Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world
Over the past two decades, resting-state functional connectivity (RSFC) methods have provided new insights into the network organization of the human brain. Studies of brain disorders such as Alzheimer’s disease or depression have adapted tools from graph theory to characterize differences between h...
Gespeichert in:
| Veröffentlicht in: | Network neuroscience (Cambridge, Mass.) Jg. 3; H. 1; S. 1 - 26 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
2019
MIT Press Journals, The The MIT Press |
| Schlagworte: | |
| ISSN: | 2472-1751, 2472-1751 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Over the past two decades, resting-state functional connectivity (RSFC) methods have provided new insights into the network organization of the human brain. Studies of brain disorders such as Alzheimer’s disease or depression have adapted tools from graph theory to characterize differences between healthy and patient populations. Here, we conducted a review of clinical network neuroscience, summarizing methodological details from 106 RSFC studies. Although this approach is prevalent and promising, our review identified four challenges. First, the composition of networks varied remarkably in terms of region parcellation and edge definition, which are fundamental to graph analyses. Second, many studies equated the number of connections across graphs, but this is conceptually problematic in clinical populations and may induce spurious group differences. Third, few graph metrics were reported in common, precluding meta-analyses. Fourth, some studies tested hypotheses at one level of the graph without a clear neurobiological rationale or considering how findings at one level (e.g., global topology) are contextualized by another (e.g., modular structure). Based on these themes, we conducted network simulations to demonstrate the impact of specific methodological decisions on case-control comparisons. Finally, we offer suggestions for promoting convergence across clinical studies in order to facilitate progress in this important field. |
|---|---|
| Bibliographie: | December, 2018 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Handling Editor: Martijn van den Heuvel |
| ISSN: | 2472-1751 2472-1751 |
| DOI: | 10.1162/netn_a_00054 |