Genetic and pathogenic potential of highly pathogenic avian influenza H5N8 viruses from live bird markets in Egypt in avian and mammalian models
Since its first isolation from migratory birds in Egypt in 2016, highly pathogenic avian influenza (HPAI) H5N8 has caused several outbreaks among domestic poultry in various areas of the country affecting poultry health and production systems. However, the genetic and biological properties of the H5...
Gespeichert in:
| Veröffentlicht in: | PloS one Jg. 19; H. 10; S. e0312134 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
29.10.2024
|
| Schlagworte: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Since its first isolation from migratory birds in Egypt in 2016, highly pathogenic avian influenza (HPAI) H5N8 has caused several outbreaks among domestic poultry in various areas of the country affecting poultry health and production systems. However, the genetic and biological properties of the H5N8 HPAI viruses have not been fully elucidated yet. In this study, we aimed to monitor the evolution of circulating H5N8 viruses and identify the pathogenicity and mammalian adaptation
in vitro
and
in vivo
. Three H5N8 HPAI viruses were used in this study and were isolated in 2021–2022 from poultry and wild birds during our routine surveillance. RNA extracts were subjected to full genome sequencing. Genetic, phylogenetic, and antigenic analyses were performed to assess viral characteristics and similarities to previously isolated viruses. Phylogenetic analysis showed that the hemagglutinin genes of the three isolates belonged to clade 2.3.4.4b and grouped with the 2019 viruses from G3 with high similarity to Russian and European lineages. Multiple basic amino acids were observed at cleavage sites in the hemagglutinin proteins of the H5N8 isolates, indicating high pathogenicity. In addition, several mutations associated with increased virulence and polymerase activity in mammals were observed. Growth kinetics assays showed that the H5N8 isolate is capable of replicating efficiently in mammalian cells lines.
In vivo
studies were conducted in SPF chickens (White Leghorn), mice, and hamsters to compare the virological characteristics of the 2022 H5N8 isolates with previous H5N8 viruses isolated in 2016 from the first introduction. The H5N8 viruses caused lethal infection in all tested chickens and transmitted by direct contact. However, we showed that the 2016 H5N8 virus causes a higher mortality in chickens compared to 2022 H5N8 virus. Moreover, the 2022 virus can replicate efficiently in hamsters and mice without preadaptation causing systemic infection. These findings underscore the need for continued surveillance of H5 viruses to identify circulating strains, determine the commercial vaccine’s effectiveness, and identify zoonotic potential. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0312134 |