l-Carnitine enhances exercise endurance capacity by promoting muscle oxidative metabolism in mice
l-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This s...
Saved in:
| Published in: | Biochemical and biophysical research communications Vol. 464; no. 2; pp. 568 - 573 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
21.08.2015
|
| Subjects: | |
| ISSN: | 0006-291X, 1090-2104, 1090-2104 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | l-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This study was designed to investigate the effects of LC administration on endurance capacity and energy metabolism in mice during treadmill exercise. Male C57BL/6 mice were divided into two groups (sedentary and exercise) and received daily oral administration of LC (150 mg/kg) or vehicle with a high-fat diet for 3 weeks. During the experimental period, all animals were trained three times a week on a motorized treadmill, and the total running time until exhaustion was used as the index of endurance capacity. LC administration induced a significant increase in maximum running time with a reduction of body fat compared with the control group when mice were subjected to programmed exercise. The serum levels of triglyceride, non-esterified fatty acid, and urea nitrogen were significantly lower in the LC group than the corresponding levels in the control group, while serum ketone body levels were higher in the LC group. Muscle glycogen content of LC administered-mice was higher than that of control mice, concomitant with reduced triglyceride content. Importantly, muscle mRNA and protein expressions revealed enhanced fatty acid uptake and oxidative metabolism and increased mitochondrial biogenesis by LC administration. These results suggest that LC administration promotes fat oxidation and mitochondrial biogenesis while sparing stored glycogen in skeletal muscle during prolonged exercise, resulting in enhanced endurance capacity.
•l-Carnitine enhances running endurance capacity in exercise-trained mice.•l-Carnitine promotes muscle oxidative metabolism while sparing glycogen consumption.•l-Carnitine increases markers of mitochondrial biogenesis in skeletal muscle. |
|---|---|
| AbstractList | l-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This study was designed to investigate the effects of LC administration on endurance capacity and energy metabolism in mice during treadmill exercise. Male C57BL/6 mice were divided into two groups (sedentary and exercise) and received daily oral administration of LC (150 mg/kg) or vehicle with a high-fat diet for 3 weeks. During the experimental period, all animals were trained three times a week on a motorized treadmill, and the total running time until exhaustion was used as the index of endurance capacity. LC administration induced a significant increase in maximum running time with a reduction of body fat compared with the control group when mice were subjected to programmed exercise. The serum levels of triglyceride, non-esterified fatty acid, and urea nitrogen were significantly lower in the LC group than the corresponding levels in the control group, while serum ketone body levels were higher in the LC group. Muscle glycogen content of LC administered-mice was higher than that of control mice, concomitant with reduced triglyceride content. Importantly, muscle mRNA and protein expressions revealed enhanced fatty acid uptake and oxidative metabolism and increased mitochondrial biogenesis by LC administration. These results suggest that LC administration promotes fat oxidation and mitochondrial biogenesis while sparing stored glycogen in skeletal muscle during prolonged exercise, resulting in enhanced endurance capacity. L-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This study was designed to investigate the effects of LC administration on endurance capacity and energy metabolism in mice during treadmill exercise. Male C57BL/6 mice were divided into two groups (sedentary and exercise) and received daily oral administration of LC (150 mg/kg) or vehicle with a high-fat diet for 3 weeks. During the experimental period, all animals were trained three times a week on a motorized treadmill, and the total running time until exhaustion was used as the index of endurance capacity. LC administration induced a significant increase in maximum running time with a reduction of body fat compared with the control group when mice were subjected to programmed exercise. The serum levels of triglyceride, non-esterified fatty acid, and urea nitrogen were significantly lower in the LC group than the corresponding levels in the control group, while serum ketone body levels were higher in the LC group. Muscle glycogen content of LC administered-mice was higher than that of control mice, concomitant with reduced triglyceride content. Importantly, muscle mRNA and protein expressions revealed enhanced fatty acid uptake and oxidative metabolism and increased mitochondrial biogenesis by LC administration. These results suggest that LC administration promotes fat oxidation and mitochondrial biogenesis while sparing stored glycogen in skeletal muscle during prolonged exercise, resulting in enhanced endurance capacity.L-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This study was designed to investigate the effects of LC administration on endurance capacity and energy metabolism in mice during treadmill exercise. Male C57BL/6 mice were divided into two groups (sedentary and exercise) and received daily oral administration of LC (150 mg/kg) or vehicle with a high-fat diet for 3 weeks. During the experimental period, all animals were trained three times a week on a motorized treadmill, and the total running time until exhaustion was used as the index of endurance capacity. LC administration induced a significant increase in maximum running time with a reduction of body fat compared with the control group when mice were subjected to programmed exercise. The serum levels of triglyceride, non-esterified fatty acid, and urea nitrogen were significantly lower in the LC group than the corresponding levels in the control group, while serum ketone body levels were higher in the LC group. Muscle glycogen content of LC administered-mice was higher than that of control mice, concomitant with reduced triglyceride content. Importantly, muscle mRNA and protein expressions revealed enhanced fatty acid uptake and oxidative metabolism and increased mitochondrial biogenesis by LC administration. These results suggest that LC administration promotes fat oxidation and mitochondrial biogenesis while sparing stored glycogen in skeletal muscle during prolonged exercise, resulting in enhanced endurance capacity. l-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This study was designed to investigate the effects of LC administration on endurance capacity and energy metabolism in mice during treadmill exercise. Male C57BL/6 mice were divided into two groups (sedentary and exercise) and received daily oral administration of LC (150 mg/kg) or vehicle with a high-fat diet for 3 weeks. During the experimental period, all animals were trained three times a week on a motorized treadmill, and the total running time until exhaustion was used as the index of endurance capacity. LC administration induced a significant increase in maximum running time with a reduction of body fat compared with the control group when mice were subjected to programmed exercise. The serum levels of triglyceride, non-esterified fatty acid, and urea nitrogen were significantly lower in the LC group than the corresponding levels in the control group, while serum ketone body levels were higher in the LC group. Muscle glycogen content of LC administered-mice was higher than that of control mice, concomitant with reduced triglyceride content. Importantly, muscle mRNA and protein expressions revealed enhanced fatty acid uptake and oxidative metabolism and increased mitochondrial biogenesis by LC administration. These results suggest that LC administration promotes fat oxidation and mitochondrial biogenesis while sparing stored glycogen in skeletal muscle during prolonged exercise, resulting in enhanced endurance capacity. •l-Carnitine enhances running endurance capacity in exercise-trained mice.•l-Carnitine promotes muscle oxidative metabolism while sparing glycogen consumption.•l-Carnitine increases markers of mitochondrial biogenesis in skeletal muscle. |
| Author | Pan, Jeong Hoon Kim, Young Jun Kim, Jun Ho Lee, Eui Seop |
| Author_xml | – sequence: 1 givenname: Jun Ho surname: Kim fullname: Kim, Jun Ho – sequence: 2 givenname: Jeong Hoon surname: Pan fullname: Pan, Jeong Hoon – sequence: 3 givenname: Eui Seop surname: Lee fullname: Lee, Eui Seop – sequence: 4 givenname: Young Jun surname: Kim fullname: Kim, Young Jun email: yk46@korea.ac.kr |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26164228$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU2L1TAUhoOMOHdG_4ALydJN60maJg24kcv4AQNuFNyFfJxqLm16Tdph7r-35Y4uXIyuDhye53B43ytykaaEhLxkUDNg8s2hdi77mgNra1A1gH5Cdgw0VJyBuCA7AJAV1-zbJbkq5QDAmJD6GbnkkknBebcjdqj2Nqc4x4QU0w-bPBaK95h9LNsmLHnbUW-P1sf5RN2JHvM0TqvxnY5L8QPS6T4GO8c7pCPO1k1DLCONiY7R43PytLdDwRcP85p8fX_zZf-xuv384dP-3W3lJe_myvfOddy3Ssu2RYesD1IyaIN1WgrdhkYxZnXD274D3fUi6AaFF6i5UNqJ5pq8Pt9dv_u5YJnNGIvHYbAJp6UY1vFWNEJK-W9UgWaqU6r7H5Q122vb1VcP6OJGDOaY42jzyfwOewX4GfB5KiVj_wdhYLZGzcFsjZqtUQPKrI2uUveXtLawZj2lOds4PK6-Pau4xn4XMZviI65lhpjRzyZM8TH9F34hu2Y |
| CitedBy_id | crossref_primary_10_1590_1519_6984_267633 crossref_primary_10_1161_CIRCULATIONAHA_116_022535 crossref_primary_10_1016_j_clnesp_2021_08_005 crossref_primary_10_3390_biology12111450 crossref_primary_10_3390_molecules25092127 crossref_primary_10_1016_j_phrs_2019_104554 crossref_primary_10_1007_s10522_023_10024_3 crossref_primary_10_3390_cells11081297 crossref_primary_10_1039_C9FO02489A crossref_primary_10_1089_jmf_2020_4743 crossref_primary_10_14814_phy2_14282 crossref_primary_10_1016_j_jcis_2021_01_106 crossref_primary_10_1111_obr_12436 crossref_primary_10_1186_s41927_022_00286_8 crossref_primary_10_1016_j_clnesp_2020_03_008 crossref_primary_10_3390_nu15173678 crossref_primary_10_1007_s00204_021_03104_1 crossref_primary_10_1038_s41598_020_70961_8 crossref_primary_10_52361_fsbh_2024_4_e4 crossref_primary_10_1096_fj_202200637R crossref_primary_10_1371_journal_pone_0317939 crossref_primary_10_1136_bjsports_2016_096357 crossref_primary_10_1016_j_rvsc_2020_01_008 crossref_primary_10_1186_s12970_017_0199_2 crossref_primary_10_1016_j_tjnut_2024_07_027 crossref_primary_10_1089_jmf_2021_K_0096 crossref_primary_10_3390_nu12051519 crossref_primary_10_3390_nu11081715 crossref_primary_10_3389_fmicb_2022_1049469 crossref_primary_10_1186_s13098_024_01415_8 crossref_primary_10_3389_fnut_2021_748075 crossref_primary_10_1002_jcsm_12202 |
| Cites_doi | 10.1152/ajpregu.00693.2004 10.3945/an.113.004572 10.1371/journal.pone.0040073 10.1093/ajcn/72.2.558S 10.1073/pnas.98.4.1416 10.3177/jnsv.47.378 10.1007/s11745-012-3698-6 10.1016/j.cmet.2015.04.016 10.1152/jappl.1993.75.4.1595 10.1113/jphysiol.2010.201343 10.1055/s-2007-971932 10.1016/S1388-1981(00)00044-5 10.1079/PNS19980008 10.1076/apab.104.2.129.12878 10.1007/BF00236072 10.1113/jphysiol.2013.255364 10.1152/jappl.1978.45.6.1009 10.1016/j.cell.2008.06.051 10.1016/S0735-1097(99)00413-1 10.1093/jn/125.3.531 10.1113/jphysiol.2005.085043 10.1007/BF01466268 10.1007/s13105-013-0256-5 10.1093/cvr/cvn098 10.1152/japplphysiol.01328.2006 10.1172/JCI17305 10.1007/BF00334420 10.1007/BF00191365 10.1079/BJN2003919 10.1016/j.peptides.2008.03.004 10.1074/jbc.M702329200 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7U7 C1K 7S9 L.6 |
| DOI | 10.1016/j.bbrc.2015.07.009 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Toxicology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Toxicology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Toxicology Abstracts MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1090-2104 |
| EndPage | 573 |
| ExternalDocumentID | 26164228 10_1016_j_bbrc_2015_07_009 S0006291X15302394 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADIYS ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 D0L DM4 DOVZS EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 XPP XSW ZA5 ZMT ~02 ~G- .55 .GJ .HR 1CY 3O- 9DU 9M8 AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM OHT R2- SBG SEW UQL WUQ X7M Y6R ZGI ZKB ~HD ~KM AGCQF AGRNS CGR CUY CVF ECM EIF NPM SSH 7X8 7U7 C1K 7S9 L.6 |
| ID | FETCH-LOGICAL-c628t-cfbb82c579655ebe1fd66105dab96495d3711a9325f8098f4d93e4c4e92479b43 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359514000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-291X 1090-2104 |
| IngestDate | Sun Sep 28 08:34:09 EDT 2025 Tue Oct 07 09:21:25 EDT 2025 Wed Oct 01 14:12:03 EDT 2025 Mon Jul 21 06:02:27 EDT 2025 Tue Nov 18 20:57:41 EST 2025 Sat Nov 29 07:48:48 EST 2025 Fri Feb 23 02:28:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Fatty acid oxidation L-Carnitine Endurance Mitochondrial biogenesis Skeletal muscle |
| Language | English |
| License | Copyright © 2015 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c628t-cfbb82c579655ebe1fd66105dab96495d3711a9325f8098f4d93e4c4e92479b43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 26164228 |
| PQID | 1701337116 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1825434666 proquest_miscellaneous_1709178778 proquest_miscellaneous_1701337116 pubmed_primary_26164228 crossref_primary_10_1016_j_bbrc_2015_07_009 crossref_citationtrail_10_1016_j_bbrc_2015_07_009 elsevier_sciencedirect_doi_10_1016_j_bbrc_2015_07_009 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-21 |
| PublicationDateYYYYMMDD | 2015-08-21 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Biochemical and biophysical research communications |
| PublicationTitleAlternate | Biochem Biophys Res Commun |
| PublicationYear | 2015 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Fushiki, Matsumoto, Inoue (bib3) 1995; 125 Koch, Meredith, Fraker (bib17) 1998; 275 Horowitz, Klein (bib23) 2000; 72 Wang, Zhang, Lu (bib28) 2008; 29 Murase, Haramizu, Shimotoyodome (bib6) 2005; 288 Mojtaba, Laleh, Mohsen (bib15) 2011; 1 Norris, Chen, Fisher (bib20) 2003; 112 Jeukendrup, Saris, Wagenmakers (bib4) 1998; 19 Kim, Kim, Park (bib5) 2012; 47 Oh, Oh, Ohta (bib22) 2003; 90 Echtay, Winkler, Frischmuth (bib25) 2001; 98 Kerner, Hoppel (bib24) 2000; 1486 Narkar, Downes, Yu (bib27) 2008; 134 Ventura-Clapier, Garnier, Veksler (bib30) 2008; 79 Pandareesh, Anand (bib11) 2013; 69 Vecchiet, Lisa, Pieralisi (bib12) 1990; 61 Heinonen, Takala, Kvist (bib13) 1992; 65 Cha, Choi, Suh (bib10) 2001; 47 Mancini, Benaminovitz, Cordisco (bib1) 1999; 34 Miyagawa, Kuwajima, Hanafusa (bib8) 1995; 426 Margolis, Pasiakos (bib29) 2013; 4 Civiletto, Varanita, Cerutti (bib32) 2015; 21 Colombani, Wenk, Kunz (bib14) 1996; 73 Wall, Stephens, Constantin-Teodosiu (bib33) 2011; 589 Stephens, Wall, Marimuthu (bib7) 2013; 591 Jeong, Cho, Kim (bib31) 2012; 7 Freyssenet, Berthon, Denis (bib21) 1996; 104 Brooks, White (bib16) 1978; 45 Lightfoot, Turner, Knab (bib19) 2007; 103 Fueger, Shearer, Krueger (bib18) 2005; 566 Martin, Klein (bib2) 1998; 57 Brass, Scarrow, Ruff (bib9) 1993; 75 Kramer, Al-Khalili, Guigas (bib26) 2007; 282 Margolis (10.1016/j.bbrc.2015.07.009_bib29) 2013; 4 Brass (10.1016/j.bbrc.2015.07.009_bib9) 1993; 75 Lightfoot (10.1016/j.bbrc.2015.07.009_bib19) 2007; 103 Jeukendrup (10.1016/j.bbrc.2015.07.009_bib4) 1998; 19 Horowitz (10.1016/j.bbrc.2015.07.009_bib23) 2000; 72 Ventura-Clapier (10.1016/j.bbrc.2015.07.009_bib30) 2008; 79 Miyagawa (10.1016/j.bbrc.2015.07.009_bib8) 1995; 426 Heinonen (10.1016/j.bbrc.2015.07.009_bib13) 1992; 65 Mojtaba (10.1016/j.bbrc.2015.07.009_bib15) 2011; 1 Brooks (10.1016/j.bbrc.2015.07.009_bib16) 1978; 45 Civiletto (10.1016/j.bbrc.2015.07.009_bib32) 2015; 21 Koch (10.1016/j.bbrc.2015.07.009_bib17) 1998; 275 Stephens (10.1016/j.bbrc.2015.07.009_bib7) 2013; 591 Pandareesh (10.1016/j.bbrc.2015.07.009_bib11) 2013; 69 Oh (10.1016/j.bbrc.2015.07.009_bib22) 2003; 90 Wang (10.1016/j.bbrc.2015.07.009_bib28) 2008; 29 Vecchiet (10.1016/j.bbrc.2015.07.009_bib12) 1990; 61 Colombani (10.1016/j.bbrc.2015.07.009_bib14) 1996; 73 Kerner (10.1016/j.bbrc.2015.07.009_bib24) 2000; 1486 Norris (10.1016/j.bbrc.2015.07.009_bib20) 2003; 112 Kim (10.1016/j.bbrc.2015.07.009_bib5) 2012; 47 Martin (10.1016/j.bbrc.2015.07.009_bib2) 1998; 57 Narkar (10.1016/j.bbrc.2015.07.009_bib27) 2008; 134 Echtay (10.1016/j.bbrc.2015.07.009_bib25) 2001; 98 Kramer (10.1016/j.bbrc.2015.07.009_bib26) 2007; 282 Jeong (10.1016/j.bbrc.2015.07.009_bib31) 2012; 7 Murase (10.1016/j.bbrc.2015.07.009_bib6) 2005; 288 Mancini (10.1016/j.bbrc.2015.07.009_bib1) 1999; 34 Fueger (10.1016/j.bbrc.2015.07.009_bib18) 2005; 566 Cha (10.1016/j.bbrc.2015.07.009_bib10) 2001; 47 Freyssenet (10.1016/j.bbrc.2015.07.009_bib21) 1996; 104 Fushiki (10.1016/j.bbrc.2015.07.009_bib3) 1995; 125 Wall (10.1016/j.bbrc.2015.07.009_bib33) 2011; 589 |
| References_xml | – volume: 1 start-page: 695 year: 2011 end-page: 699 ident: bib15 article-title: Fat metabolism and aerobic capacity does not affect by acute L-carnitine L-tartrate supplementation publication-title: J. Appl. Environ. Biol. Sci. – volume: 1486 start-page: 1 year: 2000 end-page: 17 ident: bib24 article-title: Fatty acid import into mitochondria publication-title: Biochim. Biophys. Acta – volume: 125 start-page: 531 year: 1995 end-page: 539 ident: bib3 article-title: Swimming endurance capacity of mice is increased by chronic consumption of medium-chain triglycerides publication-title: J. Nutr. – volume: 47 start-page: 378 year: 2001 end-page: 384 ident: bib10 article-title: Effects of carnitine coingested caffeine on carnitine metabolism and endurance capacity in athletes publication-title: J. Nutr. Sci. Vitaminol. – volume: 73 start-page: 434 year: 1996 end-page: 439 ident: bib14 article-title: Effects of L-carnitine supplementation on physical performance and energy metabolism of endurance-trained athletes: a double-blind crossover field study publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 282 start-page: 19313 year: 2007 end-page: 19320 ident: bib26 article-title: Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle publication-title: J. Biol. Chem. – volume: 69 start-page: 799 year: 2013 end-page: 809 ident: bib11 article-title: Ergogenic effect of dietary publication-title: J. Physiol. Biochem. – volume: 589 start-page: 963 year: 2011 end-page: 973 ident: bib33 article-title: Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans publication-title: J. Physiol. – volume: 75 start-page: 1595 year: 1993 end-page: 1600 ident: bib9 article-title: Carnitine delays rat skeletal muscle fatigue in vitro publication-title: J. Appl. Physiol. – volume: 4 start-page: 657 year: 2013 end-page: 664 ident: bib29 article-title: Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis publication-title: Adv. Nutr. – volume: 61 start-page: 486 year: 1990 end-page: 490 ident: bib12 article-title: Influence of publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 275 start-page: R1455 year: 1998 end-page: R1460 ident: bib17 article-title: Heritability of treadmill running endurance in rats publication-title: Am. J. Physiol. – volume: 79 start-page: 208 year: 2008 end-page: 217 ident: bib30 article-title: Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha publication-title: Cardiovasc. Res. – volume: 19 start-page: 371 year: 1998 end-page: 379 ident: bib4 article-title: Fat metabolism during exercise: a review–part III: effects of nutritional interventions publication-title: Int. J. Sports Med. – volume: 591 start-page: 4655 year: 2013 end-page: 4666 ident: bib7 article-title: Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans publication-title: J. Physiol. – volume: 103 start-page: 105 year: 2007 end-page: 110 ident: bib19 article-title: Quantitative trait loci associated with maximal exercise endurance in mice publication-title: J. Appl. Physiol. – volume: 65 start-page: 13 year: 1992 end-page: 17 ident: bib13 article-title: Effect of carnitine loading on long-chain fatty acid oxidation, maximal exercise capacity, and nitrogen balance publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 7 start-page: e40073 year: 2012 ident: bib31 article-title: Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats publication-title: PLoS One – volume: 21 start-page: 845 year: 2015 end-page: 854 ident: bib32 article-title: Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models publication-title: Cell Metab. – volume: 566 start-page: 533 year: 2005 end-page: 541 ident: bib18 article-title: Hexokinase II protein content is a determinant of exercise endurance capacity in the mouse publication-title: J. Physiol. – volume: 104 start-page: 129 year: 1996 end-page: 141 ident: bib21 article-title: Mitochondrial biogenesis in skeletal muscle in response to endurance exercises publication-title: Arch. Physiol. Biochem. – volume: 29 start-page: 1176 year: 2008 end-page: 1182 ident: bib28 article-title: The decapeptide CMS001 enhances swimming endurance in mice publication-title: Peptides – volume: 34 start-page: 1807 year: 1999 end-page: 1812 ident: bib1 article-title: Slowed glycogen utilization enhances exercise endurance in patients with heart failure publication-title: J. Am. Coll. Cardiol. – volume: 57 start-page: 49 year: 1998 end-page: 54 ident: bib2 article-title: Use of endogenous carbohydrate and fat as fuels during exercise publication-title: Proc. Nutr. Soc. – volume: 98 start-page: 1416 year: 2001 end-page: 1421 ident: bib25 article-title: Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone) publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 426 start-page: 271 year: 1995 end-page: 279 ident: bib8 article-title: Mitochondrial abnormalities of muscle tissue in mice with juvenile visceral steatosis associated with systemic carnitine deficiency publication-title: Virchows Arch. – volume: 90 start-page: 515 year: 2003 end-page: 520 ident: bib22 article-title: Dose-dependent effect of capsaicin on endurance capacity in rats publication-title: Br. J. Nutr. – volume: 288 start-page: R708 year: 2005 end-page: R715 ident: bib6 article-title: Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 45 start-page: 1009 year: 1978 end-page: 1015 ident: bib16 article-title: Determination of metabolic and heart rate responses of rats to treadmill exercise publication-title: J. Appl. Physiol. Respir. Environ. Exerc. Physiol. – volume: 134 start-page: 405 year: 2008 end-page: 415 ident: bib27 article-title: AMPK and PPARdelta agonists are exercise mimetics publication-title: Cell – volume: 72 start-page: 558S year: 2000 end-page: 563S ident: bib23 article-title: Lipid metabolism during endurance exercise publication-title: Am. J. Clin. Nutr. – volume: 47 start-page: 855 year: 2012 end-page: 863 ident: bib5 article-title: trans-10,cis-12 conjugated linoleic acid enhances endurance capacity by increasing fatty acid oxidation and reducing glycogen utilization in mice publication-title: Lipids – volume: 112 start-page: 608 year: 2003 end-page: 618 ident: bib20 article-title: Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones publication-title: J. Clin. Invest. – volume: 288 start-page: R708 year: 2005 ident: 10.1016/j.bbrc.2015.07.009_bib6 article-title: Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00693.2004 – volume: 4 start-page: 657 year: 2013 ident: 10.1016/j.bbrc.2015.07.009_bib29 article-title: Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis publication-title: Adv. Nutr. doi: 10.3945/an.113.004572 – volume: 7 start-page: e40073 year: 2012 ident: 10.1016/j.bbrc.2015.07.009_bib31 article-title: Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats publication-title: PLoS One doi: 10.1371/journal.pone.0040073 – volume: 72 start-page: 558S year: 2000 ident: 10.1016/j.bbrc.2015.07.009_bib23 article-title: Lipid metabolism during endurance exercise publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/72.2.558S – volume: 98 start-page: 1416 year: 2001 ident: 10.1016/j.bbrc.2015.07.009_bib25 article-title: Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone) publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.98.4.1416 – volume: 47 start-page: 378 year: 2001 ident: 10.1016/j.bbrc.2015.07.009_bib10 article-title: Effects of carnitine coingested caffeine on carnitine metabolism and endurance capacity in athletes publication-title: J. Nutr. Sci. Vitaminol. doi: 10.3177/jnsv.47.378 – volume: 47 start-page: 855 year: 2012 ident: 10.1016/j.bbrc.2015.07.009_bib5 article-title: trans-10,cis-12 conjugated linoleic acid enhances endurance capacity by increasing fatty acid oxidation and reducing glycogen utilization in mice publication-title: Lipids doi: 10.1007/s11745-012-3698-6 – volume: 21 start-page: 845 year: 2015 ident: 10.1016/j.bbrc.2015.07.009_bib32 article-title: Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.04.016 – volume: 75 start-page: 1595 year: 1993 ident: 10.1016/j.bbrc.2015.07.009_bib9 article-title: Carnitine delays rat skeletal muscle fatigue in vitro publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1993.75.4.1595 – volume: 589 start-page: 963 year: 2011 ident: 10.1016/j.bbrc.2015.07.009_bib33 article-title: Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.201343 – volume: 19 start-page: 371 year: 1998 ident: 10.1016/j.bbrc.2015.07.009_bib4 article-title: Fat metabolism during exercise: a review–part III: effects of nutritional interventions publication-title: Int. J. Sports Med. doi: 10.1055/s-2007-971932 – volume: 1486 start-page: 1 year: 2000 ident: 10.1016/j.bbrc.2015.07.009_bib24 article-title: Fatty acid import into mitochondria publication-title: Biochim. Biophys. Acta doi: 10.1016/S1388-1981(00)00044-5 – volume: 57 start-page: 49 year: 1998 ident: 10.1016/j.bbrc.2015.07.009_bib2 article-title: Use of endogenous carbohydrate and fat as fuels during exercise publication-title: Proc. Nutr. Soc. doi: 10.1079/PNS19980008 – volume: 104 start-page: 129 year: 1996 ident: 10.1016/j.bbrc.2015.07.009_bib21 article-title: Mitochondrial biogenesis in skeletal muscle in response to endurance exercises publication-title: Arch. Physiol. Biochem. doi: 10.1076/apab.104.2.129.12878 – volume: 61 start-page: 486 year: 1990 ident: 10.1016/j.bbrc.2015.07.009_bib12 article-title: Influence of L-carnitine administration on maximal physical exercise publication-title: Eur. J. Appl. Physiol. Occup. Physiol. doi: 10.1007/BF00236072 – volume: 591 start-page: 4655 year: 2013 ident: 10.1016/j.bbrc.2015.07.009_bib7 article-title: Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans publication-title: J. Physiol. doi: 10.1113/jphysiol.2013.255364 – volume: 45 start-page: 1009 year: 1978 ident: 10.1016/j.bbrc.2015.07.009_bib16 article-title: Determination of metabolic and heart rate responses of rats to treadmill exercise publication-title: J. Appl. Physiol. Respir. Environ. Exerc. Physiol. doi: 10.1152/jappl.1978.45.6.1009 – volume: 134 start-page: 405 year: 2008 ident: 10.1016/j.bbrc.2015.07.009_bib27 article-title: AMPK and PPARdelta agonists are exercise mimetics publication-title: Cell doi: 10.1016/j.cell.2008.06.051 – volume: 34 start-page: 1807 year: 1999 ident: 10.1016/j.bbrc.2015.07.009_bib1 article-title: Slowed glycogen utilization enhances exercise endurance in patients with heart failure publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(99)00413-1 – volume: 125 start-page: 531 year: 1995 ident: 10.1016/j.bbrc.2015.07.009_bib3 article-title: Swimming endurance capacity of mice is increased by chronic consumption of medium-chain triglycerides publication-title: J. Nutr. doi: 10.1093/jn/125.3.531 – volume: 275 start-page: R1455 year: 1998 ident: 10.1016/j.bbrc.2015.07.009_bib17 article-title: Heritability of treadmill running endurance in rats publication-title: Am. J. Physiol. – volume: 566 start-page: 533 year: 2005 ident: 10.1016/j.bbrc.2015.07.009_bib18 article-title: Hexokinase II protein content is a determinant of exercise endurance capacity in the mouse publication-title: J. Physiol. doi: 10.1113/jphysiol.2005.085043 – volume: 65 start-page: 13 year: 1992 ident: 10.1016/j.bbrc.2015.07.009_bib13 article-title: Effect of carnitine loading on long-chain fatty acid oxidation, maximal exercise capacity, and nitrogen balance publication-title: Eur. J. Appl. Physiol. Occup. Physiol. doi: 10.1007/BF01466268 – volume: 69 start-page: 799 year: 2013 ident: 10.1016/j.bbrc.2015.07.009_bib11 article-title: Ergogenic effect of dietary L-carnitine and fat supplementation against exercise induced physical fatigue in Wistar rats publication-title: J. Physiol. Biochem. doi: 10.1007/s13105-013-0256-5 – volume: 79 start-page: 208 year: 2008 ident: 10.1016/j.bbrc.2015.07.009_bib30 article-title: Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvn098 – volume: 1 start-page: 695 year: 2011 ident: 10.1016/j.bbrc.2015.07.009_bib15 article-title: Fat metabolism and aerobic capacity does not affect by acute L-carnitine L-tartrate supplementation publication-title: J. Appl. Environ. Biol. Sci. – volume: 103 start-page: 105 year: 2007 ident: 10.1016/j.bbrc.2015.07.009_bib19 article-title: Quantitative trait loci associated with maximal exercise endurance in mice publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01328.2006 – volume: 112 start-page: 608 year: 2003 ident: 10.1016/j.bbrc.2015.07.009_bib20 article-title: Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones publication-title: J. Clin. Invest. doi: 10.1172/JCI17305 – volume: 73 start-page: 434 year: 1996 ident: 10.1016/j.bbrc.2015.07.009_bib14 article-title: Effects of L-carnitine supplementation on physical performance and energy metabolism of endurance-trained athletes: a double-blind crossover field study publication-title: Eur. J. Appl. Physiol. Occup. Physiol. doi: 10.1007/BF00334420 – volume: 426 start-page: 271 year: 1995 ident: 10.1016/j.bbrc.2015.07.009_bib8 article-title: Mitochondrial abnormalities of muscle tissue in mice with juvenile visceral steatosis associated with systemic carnitine deficiency publication-title: Virchows Arch. doi: 10.1007/BF00191365 – volume: 90 start-page: 515 year: 2003 ident: 10.1016/j.bbrc.2015.07.009_bib22 article-title: Dose-dependent effect of capsaicin on endurance capacity in rats publication-title: Br. J. Nutr. doi: 10.1079/BJN2003919 – volume: 29 start-page: 1176 year: 2008 ident: 10.1016/j.bbrc.2015.07.009_bib28 article-title: The decapeptide CMS001 enhances swimming endurance in mice publication-title: Peptides doi: 10.1016/j.peptides.2008.03.004 – volume: 282 start-page: 19313 year: 2007 ident: 10.1016/j.bbrc.2015.07.009_bib26 article-title: Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702329200 |
| SSID | ssj0011469 |
| Score | 2.36773 |
| Snippet | l-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty... L-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 568 |
| SubjectTerms | Adipose Tissue - drug effects aerobiosis Animals beta oxidation biogenesis blood serum carnitine Carnitine - pharmacology Endurance energy expenditure exercise fat body Fatty acid oxidation fatty acids Fatty Acids - metabolism free fatty acids fuels glycogen high fat diet L-Carnitine Male males messenger RNA Mice Mice, Inbred C57BL mitochondria Mitochondria, Muscle - drug effects Mitochondria, Muscle - metabolism Mitochondrial biogenesis Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism muscles oral administration Oxidation-Reduction Physical Conditioning, Animal Physical Endurance - drug effects Skeletal muscle triacylglycerols urea nitrogen |
| Title | l-Carnitine enhances exercise endurance capacity by promoting muscle oxidative metabolism in mice |
| URI | https://dx.doi.org/10.1016/j.bbrc.2015.07.009 https://www.ncbi.nlm.nih.gov/pubmed/26164228 https://www.proquest.com/docview/1701337116 https://www.proquest.com/docview/1709178778 https://www.proquest.com/docview/1825434666 |
| Volume | 464 |
| WOSCitedRecordID | wos000359514000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011469 issn: 0006-291X databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lKQguCFoe5VEtEuolMorf3mOIUgVUFQ6plJvlXa-Lq2Rt8qjSH8N_Zca7tqOgRuXAxbKs9TrxfJ6d2Xl8hHwCpwKMWOFYQorE8jLOLOZybjlpgN3CpEi9rCKbCC8vo-mU_eh0fte1MLezUKlos2HlfxU1XANhY-nsP4i7mRQuwDkIHY4gdjg-SPAza4i7HSs0H6X6iVJdNsxKcCVdL6oyAQHLpEAbHAzQUiflqevefL0UmG-4yVPdEnwuV4CTGXJp5Ko3N6lyTRw4R8attuUAz4uylrzpI4SZ7VtFKG3wKDcF2qo3LtpIlq4VkUiBNC6K3YSh0ToH9VaUO5NUOgun2t7EsH3cldWV0Y1iDiyHVew5jWL2dH9zg0BnS836morHrNi-JkP5azHQ-xI3nzlfYLNK26_atPZZu_TV4f7L7_H51cVFPBlNJ2flLwtJyTB4bxhaDsihE_os6pLDwdfR9FsTpoJlxvhX-tebqiydQLj72Pssn_s8m8rCmTwnz4xrQgcaUi9IR6ojcjxQyaqY39EzWiULV1GYI_L4S332ZFhTBh6TZAt7tMYerbFHG-zRGnuU39EGe1RjjzbYoy32aK4oYu8luTofTYZjy3B4WCJwopUlMs4jR2DFs--DwrAzUAJg06cJZwE456kb2nYCToSfRX0WZV7KXOkJTzLHCxn33Fekqwol3xDqusz1gkhyHmYe2LXgGwaZ7CdZP3GxL-QJsev3GwvT4B55VmZxncl4E6NMYpRJ3Me8C3ZCes09pW7vsne0X4stNgaqNjxjgNze-z7WMo5BIhiSS5Qs1ssY2RBcfAXB3jHMhnU1jPaMwY0eeDsBzPNag6j5P05gB9jo7-0DnvCOPG0_z_eku1qs5QfySNyu8uXilByE0-jUfAR_AAWM4Tk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=l-Carnitine+enhances+exercise+endurance+capacity+by+promoting+muscle+oxidative+metabolism+in+mice&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Kim%2C+Jun+Ho&rft.au=Pan%2C+Jeong+Hoon&rft.au=Lee%2C+Eui+Seop&rft.au=Kim%2C+Young+Jun&rft.date=2015-08-21&rft.issn=0006-291X&rft.volume=464&rft.issue=2&rft.spage=568&rft.epage=573&rft_id=info:doi/10.1016%2Fj.bbrc.2015.07.009&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |