Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming
► We investigated dispatching and relocation decisions of emergency service providers. ► ADP is powerful in solving the underlying stochastic and dynamic optimization problem. ► Average response time can be improved by using more flexible dispatching rules. ► Relocating ambulances proactively improv...
Uložené v:
| Vydané v: | European journal of operational research Ročník 219; číslo 3; s. 611 - 621 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
16.06.2012
Elsevier Elsevier Sequoia S.A North-Holland Pub. Co |
| Predmet: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | ► We investigated dispatching and relocation decisions of emergency service providers. ► ADP is powerful in solving the underlying stochastic and dynamic optimization problem. ► Average response time can be improved by using more flexible dispatching rules. ► Relocating ambulances proactively improves service quality. ► Essential to take into account time-dependent information.
Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests’ site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions. |
|---|---|
| AbstractList | Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests' site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions. ► We investigated dispatching and relocation decisions of emergency service providers. ► ADP is powerful in solving the underlying stochastic and dynamic optimization problem. ► Average response time can be improved by using more flexible dispatching rules. ► Relocating ambulances proactively improves service quality. ► Essential to take into account time-dependent information. Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests’ site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions. ► We investigated dispatching and relocation decisions of emergency service providers. ► ADP is powerful in solving the underlying stochastic and dynamic optimization problem. ► Average response time can be improved by using more flexible dispatching rules. ► Relocating ambulances proactively improves service quality. ► Essential to take into account time-dependent information. Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests’ site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions. Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests' site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions. [PUBLICATION ABSTRACT] Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests' site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions.Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests' site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions. |
| Author | Schmid, Verena |
| AuthorAffiliation | Department of Business Administration, University of Vienna, Bruenner Strasse 72, 1210 Vienna, Austria |
| AuthorAffiliation_xml | – name: Department of Business Administration, University of Vienna, Bruenner Strasse 72, 1210 Vienna, Austria |
| Author_xml | – sequence: 1 givenname: Verena surname: Schmid fullname: Schmid, Verena email: verena.schmid@univie.ac.at organization: Department of Business Administration, University of Vienna, Bruenner Strasse 72, 1210 Vienna, Austria |
| BackLink | http://www.econis.eu/PPNSET?PPN=715021362$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25660437$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/25540476$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1rGzEQFSWlcdz-gR7apRDoZV1Jq481hEIJ_YJAD23PQqsd2zK7kivtmubfZ7Z2WjeHnIRm3nu8mXkX5CzEAIS8ZHTBKFPvtgvYxrTglDEsLKionpAZqzUvVa3oGZnRSuuSc6bPyUXOW0opk0w-I-dcSkGFVjOy-h67vQ_rYthA0d4G23tX2L4ZOxscFAm66OzgYyhsaIvW550d3GYi7FJsOuiLMU8_u8P_b9_b4Z8MVtbJ9j32n5OnK9tleHF85-Tnp48_rr-UN98-f73-cFM6VVVD2VJuZc1VI2QrrIOlVlVTy0ZqJahkQgoNDWMWVKuWUnEhVOUoXXFOQVDg1Zy8P-juxqaH1kEYku3MLqGzdGui9eb_TvAbs457IzjuTAoUeHsUSPHXCHkwvc8OOlwHxDEbVsulQltod07ePIBu45gCjmeWHLWoppPeq1NDf53cXwABl0eAzc52q4R79_kEpxTKaMS9PuDAxXAC0ExSzio1zV4fEC7FnBOsjPPDn9vhpL4zjJopNmZrptiYKTZTDdWRyh9Q7-UfJV0dHeFB9x6Syc4Dpqb1Cdxg2ugfo98BBybbFA |
| CODEN | EJORDT |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2016_11_016 crossref_primary_10_1080_19488300_2015_1094758 crossref_primary_10_1177_0361198118781645 crossref_primary_10_1007_s12351_019_00458_4 crossref_primary_10_1016_j_trpro_2017_03_015 crossref_primary_10_1287_ijoc_2015_0645 crossref_primary_10_1016_j_elerap_2021_101065 crossref_primary_10_1016_j_eswa_2023_119751 crossref_primary_10_1007_s10729_015_9341_3 crossref_primary_10_1080_01605682_2023_2168570 crossref_primary_10_3390_su141610247 crossref_primary_10_1016_j_ejor_2021_11_051 crossref_primary_10_1016_j_ejor_2015_05_040 crossref_primary_10_1016_j_cie_2020_106327 crossref_primary_10_1109_TASE_2018_2859349 crossref_primary_10_1038_s41598_023_33831_7 crossref_primary_10_1016_j_ins_2022_06_052 crossref_primary_10_1007_s10729_025_09699_6 crossref_primary_10_1007_s11135_020_01064_9 crossref_primary_10_1016_j_ins_2021_08_062 crossref_primary_10_1007_s00779_019_01212_5 crossref_primary_10_1016_j_ejor_2020_02_014 crossref_primary_10_1016_j_seps_2023_101652 crossref_primary_10_1177_03611981221082574 crossref_primary_10_1080_24725854_2018_1446105 crossref_primary_10_1016_j_tre_2014_06_005 crossref_primary_10_33461_uybisbbd_929432 crossref_primary_10_1109_TMC_2025_3569757 crossref_primary_10_1287_msom_2015_0555 crossref_primary_10_1155_2019_6031789 crossref_primary_10_1109_TITS_2019_2934423 crossref_primary_10_1016_j_ejor_2022_06_031 crossref_primary_10_1016_j_eswa_2022_118773 crossref_primary_10_1057_hs_2012_18 crossref_primary_10_1016_j_ejor_2020_03_041 crossref_primary_10_1177_10591478251369598 crossref_primary_10_1287_inte_2017_0936 crossref_primary_10_1007_s12652_020_01889_0 crossref_primary_10_1002_nav_21831 crossref_primary_10_3390_app14177433 crossref_primary_10_1016_j_ejor_2016_04_017 crossref_primary_10_1287_ijoc_2019_0930 crossref_primary_10_1007_s12652_021_02918_2 crossref_primary_10_1016_j_cor_2020_104974 crossref_primary_10_1080_23249935_2024_2444327 crossref_primary_10_1016_j_cor_2024_106639 crossref_primary_10_1016_j_ejor_2020_08_004 crossref_primary_10_1080_01605682_2022_2139646 crossref_primary_10_1016_j_orhc_2017_03_001 crossref_primary_10_1016_j_ejor_2024_05_049 crossref_primary_10_1016_j_omega_2017_08_001 crossref_primary_10_1016_j_cor_2016_05_018 crossref_primary_10_1080_01605682_2020_1718020 crossref_primary_10_1016_j_trc_2019_12_010 crossref_primary_10_3389_frobt_2018_00031 crossref_primary_10_1016_j_trb_2016_05_009 crossref_primary_10_1080_00207179_2013_788215 crossref_primary_10_1177_00375497211006175 crossref_primary_10_1287_msom_2022_0166 crossref_primary_10_1016_j_ejor_2016_08_061 crossref_primary_10_1016_j_trpro_2017_05_134 crossref_primary_10_1287_msom_2017_0649 crossref_primary_10_1287_trsc_2019_0947 crossref_primary_10_1080_00207543_2021_1933644 crossref_primary_10_1111_poms_13190 crossref_primary_10_1016_j_orhc_2016_12_001 crossref_primary_10_1109_TKDE_2019_2914206 crossref_primary_10_1007_s10479_017_2569_1 crossref_primary_10_3390_pr10122643 crossref_primary_10_1080_20476965_2024_2444954 crossref_primary_10_3390_math12010028 crossref_primary_10_1080_13675567_2017_1361390 crossref_primary_10_3390_aerospace8100306 crossref_primary_10_1016_j_cie_2014_04_020 crossref_primary_10_1016_j_ejor_2012_11_030 crossref_primary_10_1016_j_cor_2019_104829 crossref_primary_10_1016_j_ejor_2018_02_055 crossref_primary_10_1007_s10696_017_9286_6 crossref_primary_10_1016_j_aci_2017_04_003 crossref_primary_10_1007_s10479_024_06061_x crossref_primary_10_1007_s10729_021_09576_y crossref_primary_10_1016_j_ejor_2012_03_049 crossref_primary_10_1016_j_omega_2015_05_007 crossref_primary_10_1016_j_ress_2025_111133 crossref_primary_10_3390_futuretransp1030027 crossref_primary_10_1007_s11590_015_0929_9 crossref_primary_10_1016_j_procs_2025_08_107 crossref_primary_10_1080_00207543_2015_1037405 crossref_primary_10_1287_ijoc_2015_0687 crossref_primary_10_1016_j_cor_2016_09_016 crossref_primary_10_1016_j_cie_2025_111044 crossref_primary_10_1016_j_omega_2018_12_009 crossref_primary_10_22581_muet1982_1904_15 crossref_primary_10_1017_S0269964818000402 crossref_primary_10_1080_00207543_2020_1735663 crossref_primary_10_1111_jonm_13547 crossref_primary_10_1134_S1990478921020058 crossref_primary_10_1016_j_cie_2023_109250 crossref_primary_10_1080_00207543_2015_1043403 crossref_primary_10_1007_s10696_015_9219_1 crossref_primary_10_1016_j_cie_2016_01_023 crossref_primary_10_1016_j_ijpe_2015_02_015 crossref_primary_10_1038_s41598_025_95048_0 crossref_primary_10_1109_TR_2019_2916898 crossref_primary_10_1016_j_trc_2018_05_003 crossref_primary_10_1016_j_seps_2019_100747 crossref_primary_10_1007_s10729_014_9271_5 crossref_primary_10_1016_j_seps_2015_09_002 crossref_primary_10_1016_j_tre_2021_102358 crossref_primary_10_1016_j_sbspro_2013_08_078 crossref_primary_10_1109_TITS_2017_2740438 crossref_primary_10_1016_j_cie_2021_107859 crossref_primary_10_1109_TSM_2023_3237917 crossref_primary_10_1007_s12293_016_0210_5 crossref_primary_10_1016_j_eswa_2022_116716 crossref_primary_10_1155_2014_239868 crossref_primary_10_1016_j_trc_2019_09_016 crossref_primary_10_1016_j_cor_2016_07_015 crossref_primary_10_1007_s11067_023_09589_w crossref_primary_10_1016_j_ejor_2015_12_022 crossref_primary_10_1016_j_cie_2014_05_019 crossref_primary_10_1016_j_cie_2014_03_008 crossref_primary_10_3390_su13063194 crossref_primary_10_1016_j_ejor_2019_11_056 crossref_primary_10_1057_hs_2012_27 crossref_primary_10_1080_23249935_2022_2046203 crossref_primary_10_1016_j_cor_2025_107208 crossref_primary_10_1016_j_future_2019_07_066 crossref_primary_10_1590_0104_530x2452_16 crossref_primary_10_1016_j_ress_2022_109029 crossref_primary_10_1016_j_cor_2022_106071 crossref_primary_10_1016_j_ejor_2016_01_004 crossref_primary_10_1016_j_cor_2014_11_006 crossref_primary_10_1016_j_ejor_2016_01_006 crossref_primary_10_1016_j_seps_2025_102279 crossref_primary_10_1016_j_ejor_2021_07_014 crossref_primary_10_1016_j_trb_2014_12_011 crossref_primary_10_1287_trsc_2024_0827 crossref_primary_10_17230_ingciencia_12_23_9 crossref_primary_10_3389_ffutr_2025_1540502 crossref_primary_10_1057_s41306_017_0023_x crossref_primary_10_3390_ijgi11020109 crossref_primary_10_1007_s10479_018_2918_8 crossref_primary_10_1109_ACCESS_2020_2969519 crossref_primary_10_1016_j_ejor_2019_08_003 crossref_primary_10_1016_j_eswa_2024_123665 crossref_primary_10_1016_j_omega_2021_102448 crossref_primary_10_1016_j_trb_2021_12_016 crossref_primary_10_1145_3314402 crossref_primary_10_1007_s10288_023_00539_3 crossref_primary_10_1007_s10696_020_09402_7 crossref_primary_10_1016_j_compbiomed_2019_103567 crossref_primary_10_1016_j_ijmedinf_2017_06_005 crossref_primary_10_1016_j_seps_2017_11_001 crossref_primary_10_1177_1687814017698110 crossref_primary_10_2139_ssrn_4386239 crossref_primary_10_1287_trsc_2020_1007 crossref_primary_10_3390_ijgi9050336 crossref_primary_10_1007_s10729_014_9297_8 crossref_primary_10_1016_j_ejor_2019_04_029 crossref_primary_10_1007_s10479_022_04560_3 crossref_primary_10_1057_jors_2014_83 crossref_primary_10_2478_pcr_2023_0003 crossref_primary_10_1016_j_omega_2015_06_001 crossref_primary_10_1016_j_trd_2018_03_002 crossref_primary_10_1016_j_ejor_2021_09_019 crossref_primary_10_1016_j_ejor_2020_11_007 |
| Cites_doi | 10.1287/ijoc.1090.0345 10.1016/j.ejor.2010.06.033 10.1287/trsc.1080.0238 10.1016/S0167-8191(01)00103-X 10.1016/j.cor.2006.04.003 10.1109/WSC.2009.5429196 10.1287/trsc.17.1.48 10.1023/A:1013111608059 10.1287/opre.19.6.1363 10.1287/trsc.36.1.40.572 10.1016/S0966-8349(97)00015-6 10.1057/palgrave.jors.2601991 10.1287/ijoc.1090.0351 10.1287/ijoc.1090.0349 10.1287/trsc.36.1.21.570 10.1016/0377-2217(94)90297-6 10.1007/BF01942293 10.1016/S0377-2217(02)00364-8 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS Copyright Elsevier Sequoia S.A. Jun 16, 2012 2011 Elsevier B.V. All rights reserved. 2011 Elsevier B.V. |
| Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright Elsevier Sequoia S.A. Jun 16, 2012 – notice: 2011 Elsevier B.V. All rights reserved. 2011 Elsevier B.V. |
| DBID | 6I. AAFTH AAYXX CITATION OQ6 IQODW NPM 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D 7X8 5PM |
| DOI | 10.1016/j.ejor.2011.10.043 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef ECONIS Pascal-Francis PubMed Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business Applied Sciences |
| EISSN | 1872-6860 |
| EndPage | 621 |
| ExternalDocumentID | PMC4268654 2603795411 25540476 25660437 715021362 10_1016_j_ejor_2011_10_043 S0377221711009830 |
| Genre | Journal Article Feature |
| GeographicLocations | Austria |
| GeographicLocations_xml | – name: Austria |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HZ~ IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADIYS ADJOM ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HVGLF R2- SEW VH1 WUQ ~HD AAYOK OQ6 AFXIZ AGCQF AGRNS BNPGV IQODW SSH NPM 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D 7X8 5PM |
| ID | FETCH-LOGICAL-c633t-d02a5826b45d4ace9763b85b57640514547eb11ae6d695624463c00f220e40e23 |
| ISICitedReferencesCount | 208 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302199300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Tue Sep 30 16:59:21 EDT 2025 Sat Sep 27 18:08:22 EDT 2025 Mon Jul 14 07:28:47 EDT 2025 Thu Apr 03 07:07:59 EDT 2025 Mon Jul 21 09:15:00 EDT 2025 Sat Mar 08 16:22:13 EST 2025 Tue Nov 18 21:24:21 EST 2025 Sat Nov 29 01:41:04 EST 2025 Fri Feb 23 02:32:29 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Ambulance location Approximate dynamic programming Emergency vehicles Stochastic optimization OR in health services Dispatching problem Operations research Medical transport Transit time Modeling Location problem Optimization Time dependence Emergency department Ambulance Dynamic programming Localization Mathematical programming Travel time Hospital management Empirical method Routing Real time Stochastic programming Response time Time average Emergency Service Proposal |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/3.0 https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Open Access under CC BY-NC-ND 3.0 license |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c633t-d02a5826b45d4ace9763b85b57640514547eb11ae6d695624463c00f220e40e23 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4268654 |
| PMID | 25540476 |
| PQID | 926540704 |
| PQPubID | 45678 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268654 proquest_miscellaneous_1859697663 proquest_journals_926540704 pubmed_primary_25540476 pascalfrancis_primary_25660437 econis_primary_715021362 crossref_citationtrail_10_1016_j_ejor_2011_10_043 crossref_primary_10_1016_j_ejor_2011_10_043 elsevier_sciencedirect_doi_10_1016_j_ejor_2011_10_043 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-06-16 |
| PublicationDateYYYYMMDD | 2012-06-16 |
| PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
| PublicationTitle | European journal of operational research |
| PublicationTitleAlternate | Eur J Oper Res |
| PublicationYear | 2012 |
| Publisher | Elsevier B.V Elsevier Elsevier Sequoia S.A North-Holland Pub. Co |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: Elsevier Sequoia S.A – name: North-Holland Pub. Co |
| References | Thirion, A., 2006. ModFles de localisation et de rTallocation d’ambulances: Application aux communes en provinces de Namur et Brabant Wallon. Ph.D. thesis, FacultTs Universitaires Notre-Dame de la Paix, Namur, Belgium. Powell, Topaloglu (b0080) 2005 Simão, Day, George, Gifford, Nienow, Powell (b0110) 2009; 43 Brotcorne, Laporte, Semet (b0010) 2003; 147 Daskin (b0020) 1983; 17 Powell (b0070) 2007 Powell, Shapiro, Simao (b0085) 2001; 104 Repede, Bernardo (b0095) 1994; 75 Doerner, Gutjahr, Hartl, Karall, Reimann (b0025) 2005; 13 Laporte, Louveaux, Semet, Thirion (b0055) 2009 Rajagopalan, Saydam, Xiao (b0090) 2008; 35 Gendreau, Laporte, Semet (b0040) 2006; 57 Godfrey, Powell (b0050) 2002; 36 Gendreau, Laporte, Semet (b0035) 2001; 27 Maxwell, Restrepo, Henderson, Topaloglu (b0065) 2010; 22 Ruszczyński (b0100) 2010; 22 Godfrey, Powell (b0045) 2002; 36 Toregas, Swain, ReVelle, Bergman (b0125) 1971; 19 Sutton, Barto (b0115) 1998 Gendreau, Laporte, Semet (b0030) 1997; 5 Bertsekas, Tsitsiklis (b0005) 1996 Powell (b0075) 2010; 22 Schmid, Doerner (b0105) 2010; 207 Church, ReVelle (b0015) 1974; 32 Maxwell, M.S., Henderson, S.G., Topaloglu, H., 2009. Ambulance redeployment: An approximate dynamic programming approach. In: Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A., Ingalls, R.G. (Ed.), Proceedings of the 2009 Winter Simulation Conference. Maxwell (10.1016/j.ejor.2011.10.043_b0065) 2010; 22 Gendreau (10.1016/j.ejor.2011.10.043_b0040) 2006; 57 Brotcorne (10.1016/j.ejor.2011.10.043_b0010) 2003; 147 Powell (10.1016/j.ejor.2011.10.043_b0075) 2010; 22 Powell (10.1016/j.ejor.2011.10.043_b0070) 2007 Toregas (10.1016/j.ejor.2011.10.043_b0125) 1971; 19 Powell (10.1016/j.ejor.2011.10.043_b0080) 2005 Gendreau (10.1016/j.ejor.2011.10.043_b0035) 2001; 27 Sutton (10.1016/j.ejor.2011.10.043_b0115) 1998 Bertsekas (10.1016/j.ejor.2011.10.043_b0005) 1996 Daskin (10.1016/j.ejor.2011.10.043_b0020) 1983; 17 Simão (10.1016/j.ejor.2011.10.043_b0110) 2009; 43 Church (10.1016/j.ejor.2011.10.043_b0015) 1974; 32 Laporte (10.1016/j.ejor.2011.10.043_b0055) 2009 Repede (10.1016/j.ejor.2011.10.043_b0095) 1994; 75 10.1016/j.ejor.2011.10.043_b0120 Gendreau (10.1016/j.ejor.2011.10.043_b0030) 1997; 5 Rajagopalan (10.1016/j.ejor.2011.10.043_b0090) 2008; 35 10.1016/j.ejor.2011.10.043_b0060 Godfrey (10.1016/j.ejor.2011.10.043_b0045) 2002; 36 Godfrey (10.1016/j.ejor.2011.10.043_b0050) 2002; 36 Powell (10.1016/j.ejor.2011.10.043_b0085) 2001; 104 Schmid (10.1016/j.ejor.2011.10.043_b0105) 2010; 207 Ruszczyński (10.1016/j.ejor.2011.10.043_b0100) 2010; 22 Doerner (10.1016/j.ejor.2011.10.043_b0025) 2005; 13 21151327 - Eur J Oper Res. 2010 Dec 16;207(3):1293-1303 |
| References_xml | – volume: 19 start-page: 1363 year: 1971 end-page: 1373 ident: b0125 article-title: The location of emergency service facilities publication-title: Operations Research – volume: 32 start-page: 101 year: 1974 end-page: 118 ident: b0015 article-title: The maximal covering location problem publication-title: Papers in Regional Science – year: 1996 ident: b0005 article-title: Neuro-Dynamic Programming – volume: 5 start-page: 75 year: 1997 end-page: 88 ident: b0030 article-title: Solving an ambulance location model by tabu search publication-title: Location Science – volume: 57 start-page: 22 year: 2006 end-page: 28 ident: b0040 article-title: The maximal expected coverage relocation problem for emergency vehicles publication-title: Journal of the Operational Research Society – volume: 147 start-page: 451 year: 2003 end-page: 463 ident: b0010 article-title: Ambulance location and relocation models publication-title: European Journal of Operational Research – volume: 13 start-page: 325 year: 2005 end-page: 340 ident: b0025 article-title: Heuristic solution of an extended double-coverage ambulance location problem for Austria publication-title: Central European Journal of Operations Research – volume: 36 start-page: 40 year: 2002 end-page: 54 ident: b0050 article-title: An adaptive dynamic programming algorithm for dynamic fleet management, II: Multiperiod travel times publication-title: Transportation Science – volume: 43 start-page: 178 year: 2009 end-page: 197 ident: b0110 article-title: An approximate dynamic programming algorithm for large-scale fleet management: A case application publication-title: Transportation Science – start-page: 185 year: 2005 end-page: 215 ident: b0080 article-title: Fleet management publication-title: Applications of Stochastic Programming – reference: Maxwell, M.S., Henderson, S.G., Topaloglu, H., 2009. Ambulance redeployment: An approximate dynamic programming approach. In: Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A., Ingalls, R.G. (Ed.), Proceedings of the 2009 Winter Simulation Conference. – volume: 22 start-page: 266 year: 2010 end-page: 281 ident: b0065 article-title: Approximate dynamic programming for ambulance redeployment publication-title: INFORMS Journal on Computing – volume: 75 start-page: 567 year: 1994 end-page: 581 ident: b0095 article-title: Developing and validating a decision support system for location emergency medical vehicles in louisville, kentucky publication-title: European Journal of Operational Research – volume: 22 start-page: 20 year: 2010 end-page: 22 ident: b0100 article-title: Post-decision states and separable approximations are powerful tools of approximate dynamic programming publication-title: INFORMS Journal on Computing – year: 1998 ident: b0115 article-title: Reinforcement Learning: An Introduction – volume: 104 start-page: 231 year: 2001 end-page: 279 ident: b0085 article-title: A representational paradigm for dynamic resource transformation problems publication-title: Annals of Operations Research – volume: 207 start-page: 1293 year: 2010 end-page: 1303 ident: b0105 article-title: Ambulance location and relocation problems with time-dependent travel times publication-title: European Journal Of Operational Research – start-page: 235 year: 2009 end-page: 249 ident: b0055 article-title: Applications of the double standard model for ambulance location publication-title: Innovations in Distribution Logistics – volume: 22 start-page: 2 year: 2010 end-page: 17 ident: b0075 article-title: Merging AI and OR to solve high-dimensional stochastic optimization problems using approximate dynamic programming publication-title: INFORMS Journal on Computing – volume: 17 start-page: 48 year: 1983 end-page: 70 ident: b0020 article-title: A maximum expected covering location model: Formulation, properties and heuristic solution publication-title: Transportation Science – volume: 36 start-page: 21 year: 2002 end-page: 39 ident: b0045 article-title: An adaptive dynamic programming algorithm for dynamic fleet management, I: Single period travel times publication-title: Transportation Science – year: 2007 ident: b0070 article-title: Approximate Dynamic Programming: Solving the Curses of Dimensionality – volume: 27 start-page: 1641 year: 2001 end-page: 1653 ident: b0035 article-title: A dynamic model and parallel tabu search heuristic for real-time ambulance relocation publication-title: Parallel Computing – volume: 35 start-page: 814 year: 2008 end-page: 826 ident: b0090 article-title: A multiperiod set covering location model for dynamic redeployment of ambulances publication-title: Computers and Operations Research – reference: Thirion, A., 2006. ModFles de localisation et de rTallocation d’ambulances: Application aux communes en provinces de Namur et Brabant Wallon. Ph.D. thesis, FacultTs Universitaires Notre-Dame de la Paix, Namur, Belgium. – start-page: 185 year: 2005 ident: 10.1016/j.ejor.2011.10.043_b0080 article-title: Fleet management – volume: 22 start-page: 266 issue: 2 year: 2010 ident: 10.1016/j.ejor.2011.10.043_b0065 article-title: Approximate dynamic programming for ambulance redeployment publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.1090.0345 – volume: 207 start-page: 1293 issue: 3 year: 2010 ident: 10.1016/j.ejor.2011.10.043_b0105 article-title: Ambulance location and relocation problems with time-dependent travel times publication-title: European Journal Of Operational Research doi: 10.1016/j.ejor.2010.06.033 – volume: 43 start-page: 178 issue: 2 year: 2009 ident: 10.1016/j.ejor.2011.10.043_b0110 article-title: An approximate dynamic programming algorithm for large-scale fleet management: A case application publication-title: Transportation Science doi: 10.1287/trsc.1080.0238 – volume: 27 start-page: 1641 issue: 12 year: 2001 ident: 10.1016/j.ejor.2011.10.043_b0035 article-title: A dynamic model and parallel tabu search heuristic for real-time ambulance relocation publication-title: Parallel Computing doi: 10.1016/S0167-8191(01)00103-X – volume: 35 start-page: 814 issue: 3 year: 2008 ident: 10.1016/j.ejor.2011.10.043_b0090 article-title: A multiperiod set covering location model for dynamic redeployment of ambulances publication-title: Computers and Operations Research doi: 10.1016/j.cor.2006.04.003 – ident: 10.1016/j.ejor.2011.10.043_b0060 doi: 10.1109/WSC.2009.5429196 – volume: 13 start-page: 325 issue: 4 year: 2005 ident: 10.1016/j.ejor.2011.10.043_b0025 article-title: Heuristic solution of an extended double-coverage ambulance location problem for Austria publication-title: Central European Journal of Operations Research – ident: 10.1016/j.ejor.2011.10.043_b0120 – start-page: 235 year: 2009 ident: 10.1016/j.ejor.2011.10.043_b0055 article-title: Applications of the double standard model for ambulance location – volume: 17 start-page: 48 issue: 1 year: 1983 ident: 10.1016/j.ejor.2011.10.043_b0020 article-title: A maximum expected covering location model: Formulation, properties and heuristic solution publication-title: Transportation Science doi: 10.1287/trsc.17.1.48 – volume: 104 start-page: 231 year: 2001 ident: 10.1016/j.ejor.2011.10.043_b0085 article-title: A representational paradigm for dynamic resource transformation problems publication-title: Annals of Operations Research doi: 10.1023/A:1013111608059 – volume: 19 start-page: 1363 issue: 6 year: 1971 ident: 10.1016/j.ejor.2011.10.043_b0125 article-title: The location of emergency service facilities publication-title: Operations Research doi: 10.1287/opre.19.6.1363 – volume: 36 start-page: 40 year: 2002 ident: 10.1016/j.ejor.2011.10.043_b0050 article-title: An adaptive dynamic programming algorithm for dynamic fleet management, II: Multiperiod travel times publication-title: Transportation Science doi: 10.1287/trsc.36.1.40.572 – volume: 5 start-page: 75 issue: 2 year: 1997 ident: 10.1016/j.ejor.2011.10.043_b0030 article-title: Solving an ambulance location model by tabu search publication-title: Location Science doi: 10.1016/S0966-8349(97)00015-6 – year: 2007 ident: 10.1016/j.ejor.2011.10.043_b0070 – volume: 57 start-page: 22 year: 2006 ident: 10.1016/j.ejor.2011.10.043_b0040 article-title: The maximal expected coverage relocation problem for emergency vehicles publication-title: Journal of the Operational Research Society doi: 10.1057/palgrave.jors.2601991 – volume: 22 start-page: 20 issue: 1 year: 2010 ident: 10.1016/j.ejor.2011.10.043_b0100 article-title: Post-decision states and separable approximations are powerful tools of approximate dynamic programming publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.1090.0351 – volume: 22 start-page: 2 issue: 1 year: 2010 ident: 10.1016/j.ejor.2011.10.043_b0075 article-title: Merging AI and OR to solve high-dimensional stochastic optimization problems using approximate dynamic programming publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.1090.0349 – year: 1996 ident: 10.1016/j.ejor.2011.10.043_b0005 – volume: 36 start-page: 21 year: 2002 ident: 10.1016/j.ejor.2011.10.043_b0045 article-title: An adaptive dynamic programming algorithm for dynamic fleet management, I: Single period travel times publication-title: Transportation Science doi: 10.1287/trsc.36.1.21.570 – volume: 75 start-page: 567 issue: 3 year: 1994 ident: 10.1016/j.ejor.2011.10.043_b0095 article-title: Developing and validating a decision support system for location emergency medical vehicles in louisville, kentucky publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(94)90297-6 – volume: 32 start-page: 101 issue: 1 year: 1974 ident: 10.1016/j.ejor.2011.10.043_b0015 article-title: The maximal covering location problem publication-title: Papers in Regional Science doi: 10.1007/BF01942293 – volume: 147 start-page: 451 issue: 3 year: 2003 ident: 10.1016/j.ejor.2011.10.043_b0010 article-title: Ambulance location and relocation models publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(02)00364-8 – year: 1998 ident: 10.1016/j.ejor.2011.10.043_b0115 – reference: 21151327 - Eur J Oper Res. 2010 Dec 16;207(3):1293-1303 |
| SSID | ssj0001515 |
| Score | 2.498848 |
| Snippet | ► We investigated dispatching and relocation decisions of emergency service providers. ► ADP is powerful in solving the underlying stochastic and dynamic... Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis econis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 611 |
| SubjectTerms | Ambulance location Ambulance services Applied sciences Approximate dynamic programming Approximation Biological and medical sciences Dynamic programming Economy. Management Emergency vehicles Exact sciences and technology Health and social institutions Mathematical programming Medical sciences Operational research and scientific management Operational research. Management science Optimization algorithms OR in health services Public health. Hygiene Public health. Hygiene-occupational medicine Stochastic optimization Studies |
| Title | Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming |
| URI | https://dx.doi.org/10.1016/j.ejor.2011.10.043 http://www.econis.eu/PPNSET?PPN=715021362 https://www.ncbi.nlm.nih.gov/pubmed/25540476 https://www.proquest.com/docview/926540704 https://www.proquest.com/docview/1859697663 https://pubmed.ncbi.nlm.nih.gov/PMC4268654 |
| Volume | 219 |
| WOSCitedRecordID | wos000302199300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Za9tAEB4aJ5SW0sM9oqY1W-ibUZB17EqPoaS0pYRC0uI3oWNFZGzZSHbwz--s9rDkpqF56IswK2kkaz7NpTkAPuaZaH2b57aTTqiNoCjsxI8cu6AIJ3TFwjRoC4W_s4uLcDqNfqhc1aYdJ8CqKtxuo9V_ZTWuIbNF6ew92G2I4gL-RqbjFtmO239i_OVyfqNroHI5b36cLNLNvC0OqLnQXmudhJyXKFHWMp9SzZYZb9rwQdtsfFuiQbsjo5K5Flrd3RbRV9YtLtQ6zqgaCpnA82V2vShbZP0SxYZJN_IgUjioLQsjdcUVY7brytpLLU21BCy73nYrG6mSqlLNUlkY_YcEl8GE2SmfLWvZYVUk38lWTv122XtqzCQX6ry1WSxoxIIGLsRI4wAOEZhROIDDs6_n029GZQurrv3cpP6Qqq6SiYD7d9KzYI5E2KJseqbMk1XS4AtWyMkot7ku-xm4HZPm6jk8Vb4IOZMYegEPeDWEh7oUYgjP9MgPojTAEB53-le-hEJhjSDWiAIJMVgjO6wRxBrpYI0orJEWa6SDNUOmg7VX8PPz-dWnL7Ya3GFn1PPWdu64SYB-a-oHuZ9kHE1eLw2DFH1bX_TbD3yGJsIk4TSn6J-jhUm9zHEK13W473DXew2DalnxYyCeV2SpVzDuZ65PizCMCpZlKHecInR44Fgw0cyIM9XVXgxXmcd_h4EFY3POSvZ0ufPoY8ljcyxDJ8qdoOVnQaC5HiuDVRqiMaL5TpKjHkQMZfQ_qGg2ZsGJxkysXt0mjlwqumU6vgUfzF5UBuILX1Lx5aaJ0fiOKD5tipd4IxHWoY1n-4xawHrYMweIRvP9PVV53TacRys-xGu_vddzO4FHO6HxDgbresPfw1F2sy6begQHbBqO1Hv4G0z3-WE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+the+dynamic+ambulance+relocation+and+dispatching+problem+using+approximate+dynamic+programming&rft.jtitle=European+journal+of+operational+research&rft.au=Schmid%2C+Verena&rft.date=2012-06-16&rft.issn=0377-2217&rft.volume=219&rft.issue=3&rft.spage=611&rft.epage=621&rft_id=info:doi/10.1016%2Fj.ejor.2011.10.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2011_10_043 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |