Attention is not all you need: the complicated case of ethically using large language models in healthcare and medicine
Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generat...
Saved in:
| Published in: | EBioMedicine Vol. 90; p. 104512 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.04.2023
Elsevier |
| Subjects: | |
| ISSN: | 2352-3964, 2352-3964 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generative AI applications will remain a party trick with substantial potential for creating and spreading misinformation or harmful and inaccurate content at unprecedented scale. However, if positioned and developed responsibly as companions to humans augmenting but not replacing their role in decision making, knowledge retrieval and other cognitive processes, they could evolve into highly efficient, trustworthy, assistive tools for information management. This perspective describes how such tools could transform data management workflows in healthcare and medicine, explains how the underlying technology works, provides an assessment of risks and limitations, and proposes an ethical, technical, and cultural framework for responsible design, development, and deployment. It seeks to incentivise users, developers, providers, and regulators of generative AI that utilises LLMs to collectively prepare for the transformational role this technology could play in evidence-based sectors. |
|---|---|
| AbstractList | Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generative AI applications will remain a party trick with substantial potential for creating and spreading misinformation or harmful and inaccurate content at unprecedented scale. However, if positioned and developed responsibly as companions to humans augmenting but not replacing their role in decision making, knowledge retrieval and other cognitive processes, they could evolve into highly efficient, trustworthy, assistive tools for information management. This perspective describes how such tools could transform data management workflows in healthcare and medicine, explains how the underlying technology works, provides an assessment of risks and limitations, and proposes an ethical, technical, and cultural framework for responsible design, development, and deployment. It seeks to incentivise users, developers, providers, and regulators of generative AI that utilises LLMs to collectively prepare for the transformational role this technology could play in evidence-based sectors. SummaryLarge Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generative AI applications will remain a party trick with substantial potential for creating and spreading misinformation or harmful and inaccurate content at unprecedented scale. However, if positioned and developed responsibly as companions to humans augmenting but not replacing their role in decision making, knowledge retrieval and other cognitive processes, they could evolve into highly efficient, trustworthy, assistive tools for information management. This perspective describes how such tools could transform data management workflows in healthcare and medicine, explains how the underlying technology works, provides an assessment of risks and limitations, and proposes an ethical, technical, and cultural framework for responsible design, development, and deployment. It seeks to incentivise users, developers, providers, and regulators of generative AI that utilises LLMs to collectively prepare for the transformational role this technology could play in evidence-based sectors. Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generative AI applications will remain a party trick with substantial potential for creating and spreading misinformation or harmful and inaccurate content at unprecedented scale. However, if positioned and developed responsibly as companions to humans augmenting but not replacing their role in decision making, knowledge retrieval and other cognitive processes, they could evolve into highly efficient, trustworthy, assistive tools for information management. This perspective describes how such tools could transform data management workflows in healthcare and medicine, explains how the underlying technology works, provides an assessment of risks and limitations, and proposes an ethical, technical, and cultural framework for responsible design, development, and deployment. It seeks to incentivise users, developers, providers, and regulators of generative AI that utilises LLMs to collectively prepare for the transformational role this technology could play in evidence-based sectors.Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generative AI applications will remain a party trick with substantial potential for creating and spreading misinformation or harmful and inaccurate content at unprecedented scale. However, if positioned and developed responsibly as companions to humans augmenting but not replacing their role in decision making, knowledge retrieval and other cognitive processes, they could evolve into highly efficient, trustworthy, assistive tools for information management. This perspective describes how such tools could transform data management workflows in healthcare and medicine, explains how the underlying technology works, provides an assessment of risks and limitations, and proposes an ethical, technical, and cultural framework for responsible design, development, and deployment. It seeks to incentivise users, developers, providers, and regulators of generative AI that utilises LLMs to collectively prepare for the transformational role this technology could play in evidence-based sectors. |
| ArticleNumber | 104512 |
| Author | Harrer, Stefan |
| Author_xml | – sequence: 1 givenname: Stefan orcidid: 0000-0001-7947-330X surname: Harrer fullname: Harrer, Stefan email: stefan.harrer@dhcrc.com organization: Digital Health Cooperative Research Centre, Melbourne, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36924620$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkltv1DAQhSNUREvpL0BCfuRlF19iJwuiqKq4VKrEA_BsOfZk18GxF9sp2n-P021RWwn6kjiTOd-RZ87z6sAHD1X1kuAlwUS8GZbQ2TAuKaasVGpO6JPqiDJOF2wl6oM758PqJKUBY0x4XYrts-qQiRWtBcVH1e-znMFnGzyyCfmQkXIO7cKEPIB5i_IGkA7j1lmtMhikVQIUegR5UyrO7dCUrF8jp-IaytOvJ1UOYzDgErIebUC5vNEqAlLeoBGM1dbDi-ppr1yCk5v3cfXj08fv518Wl18_X5yfXS60YCwvatrV1PBeKehIKwRoaoTBrS7fnDDREYIZxbWBpmes0YaD1oS2nKq-6Thlx9XFnmuCGuQ22lHFnQzKyutCiGupYrbagVS4b3gvcMc4r2tTK86ZUK0SmEHDKCmsD3vWdurKPXSZW1TuHvT-H283ch2uJMGY8lXLC-H1DSGGXxOkLEebNLgyNwhTkrRpV025VtOW1ld3zf663K6uNKz2DTqGlCL0Utus5k0Wb-uKqZyTIgd5nRQ5J0Xuk1K07IH2Fv9_1fu9qqwWrixEmbQFr8tKI-hcJmof0Z8-0Gtn_Ryjn7CDNIQp-pIFSWSiEstvc4LnAFNWwts0dQG8-zfgUfs_VX4BkQ |
| CitedBy_id | crossref_primary_10_1159_000537854 crossref_primary_10_30935_cedtech_15496 crossref_primary_10_1038_s41591_024_03258_2 crossref_primary_10_1016_j_ejvsvf_2023_10_003 crossref_primary_10_1016_j_ejro_2023_100494 crossref_primary_10_1007_s10791_025_09628_9 crossref_primary_10_1108_JAL_12_2024_0357 crossref_primary_10_15446_dyna_v90n230_111700 crossref_primary_10_4258_hir_2025_31_2_114 crossref_primary_10_1080_17483107_2025_2471050 crossref_primary_10_1016_j_neuron_2024_01_016 crossref_primary_10_1111_cobi_14464 crossref_primary_10_1038_s41591_024_02860_8 crossref_primary_10_1016_S2213_8587_24_00154_2 crossref_primary_10_1016_j_aei_2024_103042 crossref_primary_10_1097_01_NEP_0000000000001246 crossref_primary_10_1080_10528008_2025_2551972 crossref_primary_10_3390_app15148088 crossref_primary_10_1007_s41666_025_00211_x crossref_primary_10_1080_0194262X_2024_2413558 crossref_primary_10_1080_09588221_2025_2539160 crossref_primary_10_1177_13524585241277376 crossref_primary_10_1016_j_lanwpc_2023_100905 crossref_primary_10_3389_fonc_2024_1386718 crossref_primary_10_7717_peerj_cs_2911 crossref_primary_10_1089_pop_2024_0222 crossref_primary_10_1016_j_mcpdig_2025_100196 crossref_primary_10_1080_08164622_2025_2517750 crossref_primary_10_1111_jocn_17493 crossref_primary_10_1007_s00432_024_05673_x crossref_primary_10_1080_10447318_2024_2316376 crossref_primary_10_1016_j_bjps_2024_02_007 crossref_primary_10_1177_01655515241227531 crossref_primary_10_1093_jamia_ocae188 crossref_primary_10_1186_s40561_024_00341_6 crossref_primary_10_1371_journal_pdig_0000651 crossref_primary_10_1007_s10072_025_08428_9 crossref_primary_10_1093_rap_rkae119 crossref_primary_10_34067_KID_0000000000000556 crossref_primary_10_1016_j_isci_2023_108163 crossref_primary_10_1093_cid_ciad633 crossref_primary_10_1007_s42001_025_00387_7 crossref_primary_10_1371_journal_pone_0290613 crossref_primary_10_1097_MS9_0000000000003234 crossref_primary_10_1111_jep_70065 crossref_primary_10_1016_S1473_3099_24_00140_3 crossref_primary_10_1146_annurev_biodatasci_103123_095202 crossref_primary_10_1109_JBHI_2023_3327485 crossref_primary_10_3390_electronics14153064 crossref_primary_10_1016_j_engappai_2025_111188 crossref_primary_10_1097_JOM_0000000000003212 crossref_primary_10_1145_3712001 crossref_primary_10_3389_fbioe_2024_1359768 crossref_primary_10_5498_wjp_v14_i3_334 crossref_primary_10_3389_fams_2024_1380996 crossref_primary_10_1016_j_cca_2023_117519 crossref_primary_10_4274_dir_2024_242876 crossref_primary_10_1038_s41746_024_01283_6 crossref_primary_10_1057_s41599_024_02894_w crossref_primary_10_1016_j_compcom_2024_102871 crossref_primary_10_1097_CRD_0000000000001042 crossref_primary_10_1080_0309877X_2024_2378298 crossref_primary_10_1145_3718096 crossref_primary_10_3390_robotics13080112 crossref_primary_10_1016_j_jacr_2024_01_012 crossref_primary_10_1371_journal_pdig_0000417 crossref_primary_10_1371_journal_pone_0300024 crossref_primary_10_3390_bioengineering12010017 crossref_primary_10_1080_12460125_2024_2430731 crossref_primary_10_2196_59439 crossref_primary_10_1093_postmj_qgae038 crossref_primary_10_1016_j_arth_2024_01_029 crossref_primary_10_1136_rapm_2023_104637 crossref_primary_10_1038_s41598_023_48747_5 crossref_primary_10_5694_mja2_51992 crossref_primary_10_1177_10547738241227699 crossref_primary_10_1016_j_ebiom_2025_105695 crossref_primary_10_1186_s13012_024_01357_9 crossref_primary_10_1007_s11227_025_07597_w crossref_primary_10_1111_imj_16393 crossref_primary_10_1002_lary_32202 crossref_primary_10_1080_10447318_2023_2225931 crossref_primary_10_1007_s11023_024_09692_y crossref_primary_10_1016_j_artmed_2025_103227 crossref_primary_10_1177_07439156251319788 crossref_primary_10_3390_app15020893 crossref_primary_10_7759_cureus_90103 crossref_primary_10_1111_dom_16630 crossref_primary_10_1186_s12911_024_02838_z crossref_primary_10_1038_s41746_024_01157_x crossref_primary_10_55982_openpraxis_17_1_718 crossref_primary_10_1016_j_compbiomed_2025_110885 crossref_primary_10_1162_artl_e_00409 crossref_primary_10_1016_j_ebiom_2023_104671 crossref_primary_10_1016_j_prro_2025_02_006 crossref_primary_10_1007_s00167_023_07529_2 crossref_primary_10_3390_electronics12244957 crossref_primary_10_1111_cgf_70025 crossref_primary_10_1148_radiol_240597 crossref_primary_10_1038_s41390_025_03980_8 crossref_primary_10_1088_2632_2153_adec3c crossref_primary_10_1097_PAP_0000000000000406 crossref_primary_10_2196_50295 crossref_primary_10_1093_jamia_ocaf124 crossref_primary_10_1001_jamanetworkopen_2025_22400 crossref_primary_10_1080_15424065_2024_2320227 crossref_primary_10_1093_jamia_ocae039 crossref_primary_10_1186_s12909_024_06048_z crossref_primary_10_1111_nyas_15413 crossref_primary_10_1016_j_apjo_2024_100084 crossref_primary_10_1016_j_apjo_2024_100085 crossref_primary_10_1016_j_bjps_2024_01_051 crossref_primary_10_1002_brx2_23 crossref_primary_10_3390_rs16162871 crossref_primary_10_1055_s_0043_1771514 crossref_primary_10_1108_JRIM_05_2024_0237 crossref_primary_10_35232_estudamhsd_1624996 crossref_primary_10_1186_s41239_023_00411_8 crossref_primary_10_3390_bdcc8110157 crossref_primary_10_3390_healthcare11182518 crossref_primary_10_4103_JNMO_JNMO_39_24 crossref_primary_10_1213_ANE_0000000000006579 crossref_primary_10_1186_s12909_025_06731_9 crossref_primary_10_2196_71916 crossref_primary_10_2196_59479 crossref_primary_10_1007_s10462_024_10921_0 crossref_primary_10_1016_j_bj_2025_100868 crossref_primary_10_1016_j_jbi_2024_104620 crossref_primary_10_1097_GOX_0000000000006825 crossref_primary_10_1021_acs_jchemed_4c00249 crossref_primary_10_1001_jamanetworkopen_2024_24297 crossref_primary_10_3389_fmed_2024_1495582 crossref_primary_10_1177_14604582251315595 crossref_primary_10_1177_20584601241258675 crossref_primary_10_1148_radiol_241703 crossref_primary_10_1007_s10916_024_02043_5 crossref_primary_10_1016_j_mcpdig_2025_100230 crossref_primary_10_1097_GOX_0000000000005290 crossref_primary_10_2196_66207 crossref_primary_10_3390_bdcc8110161 crossref_primary_10_1007_s41669_024_00477_8 crossref_primary_10_2196_53008 crossref_primary_10_1097_MS9_0000000000003080 crossref_primary_10_1007_s11096_024_01777_z crossref_primary_10_1016_j_amjms_2023_08_001 crossref_primary_10_1177_17562848241227031 crossref_primary_10_1111_jcal_70043 crossref_primary_10_1080_12460125_2024_2410042 crossref_primary_10_1371_journal_pdig_0000919 crossref_primary_10_3390_app15031192 crossref_primary_10_1109_ACCESS_2025_3527025 crossref_primary_10_1080_0361526X_2024_2400719 crossref_primary_10_1001_jamahealthforum_2023_1938 crossref_primary_10_1371_journal_pdig_0000367 crossref_primary_10_1080_09273948_2023_2242462 crossref_primary_10_3390_vaccines11071217 crossref_primary_10_1093_eurjcn_zvad120 crossref_primary_10_3390_jpm13091363 crossref_primary_10_1080_02691728_2024_2316622 crossref_primary_10_1111_jep_13980 crossref_primary_10_1111_cgf_15065 crossref_primary_10_1097_IOP_0000000000002420 crossref_primary_10_3390_jcm13133750 crossref_primary_10_3390_info14090492 crossref_primary_10_1093_asj_sjad260 crossref_primary_10_1002_berj_4186 crossref_primary_10_3390_electronics13224364 crossref_primary_10_1145_3625289 crossref_primary_10_1080_15265161_2025_2526734 crossref_primary_10_1111_jep_70129 crossref_primary_10_51867_ajernet_5_3_30 crossref_primary_10_1007_s00296_023_05473_5 crossref_primary_10_2196_53854 crossref_primary_10_5507_bp_2024_027 crossref_primary_10_1038_s41746_025_01486_5 crossref_primary_10_2106_JBJS_23_01417 crossref_primary_10_1177_00033197251324630 crossref_primary_10_1007_s10639_024_13009_y crossref_primary_10_3390_healthcare11202776 crossref_primary_10_1186_s12909_025_07176_w crossref_primary_10_1016_j_jacadv_2023_100565 crossref_primary_10_1080_17516234_2024_2363128 crossref_primary_10_1177_20552076231186520 crossref_primary_10_1111_jep_14250 crossref_primary_10_1136_bmj_2023_078538 crossref_primary_10_2196_57400 crossref_primary_10_1080_0144929X_2024_2321959 crossref_primary_10_1053_j_gastro_2023_06_006 crossref_primary_10_1145_3610210 crossref_primary_10_1227_neu_0000000000003297 crossref_primary_10_4236_vp_2024_103025 crossref_primary_10_1016_j_survophthal_2025_02_009 crossref_primary_10_1177_10806032251330628 crossref_primary_10_1016_j_mam_2023_101222 crossref_primary_10_1017_jme_2025_10132 crossref_primary_10_1016_j_ejvsvf_2024_07_037 crossref_primary_10_1111_jep_70269 crossref_primary_10_12688_f1000research_160142_1 crossref_primary_10_1111_jep_70260 crossref_primary_10_1109_ACCESS_2024_3367715 crossref_primary_10_1007_s11023_025_09730_3 crossref_primary_10_1136_bjo_2023_325046 crossref_primary_10_1093_jbcr_irae211 |
| Cites_doi | 10.1093/bioinformatics/btz682 10.1038/d41586-022-02083-2 10.1038/s41591-018-0213-5 10.3389/fcomp.2022.1045704 10.1148/radiol.230163 10.1093/bib/bbac409 10.15585/mmwr.mm6923e2 10.1038/s41591-022-01981-2 10.1016/j.tips.2019.05.005 10.1016/j.ijmedinf.2014.12.001 10.1038/d41586-022-02947-7 10.1073/pnas.2218523120 10.1145/3458754 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) The Author(s) Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved. 2023 The Author(s) 2023 |
| Copyright_xml | – notice: 2023 The Author(s) – notice: The Author(s) – notice: Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved. – notice: 2023 The Author(s) 2023 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1016/j.ebiom.2023.104512 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Medicine |
| EISSN | 2352-3964 |
| EndPage | 104512 |
| ExternalDocumentID | oai_doaj_org_article_a0f75f60b35544d4a5536a8a603e7321 PMC10025985 36924620 10_1016_j_ebiom_2023_104512 S2352396423000774 1_s2_0_S2352396423000774 |
| Genre | Journal Article Review |
| GroupedDBID | .1- .FO 0R~ 4.4 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAMRU AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M48 O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c633t-42b42d5faaeb1866ec2d6d08caeb5136b1103204de7f337cd5ecc12852af7b523 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 249 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000951710800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-3964 |
| IngestDate | Fri Oct 03 12:50:29 EDT 2025 Tue Nov 04 02:06:58 EST 2025 Wed Oct 01 10:53:17 EDT 2025 Thu Jan 02 22:31:41 EST 2025 Tue Nov 18 22:25:07 EST 2025 Thu Nov 13 04:22:41 EST 2025 Tue Jul 25 20:56:41 EDT 2023 Sun Feb 23 10:19:34 EST 2025 Tue Aug 26 16:33:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | AI trustworthiness AI ethics Foundation models Large language models Augmented human intelligence Generative artificial intelligence Information management |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c633t-42b42d5faaeb1866ec2d6d08caeb5136b1103204de7f337cd5ecc12852af7b523 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-7947-330X |
| OpenAccessLink | https://doaj.org/article/a0f75f60b35544d4a5536a8a603e7321 |
| PMID | 36924620 |
| PQID | 2789713678 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a0f75f60b35544d4a5536a8a603e7321 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10025985 proquest_miscellaneous_2789713678 pubmed_primary_36924620 crossref_citationtrail_10_1016_j_ebiom_2023_104512 crossref_primary_10_1016_j_ebiom_2023_104512 elsevier_sciencedirect_doi_10_1016_j_ebiom_2023_104512 elsevier_clinicalkeyesjournals_1_s2_0_S2352396423000774 elsevier_clinicalkey_doi_10_1016_j_ebiom_2023_104512 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | EBioMedicine |
| PublicationTitleAlternate | EBioMedicine |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Lin, Hilton, Evans (bib59) 2021 Harrer (bib76) 2021 Bender, Gebru, McMillan-Major, Shmitchell (bib13) 2021 (bib47) 2023 Lardinois (bib30) 2023 Perrigo (bib35) 2023 Pichai (bib3) 2023 Strickland (bib73) 2022 Clynch, Kellett (bib17) 2015; 84 Callaway (bib26) 2022; 608 Lohr (bib66) 2022 Scao, Fan, Akiki (bib12) 2022 (bib37) 2023 Snoswell, Burgess (bib51) 2022 Sevilla, Heim, Ho, Besiroglu, Hobbhahn, Villalobos (bib70) 2022 Verma (bib69) 2022 Heikkilä (bib56) 2022 Vincent (bib41) 2023 Topol (bib31) 2023 Metz (bib44) 2022 OpenAI. Introducing ChatGPT. sourced from Marcus, Davis (bib48) 2023 Ulloa, Rothrock, Ahmad, Jacobs (bib57) 2022; 4 (bib4) 2022 Newton (bib55) 2023 Blackman, Ammanath (bib58) 2022 Binz, Schulz (bib68) 2023; 120 Gordon (bib23) 2022 Huang, Grady (bib28) 2022 Brown, Mann, Ryder (bib11) 2020; 33 Callaway (bib24) 2022; 609 . Vincent (bib50) 2022 Goldman (bib49) 2023 Perrigo (bib36) 2023 Kovanovic (bib29) 2023 Heikkilä (bib52) 2022 (bib5) 2023 Harrer, Shah, Antony, Hu (bib22) 2019; 40 Tiernan (bib67) 2022 Tiku, De Vynck, Oremus (bib77) 2023 Gu, Tinn, Cheng (bib72) 2021; 3 Crawford (bib27) 2023 Lee, Yoon, Kim (bib71) 2020; 36 (bib62) 2023 Thoppilan, De Freitas, Hall (bib2) 2022 Miller (bib54) 2023 Dominguez (bib65) 2022 Wiggers (bib53) 2022 Lyons (bib14) 2020 Henry (bib18) 2018 2023. Philippidis (bib25) 2023 Greene (bib33) 2022 (bib39) 2021 Vishwam (bib42) 2023 Topol (bib75) 2016 Roose (bib15) 2022 Lipman, Distler (bib40) 2023 Larsen, Narayan (bib46) 2023 Broderick (bib32) 2022 Vincent (bib43) 2023 Singhal, Azizi, Tu (bib6) 2022 Luo, Sun, Xia (bib8) 2022; 23 Vaswani, Shazeer, Parmar (bib9) 2017; 30 Komorowski, Celi, Badawi, Gordon, Faisal (bib63) 2018; 24 Zhavoronkov (bib38) 2023 (bib16) 1988 Devlin, Chang, Lee, Toutanova (bib10) 2018 Acosta, Falcone, Rajpurkar, Topol (bib74) 2022; 28 Hosurmath, Bhojwani, Kumar (bib60) 2021 (bib45) 2022 Rushabh, Simar (bib21) 2023 Christian (bib64) 2020 Kung, Cheatham, Medinilla (bib7) 2022 Croak, Gennai (bib61) 2023 Shen, Heacock, Elias (bib19) 2023 Jeblick, Schachtner, Dexl (bib20) 2022 Gharpure, Hunter, Schnall (bib34) 2020; 69 Broderick (10.1016/j.ebiom.2023.104512_bib32) 2022 Pichai (10.1016/j.ebiom.2023.104512_bib3) 2023 Acosta (10.1016/j.ebiom.2023.104512_bib74) 2022; 28 Thoppilan (10.1016/j.ebiom.2023.104512_bib2) 2022 (10.1016/j.ebiom.2023.104512_bib39) 2021 Marcus (10.1016/j.ebiom.2023.104512_bib48) 2023 Lyons (10.1016/j.ebiom.2023.104512_bib14) 2020 Kung (10.1016/j.ebiom.2023.104512_bib7) 2022 Wiggers (10.1016/j.ebiom.2023.104512_bib53) 2022 Jeblick (10.1016/j.ebiom.2023.104512_bib20) 2022 Gordon (10.1016/j.ebiom.2023.104512_bib23) 2022 Larsen (10.1016/j.ebiom.2023.104512_bib46) 2023 Strickland (10.1016/j.ebiom.2023.104512_bib73) 2022 Bender (10.1016/j.ebiom.2023.104512_bib13) 2021 Scao (10.1016/j.ebiom.2023.104512_bib12) 2022 Vishwam (10.1016/j.ebiom.2023.104512_bib42) 2023 Devlin (10.1016/j.ebiom.2023.104512_bib10) 2018 Greene (10.1016/j.ebiom.2023.104512_bib33) 2022 Lohr (10.1016/j.ebiom.2023.104512_bib66) 2022 Henry (10.1016/j.ebiom.2023.104512_bib18) 2018 Crawford (10.1016/j.ebiom.2023.104512_bib27) 2023 Croak (10.1016/j.ebiom.2023.104512_bib61) 2023 Lee (10.1016/j.ebiom.2023.104512_bib71) 2020; 36 Shen (10.1016/j.ebiom.2023.104512_bib19) 2023 Verma (10.1016/j.ebiom.2023.104512_bib69) 2022 Vaswani (10.1016/j.ebiom.2023.104512_bib9) 2017; 30 Metz (10.1016/j.ebiom.2023.104512_bib44) 2022 Luo (10.1016/j.ebiom.2023.104512_bib8) 2022; 23 Callaway (10.1016/j.ebiom.2023.104512_bib24) 2022; 609 (10.1016/j.ebiom.2023.104512_bib45) 2022 Harrer (10.1016/j.ebiom.2023.104512_bib22) 2019; 40 Hosurmath (10.1016/j.ebiom.2023.104512_bib60) 2021 Kovanovic (10.1016/j.ebiom.2023.104512_bib29) 2023 Binz (10.1016/j.ebiom.2023.104512_bib68) 2023; 120 Zhavoronkov (10.1016/j.ebiom.2023.104512_bib38) 2023 Rushabh (10.1016/j.ebiom.2023.104512_bib21) Tiernan (10.1016/j.ebiom.2023.104512_bib67) 2022 Philippidis (10.1016/j.ebiom.2023.104512_bib25) 2023 Heikkilä (10.1016/j.ebiom.2023.104512_bib56) 2022 Dominguez (10.1016/j.ebiom.2023.104512_bib65) 2022 Goldman (10.1016/j.ebiom.2023.104512_bib49) 2023 Callaway (10.1016/j.ebiom.2023.104512_bib26) 2022; 608 Vincent (10.1016/j.ebiom.2023.104512_bib43) 2023 Singhal (10.1016/j.ebiom.2023.104512_bib6) 2022 Heikkilä (10.1016/j.ebiom.2023.104512_bib52) 2022 Brown (10.1016/j.ebiom.2023.104512_bib11) 2020; 33 Clynch (10.1016/j.ebiom.2023.104512_bib17) 2015; 84 Lipman (10.1016/j.ebiom.2023.104512_bib40) 2023 Vincent (10.1016/j.ebiom.2023.104512_bib50) 2022 Newton (10.1016/j.ebiom.2023.104512_bib55) 2023 Gharpure (10.1016/j.ebiom.2023.104512_bib34) 2020; 69 (10.1016/j.ebiom.2023.104512_bib47) 2023 Perrigo (10.1016/j.ebiom.2023.104512_bib35) 2023 10.1016/j.ebiom.2023.104512_bib1 (10.1016/j.ebiom.2023.104512_bib37) 2023 (10.1016/j.ebiom.2023.104512_bib16) 1988 Harrer (10.1016/j.ebiom.2023.104512_bib76) 2021 Ulloa (10.1016/j.ebiom.2023.104512_bib57) 2022; 4 Snoswell (10.1016/j.ebiom.2023.104512_bib51) 2022 Vincent (10.1016/j.ebiom.2023.104512_bib41) 2023 Topol (10.1016/j.ebiom.2023.104512_bib31) 2023 Komorowski (10.1016/j.ebiom.2023.104512_bib63) 2018; 24 Gu (10.1016/j.ebiom.2023.104512_bib72) 2021; 3 Christian (10.1016/j.ebiom.2023.104512_bib64) 2020 Blackman (10.1016/j.ebiom.2023.104512_bib58) 2022 Sevilla (10.1016/j.ebiom.2023.104512_bib70) 2022 Topol (10.1016/j.ebiom.2023.104512_bib75) 2016 Tiku (10.1016/j.ebiom.2023.104512_bib77) 2023 Roose (10.1016/j.ebiom.2023.104512_bib15) 2022 Perrigo (10.1016/j.ebiom.2023.104512_bib36) 2023 Lardinois (10.1016/j.ebiom.2023.104512_bib30) 2023 Lin (10.1016/j.ebiom.2023.104512_bib59) 2021 Miller (10.1016/j.ebiom.2023.104512_bib54) 2023 Huang (10.1016/j.ebiom.2023.104512_bib28) 2022 37327676 - EBioMedicine. 2023 Jul;93:104671. doi: 10.1016/j.ebiom.2023.104671 |
| References_xml | – volume: 84 start-page: 221 year: 2015 end-page: 228 ident: bib17 article-title: Medical documentation: part of the solution, or part of the problem? A narrative review of the literature on the time spent on and value of medical documentation publication-title: Int J Med Inform – year: 2023 ident: bib49 article-title: Stable diffusion AI art lawsuit, plus caution from OpenAI, DeepMind | the AI beat – start-page: 117 year: 1988 end-page: 133 ident: bib16 publication-title: "On bullshit". The importance of what we care about: philosophical essays – year: 2022 ident: bib69 article-title: Meta's new AI is skilled at a ruthless, power-seeking game – year: 2023 ident: bib46 article-title: Generative AI, a game-changer that society and industry need to be ready for – year: 2022 ident: bib52 article-title: How AI-generated text is poisoning the internet – year: 2021 ident: bib60 article-title: The AI 360 toolkit: AI models explained – volume: 40 start-page: 577 year: 2019 end-page: 591 ident: bib22 article-title: Artificial intelligence for clinical trial design publication-title: Trends Pharmacol Sci – volume: 30 start-page: 1 year: 2017 end-page: 11 ident: bib9 article-title: Attention is all you need publication-title: Adv Neural Inf Process Syst – volume: 69 start-page: 705 year: 2020 end-page: 709 ident: bib34 article-title: Knowledge and practices regarding safe household cleaning and disinfection for COVID-19 prevention – United States, May 2020 publication-title: MMWR Morb Mortal Wkly Rep – year: 2023 ident: bib3 article-title: An important next step on our AI journey – year: 2023 ident: bib21 article-title: Promises – and pitfalls – of ChatGPT-assisted medicine – year: 2021 ident: bib59 article-title: TruthfulQA: measuring how models mimic human falsehoods publication-title: arXiv – volume: 3 start-page: 1 year: 2021 end-page: 23 ident: bib72 article-title: Domain-specific language model pretraining for biomedical natural language processing publication-title: ACM Trans Comput Healthc – year: 2022 ident: bib15 article-title: A coming-out party for generative AI, Silicon Valley's new craze – year: 2023 ident: bib29 article-title: The dawn of AI has come, and its implications for education couldn't be more significant – year: 2022 ident: bib51 article-title: A galaxy of deep science fakes: the problems with Galactica AI – year: 2023 ident: bib36 article-title: DeepMind's CEO helped take AI mainstream. Now he's urging caution – year: 2022 ident: bib73 article-title: Andrew Ng: unbiggen AI – year: 2022 ident: bib70 article-title: Compute trends across three eras of machine learning publication-title: arXiv – year: 2021 ident: bib76 article-title: Commercialising digital health: trading on a dynamic data marketplace – year: 2022 ident: bib6 article-title: Large Language models encode clinical knowledge publication-title: arXiv – volume: 23 year: 2022 ident: bib8 article-title: BioGPT: generative pre-trained transformer for biomedical text generation and mining publication-title: Brief Bioinform – start-page: 610 year: 2021 end-page: 623 ident: bib13 article-title: On the dangers of stochastic parrots: can language models be too big? publication-title: Proceedings of the 2021 ACM Conference on fairness, accountability, and transparency – year: 2018 ident: bib18 publication-title: Do you spend more time on administrative tasks than your peers – year: 2022 ident: bib12 article-title: Bloom: a 176b-parameter open-access multilingual language model publication-title: arXiv – year: 2020 ident: bib64 article-title: The Alignment Problem: machine learning and human values – reference: OpenAI. Introducing ChatGPT. sourced from: – year: 2023 ident: bib47 article-title: We forgot to give neural networks the ability to forget – year: 2022 ident: bib58 article-title: When – and why – you should explain how your AI works – year: 2023 ident: bib55 article-title: Can ‘radioactive data’ save the internet from AI's influence? – year: 2021 ident: bib39 publication-title: Ethics and governance of artificial intelligence for health: WHO guidance – year: 2022 ident: bib65 article-title: OpenAI introduces InstructGPT language model to follow human instructions – volume: 33 start-page: 1877 year: 2020 end-page: 1901 ident: bib11 article-title: Language models are few-shot learners publication-title: Adv Neural Inf Process Syst – year: 2023 ident: bib5 article-title: Dall·E 2 – volume: 24 start-page: 1716 year: 2018 end-page: 1720 ident: bib63 article-title: The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care publication-title: Nat Med – year: 2023 ident: bib48 article-title: Large language models like ChatGPT say the darnedest things – ChatGPT/LLM errors tracker – volume: 28 start-page: 1773 year: 2022 end-page: 1784 ident: bib74 article-title: Multimodal biomedical AI publication-title: Nat Med – year: 2023 ident: bib41 article-title: Top AI conference bans use of ChatGPT and AI language tools to write academic papers – year: 2022 ident: bib20 article-title: ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports publication-title: arXiv – reference: ; 2023. – year: 2023 ident: bib38 article-title: Caution with AI-generated content in biomedicine publication-title: Nature – volume: 120 year: 2023 ident: bib68 article-title: Using cognitive psychology to understand GPT-3 publication-title: Proc Natl Acad Sci U S A – year: 2022 ident: bib4 article-title: Stable diffusion v2.1 and DreamStudio updates – year: 2023 ident: bib25 article-title: Insilico gains FDA's first orphan drug designation for AI candidate – year: 2022 ident: bib7 article-title: Performance of ChatGPT on USMLE: potential for AI-assisted medical education using Large Language Models publication-title: medRxiv – year: 2022 ident: bib56 article-title: Inside a radical new project to democratize AI – start-page: 230163 year: 2023 ident: bib19 article-title: ChatGPT and other Large Language Models are double-edged swords publication-title: Radiology – year: 2023 ident: bib40 article-title: Schools shouldn't ban access to ChatGPT – volume: 609 start-page: 661 year: 2022 ident: bib24 article-title: Scientists are using AI to dream up revolutionary new proteins publication-title: Nature – year: 2023 ident: bib62 article-title: Responsible AI resources – volume: 608 start-page: 15 year: 2022 ident: bib26 article-title: ‘The entire protein universe’: AI predicts shape of nearly every known protein publication-title: Nature – year: 2023 ident: bib35 article-title: OpenAI used Kenyan workers on less than $2 per hour – year: 2022 ident: bib28 article-title: Generative AI: a creative new world – year: 2018 ident: bib10 article-title: Bert: pre-training of deep bidirectional transformers for language understanding publication-title: arXiv – year: 2023 ident: bib43 article-title: AI art tools Stable Diffusion and Midjourney targeted with copyright lawsuit – year: 2016 ident: bib75 article-title: The patient will see you now – year: 2022 ident: bib44 article-title: Lawsuit takes aim at the way AI is built – year: 2023 ident: bib61 article-title: Responsible AI: looking back at 2022, and to the future – year: 2020 ident: bib14 article-title: Timnit Gebru's actual paper may explain why Google ejected her – year: 2022 ident: bib32 article-title: The wild world of PromptBase, the ebay for generative AI prompts – year: 2023 ident: bib37 article-title: A sceptical take on the AI revolution – year: 2022 ident: bib23 article-title: Large language models help decipher clinical notes – year: 2022 ident: bib66 article-title: One man's dream of fusing AI with common sense – reference: . – year: 2023 ident: bib31 article-title: When M.D. Is a machine doctor – volume: 36 start-page: 1234 year: 2020 end-page: 1240 ident: bib71 article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining publication-title: Bioinformatics – year: 2022 ident: bib33 article-title: Meta takes new AI system offline because Twitter users are mean – year: 2023 ident: bib27 article-title: AlphaFold works with other AI tools to go from target to hit moleculer in 30 days – year: 2022 ident: bib45 article-title: Blueprint for trustworthy AI implementation guidance and assurance for healthcare – year: 2022 ident: bib50 article-title: The scary truth about AI copyright is nobody knows what will happen next – year: 2022 ident: bib67 article-title: Meta's AI guru LeCun: most of today's AI approaches will never lead to true intelligence – year: 2023 ident: bib77 article-title: Big Tech was moving cautiously on AI. Then came ChatGPT – year: 2022 ident: bib53 article-title: OpenAI's attempts to watermark AI text hit limits – year: 2023 ident: bib30 article-title: Microsoft launches the new BING, with ChatGPT built in – year: 2023 ident: bib42 article-title: Scientific journals ban ChatGPT use by researchers to author studies – year: 2022 ident: bib2 article-title: Lamda: language models for dialog applications publication-title: arXiv – year: 2023 ident: bib54 article-title: Human writer or AI? Scholars build a detection tool – volume: 4 start-page: 157 year: 2022 ident: bib57 article-title: Invisible clinical labor driving the successful integration of AI in healthcare publication-title: Front Comput Sci – year: 2018 ident: 10.1016/j.ebiom.2023.104512_bib10 article-title: Bert: pre-training of deep bidirectional transformers for language understanding publication-title: arXiv – ident: 10.1016/j.ebiom.2023.104512_bib21 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib52 – volume: 36 start-page: 1234 issue: 4 year: 2020 ident: 10.1016/j.ebiom.2023.104512_bib71 article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz682 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib41 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib43 – volume: 608 start-page: 15 issue: 7921 year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib26 article-title: ‘The entire protein universe’: AI predicts shape of nearly every known protein publication-title: Nature doi: 10.1038/d41586-022-02083-2 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib30 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib42 – volume: 24 start-page: 1716 issue: 11 year: 2018 ident: 10.1016/j.ebiom.2023.104512_bib63 article-title: The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care publication-title: Nat Med doi: 10.1038/s41591-018-0213-5 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib67 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib12 article-title: Bloom: a 176b-parameter open-access multilingual language model publication-title: arXiv – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib25 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib58 – ident: 10.1016/j.ebiom.2023.104512_bib1 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib48 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib7 article-title: Performance of ChatGPT on USMLE: potential for AI-assisted medical education using Large Language Models publication-title: medRxiv – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib33 – year: 2021 ident: 10.1016/j.ebiom.2023.104512_bib60 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib66 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib28 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib55 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib3 – year: 2021 ident: 10.1016/j.ebiom.2023.104512_bib39 – year: 2020 ident: 10.1016/j.ebiom.2023.104512_bib14 – start-page: 610 year: 2021 ident: 10.1016/j.ebiom.2023.104512_bib13 article-title: On the dangers of stochastic parrots: can language models be too big? – volume: 4 start-page: 157 year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib57 article-title: Invisible clinical labor driving the successful integration of AI in healthcare publication-title: Front Comput Sci doi: 10.3389/fcomp.2022.1045704 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib38 article-title: Caution with AI-generated content in biomedicine publication-title: Nature – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib36 – volume: 33 start-page: 1877 year: 2020 ident: 10.1016/j.ebiom.2023.104512_bib11 article-title: Language models are few-shot learners publication-title: Adv Neural Inf Process Syst – volume: 30 start-page: 1 year: 2017 ident: 10.1016/j.ebiom.2023.104512_bib9 article-title: Attention is all you need publication-title: Adv Neural Inf Process Syst – year: 2021 ident: 10.1016/j.ebiom.2023.104512_bib59 article-title: TruthfulQA: measuring how models mimic human falsehoods publication-title: arXiv – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib61 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib20 article-title: ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports publication-title: arXiv – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib27 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib47 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib6 article-title: Large Language models encode clinical knowledge publication-title: arXiv – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib69 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib56 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib29 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib32 – start-page: 230163 year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib19 article-title: ChatGPT and other Large Language Models are double-edged swords publication-title: Radiology doi: 10.1148/radiol.230163 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib53 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib15 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib65 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib46 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib73 – volume: 23 issue: 6 year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib8 article-title: BioGPT: generative pre-trained transformer for biomedical text generation and mining publication-title: Brief Bioinform doi: 10.1093/bib/bbac409 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib37 – volume: 69 start-page: 705 issue: 23 year: 2020 ident: 10.1016/j.ebiom.2023.104512_bib34 article-title: Knowledge and practices regarding safe household cleaning and disinfection for COVID-19 prevention – United States, May 2020 publication-title: MMWR Morb Mortal Wkly Rep doi: 10.15585/mmwr.mm6923e2 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib70 article-title: Compute trends across three eras of machine learning publication-title: arXiv – volume: 28 start-page: 1773 issue: 9 year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib74 article-title: Multimodal biomedical AI publication-title: Nat Med doi: 10.1038/s41591-022-01981-2 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib77 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib40 – volume: 40 start-page: 577 issue: 8 year: 2019 ident: 10.1016/j.ebiom.2023.104512_bib22 article-title: Artificial intelligence for clinical trial design publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2019.05.005 – year: 2018 ident: 10.1016/j.ebiom.2023.104512_bib18 – volume: 84 start-page: 221 issue: 4 year: 2015 ident: 10.1016/j.ebiom.2023.104512_bib17 article-title: Medical documentation: part of the solution, or part of the problem? A narrative review of the literature on the time spent on and value of medical documentation publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2014.12.001 – volume: 609 start-page: 661 year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib24 article-title: Scientists are using AI to dream up revolutionary new proteins publication-title: Nature doi: 10.1038/d41586-022-02947-7 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib45 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib51 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib23 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib35 – year: 2020 ident: 10.1016/j.ebiom.2023.104512_bib64 – year: 2021 ident: 10.1016/j.ebiom.2023.104512_bib76 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib44 – year: 2016 ident: 10.1016/j.ebiom.2023.104512_bib75 – volume: 120 issue: 6 year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib68 article-title: Using cognitive psychology to understand GPT-3 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2218523120 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib49 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib50 – volume: 3 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.ebiom.2023.104512_bib72 article-title: Domain-specific language model pretraining for biomedical natural language processing publication-title: ACM Trans Comput Healthc doi: 10.1145/3458754 – start-page: 117 year: 1988 ident: 10.1016/j.ebiom.2023.104512_bib16 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib31 – year: 2023 ident: 10.1016/j.ebiom.2023.104512_bib54 – year: 2022 ident: 10.1016/j.ebiom.2023.104512_bib2 article-title: Lamda: language models for dialog applications publication-title: arXiv – reference: 37327676 - EBioMedicine. 2023 Jul;93:104671. doi: 10.1016/j.ebiom.2023.104671 |
| SSID | ssj0001542358 |
| Score | 2.666098 |
| SecondaryResourceType | review_article |
| Snippet | Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery,... SummaryLarge Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text,... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104512 |
| SubjectTerms | Advanced Basic Science AI ethics AI trustworthiness Artificial Intelligence Attention Augmented human intelligence Delivery of Health Care Foundation models Generative artificial intelligence Humans Information management Internal Medicine Language Large language models Medicine Personal View |
| Title | Attention is not all you need: the complicated case of ethically using large language models in healthcare and medicine |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2352396423000774 https://www.clinicalkey.es/playcontent/1-s2.0-S2352396423000774 https://dx.doi.org/10.1016/j.ebiom.2023.104512 https://www.ncbi.nlm.nih.gov/pubmed/36924620 https://www.proquest.com/docview/2789713678 https://pubmed.ncbi.nlm.nih.gov/PMC10025985 https://doaj.org/article/a0f75f60b35544d4a5536a8a603e7321 |
| Volume | 90 |
| WOSCitedRecordID | wos000951710800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2352-3964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001542358 issn: 2352-3964 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-6KHgRv-2qSwSPVtN819sqLh5kEVR4t5CmqfuWRyvbPpf335tJ2vKqsnvx2DZp6cw0M9P85jcIvfJUe8sEz4lyNOdlY3PtZJF7LrwnlaPExa4ln9XpqV6tyi97rb4AE5bogZPg3lrSKNFIUoFj5DW3QjBptZWEecViCTklqtxLplJ9MIca0NhZTtCclZJPlEMR3OWhuP0NtA6HTU5R0IVbiuz9C-_0d_T5J4hyzyud3EN3x3ASH6fXuI9u-PYBup0aTO4eosvjYUh4RrzucdsN2G42eNdtcRu81jscoj88g8p9jV3wabhrsAcUfBi6w4CL_4E3gBfH079NHNvn9Hjd4rMZPoZtW-Npp_4R-n7y8duHT_nYaiF3krEh57TitBaNtWHt1lJ6R2tZE-3CsSiYrAog3iO89qphTLlaBNUH1yaobVQVktnH6KDtWv8UYR2GiiqkQSGQ4E7qKmTBsoDblzwoTmWITpI2buQhh3YYGzMBzs5NVI8B9Zikngy9nif9TDQcVw9_DyqchwKHdjwRLMuMlmWus6wM8ckAzFSmGhbWcKP11c9W_5rm-3Fx6E1hemqI-QqmCZYZskBgVeIZkvPMMf5Jcc31j3w52acJqwNs-djWd9veQJ2zAlY-naEnyV5noTAZcm9JSYb0wpIXUlteaddnkYEceHtFqcXh_5DzM3QH3iXBoZ6jg-Fi61-gW-7XsO4vjtBNtdJH8ev-DbnuT5A |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+is+not+all+you+need%3A+the+complicated+case+of+ethically+using+large+language+models+in+healthcare+and+medicine&rft.jtitle=EBioMedicine&rft.au=Harrer%2C+Stefan&rft.date=2023-04-01&rft.pub=Elsevier+B.V&rft.issn=2352-3964&rft.eissn=2352-3964&rft.volume=90&rft_id=info:doi/10.1016%2Fj.ebiom.2023.104512&rft.externalDocID=S2352396423000774 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23523964%2Fcov200h.gif |