3&rft.spage=611&rft.epage=621&rft_id=info:doi/10.1016%2Fj.ejor.2011.10.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2011_10_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon