Guidance for good practice in the application of machine learning in development of toxicological quantitative structure-activity relationships (QSARs)

Recent years have seen a substantial growth in the adoption of machine learning approaches for the purposes of quantitative structure-activity relationship (QSAR) development. Such a trend has coincided with desire to see a shifting in the focus of methodology employed within chemical safety assessm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 18; H. 5; S. e0282924
Hauptverfasser: Belfield, Samuel J., Cronin, Mark T.D., Enoch, Steven J., Firman, James W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 10.05.2023
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent years have seen a substantial growth in the adoption of machine learning approaches for the purposes of quantitative structure-activity relationship (QSAR) development. Such a trend has coincided with desire to see a shifting in the focus of methodology employed within chemical safety assessment: away from traditional reliance upon animal-intensive in vivo protocols, and towards increased application of in silico (or computational) predictive toxicology. With QSAR central amongst techniques applied in this area, the emergence of algorithms trained through machine learning with the objective of toxicity estimation has, quite naturally, arisen. On account of the pattern-recognition capabilities of the underlying methods, the statistical power of the ensuing models is potentially considerable–appropriate for the handling even of vast, heterogeneous datasets. However, such potency comes at a price: this manifesting as the general practical deficits observed with respect to the reproducibility, interpretability and generalisability of the resulting tools. Unsurprisingly, these elements have served to hinder broader uptake (most notably within a regulatory setting). Areas of uncertainty liable to accompany (and hence detract from applicability of) toxicological QSAR have previously been highlighted, accompanied by the forwarding of suggestions for “best practice” aimed at mitigation of their influence. However, the scope of such exercises has remained limited to “classical” QSAR–that conducted through use of linear regression and related techniques, with the adoption of comparatively few features or descriptors. Accordingly, the intention of this study has been to extend the remit of best practice guidance, so as to address concerns specific to employment of machine learning within the field. In doing so, the impact of strategies aimed at enhancing the transparency (feature importance, feature reduction), generalisability (cross-validation) and predictive power (hyperparameter optimisation) of algorithms, trained upon real toxicity data through six common learning approaches, is evaluated.
AbstractList Recent years have seen a substantial growth in the adoption of machine learning approaches for the purposes of quantitative structure-activity relationship (QSAR) development. Such a trend has coincided with desire to see a shifting in the focus of methodology employed within chemical safety assessment: away from traditional reliance upon animal-intensive in vivo protocols, and towards increased application of in silico (or computational) predictive toxicology. With QSAR central amongst techniques applied in this area, the emergence of algorithms trained through machine learning with the objective of toxicity estimation has, quite naturally, arisen. On account of the pattern-recognition capabilities of the underlying methods, the statistical power of the ensuing models is potentially considerable-appropriate for the handling even of vast, heterogeneous datasets. However, such potency comes at a price: this manifesting as the general practical deficits observed with respect to the reproducibility, interpretability and generalisability of the resulting tools. Unsurprisingly, these elements have served to hinder broader uptake (most notably within a regulatory setting). Areas of uncertainty liable to accompany (and hence detract from applicability of) toxicological QSAR have previously been highlighted, accompanied by the forwarding of suggestions for "best practice" aimed at mitigation of their influence. However, the scope of such exercises has remained limited to "classical" QSAR-that conducted through use of linear regression and related techniques, with the adoption of comparatively few features or descriptors. Accordingly, the intention of this study has been to extend the remit of best practice guidance, so as to address concerns specific to employment of machine learning within the field. In doing so, the impact of strategies aimed at enhancing the transparency (feature importance, feature reduction), generalisability (cross-validation) and predictive power (hyperparameter optimisation) of algorithms, trained upon real toxicity data through six common learning approaches, is evaluated.
Recent years have seen a substantial growth in the adoption of machine learning approaches for the purposes of quantitative structure-activity relationship (QSAR) development. Such a trend has coincided with desire to see a shifting in the focus of methodology employed within chemical safety assessment: away from traditional reliance upon animal-intensive in vivo protocols, and towards increased application of in silico (or computational) predictive toxicology. With QSAR central amongst techniques applied in this area, the emergence of algorithms trained through machine learning with the objective of toxicity estimation has, quite naturally, arisen. On account of the pattern-recognition capabilities of the underlying methods, the statistical power of the ensuing models is potentially considerable–appropriate for the handling even of vast, heterogeneous datasets. However, such potency comes at a price: this manifesting as the general practical deficits observed with respect to the reproducibility, interpretability and generalisability of the resulting tools. Unsurprisingly, these elements have served to hinder broader uptake (most notably within a regulatory setting). Areas of uncertainty liable to accompany (and hence detract from applicability of) toxicological QSAR have previously been highlighted, accompanied by the forwarding of suggestions for “best practice” aimed at mitigation of their influence. However, the scope of such exercises has remained limited to “classical” QSAR–that conducted through use of linear regression and related techniques, with the adoption of comparatively few features or descriptors. Accordingly, the intention of this study has been to extend the remit of best practice guidance, so as to address concerns specific to employment of machine learning within the field. In doing so, the impact of strategies aimed at enhancing the transparency (feature importance, feature reduction), generalisability (cross-validation) and predictive power (hyperparameter optimisation) of algorithms, trained upon real toxicity data through six common learning approaches, is evaluated.
Recent years have seen a substantial growth in the adoption of machine learning approaches for the purposes of quantitative structure-activity relationship (QSAR) development. Such a trend has coincided with desire to see a shifting in the focus of methodology employed within chemical safety assessment: away from traditional reliance upon animal-intensive in vivo protocols, and towards increased application of in silico (or computational) predictive toxicology. With QSAR central amongst techniques applied in this area, the emergence of algorithms trained through machine learning with the objective of toxicity estimation has, quite naturally, arisen. On account of the pattern-recognition capabilities of the underlying methods, the statistical power of the ensuing models is potentially considerable-appropriate for the handling even of vast, heterogeneous datasets. However, such potency comes at a price: this manifesting as the general practical deficits observed with respect to the reproducibility, interpretability and generalisability of the resulting tools. Unsurprisingly, these elements have served to hinder broader uptake (most notably within a regulatory setting). Areas of uncertainty liable to accompany (and hence detract from applicability of) toxicological QSAR have previously been highlighted, accompanied by the forwarding of suggestions for "best practice" aimed at mitigation of their influence. However, the scope of such exercises has remained limited to "classical" QSAR-that conducted through use of linear regression and related techniques, with the adoption of comparatively few features or descriptors. Accordingly, the intention of this study has been to extend the remit of best practice guidance, so as to address concerns specific to employment of machine learning within the field. In doing so, the impact of strategies aimed at enhancing the transparency (feature importance, feature reduction), generalisability (cross-validation) and predictive power (hyperparameter optimisation) of algorithms, trained upon real toxicity data through six common learning approaches, is evaluated.Recent years have seen a substantial growth in the adoption of machine learning approaches for the purposes of quantitative structure-activity relationship (QSAR) development. Such a trend has coincided with desire to see a shifting in the focus of methodology employed within chemical safety assessment: away from traditional reliance upon animal-intensive in vivo protocols, and towards increased application of in silico (or computational) predictive toxicology. With QSAR central amongst techniques applied in this area, the emergence of algorithms trained through machine learning with the objective of toxicity estimation has, quite naturally, arisen. On account of the pattern-recognition capabilities of the underlying methods, the statistical power of the ensuing models is potentially considerable-appropriate for the handling even of vast, heterogeneous datasets. However, such potency comes at a price: this manifesting as the general practical deficits observed with respect to the reproducibility, interpretability and generalisability of the resulting tools. Unsurprisingly, these elements have served to hinder broader uptake (most notably within a regulatory setting). Areas of uncertainty liable to accompany (and hence detract from applicability of) toxicological QSAR have previously been highlighted, accompanied by the forwarding of suggestions for "best practice" aimed at mitigation of their influence. However, the scope of such exercises has remained limited to "classical" QSAR-that conducted through use of linear regression and related techniques, with the adoption of comparatively few features or descriptors. Accordingly, the intention of this study has been to extend the remit of best practice guidance, so as to address concerns specific to employment of machine learning within the field. In doing so, the impact of strategies aimed at enhancing the transparency (feature importance, feature reduction), generalisability (cross-validation) and predictive power (hyperparameter optimisation) of algorithms, trained upon real toxicity data through six common learning approaches, is evaluated.
Audience Academic
Author Belfield, Samuel J.
Firman, James W.
Enoch, Steven J.
Cronin, Mark T.D.
AuthorAffiliation School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
Jeonbuk Natiomal University, REPUBLIC OF KOREA
AuthorAffiliation_xml – name: School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
– name: Jeonbuk Natiomal University, REPUBLIC OF KOREA
Author_xml – sequence: 1
  givenname: Samuel J.
  orcidid: 0000-0002-6532-2532
  surname: Belfield
  fullname: Belfield, Samuel J.
– sequence: 2
  givenname: Mark T.D.
  surname: Cronin
  fullname: Cronin, Mark T.D.
– sequence: 3
  givenname: Steven J.
  surname: Enoch
  fullname: Enoch, Steven J.
– sequence: 4
  givenname: James W.
  orcidid: 0000-0003-0319-1407
  surname: Firman
  fullname: Firman, James W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37163504$$D View this record in MEDLINE/PubMed
BookMark eNqNk91q3DAQhU1JaX7aNyitoVCSi91K_pHl3JQQ2jQQCE3a3oqJPNpV0EqOJC_Jk_R1K282JRtCKbqwGH_njH2k2c22rLOYZW8pmdKyoZ-u3eAtmGmfylNS8KItqhfZDm3LYsIKUm492m9nuyFcE1KXnLFX2XbSs7Im1U72-2TQHViJuXI-nznX5b0HGXWqaJvHOebQ90ZLiNrZ3Kl8AXKuLeYGwVttZyPW4RKN6xdo44hEd6ulM26WZCa_GcBGHZPBEvMQ_SDj4HEyNlnqeJd7NCvzMNd9yPe_Xx5dhIPX2UsFJuCb9XMv-_n1y4_jb5Oz85PT46OziWRFEyfIyyvGagBOFVOSNy2jilMEXnegeFkBVx2QhrbsirXQVlQRQJCEsI4WCsq97P29b29cEOtMgyg4pW1BC84T8XlNDFcL7GT6Rw9G9F4vwN8JB1psvrF6LmZuKSihKWbSJof9tYN3NwOGKBY6SDQGLLph1ayoSVNVJKEfnqDPf9KamoFBoa1yqbEcTcVRU_GmblldJGr6DJVWh4t0PBaVTvUNwcGGIDERb-MMhhDE6eXF_7PnvzbZj4_YOYKJ8-DMsDr0TfDd46j_ZvxwXRNweA9I70LwqIRcXSw3Jq9NilyMs_EQmhhnQ6xnI4mrJ-IH_3_K_gBG7xa1
CitedBy_id crossref_primary_10_1016_j_toxlet_2024_07_337
crossref_primary_10_1186_s13321_025_01041_0
crossref_primary_10_1186_s13677_024_00600_4
crossref_primary_10_1016_j_comtox_2025_100374
crossref_primary_10_1016_j_jhazmat_2025_139134
crossref_primary_10_1016_j_comtox_2025_100367
crossref_primary_10_1016_j_comtox_2024_100303
crossref_primary_10_1016_j_tox_2025_154230
crossref_primary_10_1016_j_comtox_2024_100338
crossref_primary_10_1016_j_heliyon_2023_e23810
crossref_primary_10_1016_j_scitotenv_2024_170173
crossref_primary_10_1021_acs_jcim_4c02363
crossref_primary_10_1038_s41597_023_02612_2
crossref_primary_10_1016_j_chemosphere_2024_142362
crossref_primary_10_1016_j_yrtph_2024_105716
crossref_primary_10_3389_fchem_2023_1292027
crossref_primary_10_1007_s00204_024_03803_5
crossref_primary_10_1080_14740338_2025_2460439
crossref_primary_10_1007_s11030_025_11133_6
Cites_doi 10.1080/17460441.2018.1542428
10.3850/978-981-09-5247-1_017
10.1021/tx025589p
10.1002/widm.1200
10.1021/ci900203n
10.1007/s41965-019-00023-0
10.1080/1062936X.2011.604100
10.1016/j.isci.2021.103052
10.1088/1742-6596/1168/2/022022
10.1145/3359786
10.1001/jama.2019.20866
10.1016/j.drudis.2018.05.010
10.1002/qsar.200610151
10.1021/ci00028a014
10.1002/srin.202000053
10.1186/s13321-019-0383-2
10.1186/1758-2946-3-33
10.1142/S0219530516400042
10.1007/s10822-013-9664-4
10.1080/105172397243079
10.1021/ci980033m
10.1002/9780470116449.ch6
10.1186/s13321-021-00519-x
10.1021/ci00057a005
10.1021/ci500747n
10.1111/j.1600-0587.2012.07348.x
10.1080/10629360412331319808
10.1002/wcms.1475
10.1016/j.ecoenv.2020.110179
10.1021/acs.chemrestox.0c00373
10.1021/ci00037a002
10.1002/minf.201000173
10.1038/s41598-018-24783-4
10.1038/s41592-021-01256-7
10.1002/minf.201600118
10.1016/j.eswa.2022.117230
10.1016/j.chemolab.2011.08.007
10.1021/acs.jcim.6b00591
10.1016/j.yrtph.2021.104956
10.1109/ACCESS.2021.3119110
10.1609/aaai.v32i1.11503
10.1186/s13321-020-0408-x
10.1038/s42256-019-0138-9
10.1016/j.jeconom.2015.02.006
10.1021/acs.jcim.2c01422
10.1177/026119291304100111
10.1016/j.yrtph.2019.04.007
10.3390/electronics8080832
10.2174/157340906778992346
10.1016/j.conbuildmat.2019.07.224
10.1089/big.2018.0175
10.1177/2053951716670189
10.1007/BF00994018
10.1021/ci200409x
10.1021/jm4004285
10.1093/toxsci/kfac042
10.1093/bioinformatics/btq134
10.1007/s10822-008-9240-5
10.1023/A:1010933404324
10.1016/j.chemosphere.2009.12.055
10.1007/s11229-022-03485-5
10.1002/jcc.21707
10.1177/0261192920965977
10.1093/toxsci/kfac075
10.1021/acs.est.0c06551
ContentType Journal Article
Copyright Copyright: © 2023 Belfield et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Belfield et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Belfield et al 2023 Belfield et al
2023 Belfield et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Belfield et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Belfield et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Belfield et al 2023 Belfield et al
– notice: 2023 Belfield et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOI 10.1371/journal.pone.0282924
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
Environmental Science Collection (ProQuest)
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE - Academic

MEDLINE
Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Good practice in application of machine learning for toxicology QSAR
EISSN 1932-6203
ExternalDocumentID 2811921288
PMC10171609
A748759652
37163504
10_1371_journal_pone_0282924
Genre Journal Article
GeographicLocations United Kingdom
United States--US
GeographicLocations_xml – name: United Kingdom
– name: United States--US
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c627t-e83b665aa81f6fc87961f81ea85daf834a8fda07196b69a941f0aeac006d12fa3
IEDL.DBID 7RV
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022290100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Jul 02 11:03:49 EDT 2023
Tue Nov 04 02:06:46 EST 2025
Sun Sep 28 01:07:44 EDT 2025
Tue Oct 07 08:10:50 EDT 2025
Sat Nov 29 13:00:19 EST 2025
Sat Nov 29 09:48:07 EST 2025
Wed Nov 26 11:10:40 EST 2025
Wed Nov 26 11:29:57 EST 2025
Thu May 22 21:20:06 EDT 2025
Thu Apr 03 07:07:17 EDT 2025
Tue Nov 18 22:01:44 EST 2025
Sat Nov 29 03:27:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright: © 2023 Belfield et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-e83b665aa81f6fc87961f81ea85daf834a8fda07196b69a941f0aeac006d12fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-0319-1407
0000-0002-6532-2532
OpenAccessLink https://www.proquest.com/docview/2811921288?pq-origsite=%requestingapplication%
PMID 37163504
PQID 2811921288
PQPubID 1436336
PageCount e0282924
ParticipantIDs plos_journals_2811921288
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10171609
proquest_miscellaneous_2812507440
proquest_journals_2811921288
gale_infotracmisc_A748759652
gale_infotracacademiconefile_A748759652
gale_incontextgauss_ISR_A748759652
gale_incontextgauss_IOV_A748759652
gale_healthsolutions_A748759652
pubmed_primary_37163504
crossref_citationtrail_10_1371_journal_pone_0282924
crossref_primary_10_1371_journal_pone_0282924
PublicationCentury 2000
PublicationDate 2023-05-10
PublicationDateYYYYMMDD 2023-05-10
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Publisher_xml – name: Public Library of Science
References C Cortes (pone.0282924.ref034) 1995; 20
R Henckaerts (pone.0282924.ref053) 2022; 202
OE Gundersen (pone.0282924.ref084) 2020; 41
M Hewitt (pone.0282924.ref059) 2011; 22
C Gao (pone.0282924.ref090) 2018; 8
Z Lin (pone.0282924.ref017) 2022; 189
AL Beam (pone.0282924.ref085) 2020; 323
G Hooker (pone.0282924.ref075) 2019
D Fryer (pone.0282924.ref077) 2021; 9
TW Schultz (pone.0282924.ref058) 2002; 15
YH Zhao (pone.0282924.ref056) 2010; 79
HK Jabbar (pone.0282924.ref062) 2014
A Cherkasov (pone.0282924.ref002) 2014; 57
B Ghojogh (pone.0282924.ref093) 2019
R. Andonie (pone.0282924.ref045) 2019; 1
Y-C Lo (pone.0282924.ref011) 2018; 23
Association for Computing Machinery (pone.0282924.ref071) 2016
M Sapounidou (pone.0282924.ref080) 2021; 55
P Sugimura (pone.0282924.ref087) 2018
PM Khan (pone.0282924.ref050) 2018; 13
M Matveieva (pone.0282924.ref091) 2021; 13
T Chen (pone.0282924.ref026) 2016
J Ma (pone.0282924.ref040) 2015; 55
V Vakharia (pone.0282924.ref065) 2019; 225
NM O’Boyle (pone.0282924.ref020) 2011; 3
VE Kuz’min (pone.0282924.ref070) 2011; 30
V Ruusmann (pone.0282924.ref021) 2013; 27
U. Sahlin (pone.0282924.ref081) 2013; 41
W Zheng (pone.0282924.ref036) 2000; 40
P. Gramatica (pone.0282924.ref042) 2007; 26
DM Hawkins (pone.0282924.ref061) 2004; 44
DS Watson (pone.0282924.ref078) 2021
O. Ivanciuc (pone.0282924.ref035) 2007
VS Rose (pone.0282924.ref004) 1991; 10
Chollet F. Keras (pone.0282924.ref027) 2015
F. Thoreau (pone.0282924.ref052) 2016; 3
Lecture Notes in Computer Science (pone.0282924.ref055) 2008
MBA McDermott (pone.0282924.ref089) 2021; 13
D Gadaleta (pone.0282924.ref023) 2019; 11
F Pedregosa (pone.0282924.ref025) 2011; 12
J Hemmerich (pone.0282924.ref005) 2020; 10
J Mao (pone.0282924.ref006) 2021; 24
S Scardapane (pone.0282924.ref086) 2017; 7
A Altmann (pone.0282924.ref046) 2010; 26
HN Mhaskar (pone.0282924.ref039) 2016; 14
J Bergstra (pone.0282924.ref044) 2012; 13
Addition Wesley Publishing Company (pone.0282924.ref038) 1991
T Zhu (pone.0282924.ref079) 2020; 190
S Wold (pone.0282924.ref003) 1982; 23
R. Guha (pone.0282924.ref067) 2008; 22
T Ghafourian (pone.0282924.ref049) 2005; 16
C Recaido (pone.0282924.ref066) 2022
Association for Computing Machinery (pone.0282924.ref043) 2019
L. Breiman (pone.0282924.ref031) 2001; 45
S Lundberg (pone.0282924.ref047) 2017
CW Yap (pone.0282924.ref024) 2011; 32
JC Madden (pone.0282924.ref001) 2020; 48
Humana (pone.0282924.ref010) 2020
AF Agarap (pone.0282924.ref030) 2018
BJ Heil (pone.0282924.ref088) 2021; 18
Weininger (pone.0282924.ref019) 1988; 28
PG Polishchuk (pone.0282924.ref032) 2009; 49
L Wu (pone.0282924.ref068) 2021; 34
LS Carlsson (pone.0282924.ref076) 2020; 91
DA Winkler (pone.0282924.ref041) 2017; 37
A Varnek (pone.0282924.ref008) 2012; 52
M Abadi (pone.0282924.ref028) 2015
SJ Belfield (pone.0282924.ref012) 2021; 123
SM Lundberg (pone.0282924.ref048) 2020; 2
X. Ying (pone.0282924.ref016) 2019; 1168
DV Carvalho (pone.0282924.ref069) 2019; 8
HAA Alfeilat (pone.0282924.ref037) 2019; 7
Y Zhang (pone.0282924.ref064) 2015; 187
OE Gundersen (pone.0282924.ref015) 2018; 32
PM Khan (pone.0282924.ref092) 2018; 13
Humana (pone.0282924.ref007) 2020
DS Watson (pone.0282924.ref014) 2022; 200
MT Cronin (pone.0282924.ref018) 2019; 106
MT Cronin (pone.0282924.ref057) 2006; 2
B Kovalerchuk (pone.0282924.ref072) 2020
N Schaduangrat (pone.0282924.ref083) 2020; 12
DP Kingma (pone.0282924.ref029) 2014
GP Dexter (pone.0282924.ref063) 2020
TA Soares (pone.0282924.ref009) 2022; 62
TW Schultz (pone.0282924.ref022) 1997; 7
M Du (pone.0282924.ref073) 2019; 63
LH Hall (pone.0282924.ref074) 1995; 35
pone.0282924.ref013
AL Karmaus (pone.0282924.ref060) 2022; 188
J Pineau (pone.0282924.ref082) 2021; 22
CF Dormann (pone.0282924.ref054) 2013; 36
PK Ojha (pone.0282924.ref051) 2011; 109
N Srivastava (pone.0282924.ref094) 2014; 15
RP Sheridan (pone.0282924.ref033) 2016; 56
References_xml – volume: 13
  start-page: 1075
  year: 2018
  ident: pone.0282924.ref050
  article-title: Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR)
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2018.1542428
– year: 2014
  ident: pone.0282924.ref062
  article-title: Methods to Avoid Over-fitting and Under-fitting in Supervised Machine Learning (Comparative Study)
  publication-title: Computer Science, Communication & Instrumentation Devices
  doi: 10.3850/978-981-09-5247-1_017
– volume: 15
  start-page: 1602
  issue: 12
  year: 2002
  ident: pone.0282924.ref058
  article-title: Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx025589p
– volume: 7
  start-page: e1200
  year: 2017
  ident: pone.0282924.ref086
  article-title: Randomness in neural networks: an overview
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1200
– volume: 49
  start-page: 2481
  year: 2009
  ident: pone.0282924.ref032
  article-title: Application of Random Forest Approach to QSAR Prediction of Aquatic Toxicity
  publication-title: J Chem Inf Model
  doi: 10.1021/ci900203n
– volume: 1
  start-page: 279
  year: 2019
  ident: pone.0282924.ref045
  article-title: Hyperparameter optimization in learning systems
  publication-title: J Membr Comput
  doi: 10.1007/s41965-019-00023-0
– volume: 22
  start-page: 621
  year: 2011
  ident: pone.0282924.ref059
  article-title: Repeatability analysis of the Tetrahymena pyriformis population growth impairment assay
  publication-title: SAR QSAR Environ Res
  doi: 10.1080/1062936X.2011.604100
– volume: 41
  start-page: 103
  issue: 3
  year: 2020
  ident: pone.0282924.ref084
  article-title: The Reproducibility Crisis is Real
  publication-title: AI Mag
– year: 2017
  ident: pone.0282924.ref047
  article-title: A Unified Approach to Interpreting Model Predictions
  publication-title: arXiv:1705.07874v2
– volume: 24
  start-page: 103052
  issue: 9
  year: 2021
  ident: pone.0282924.ref006
  article-title: Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103052
– volume: 1168
  start-page: 022022
  year: 2019
  ident: pone.0282924.ref016
  article-title: An Overview of Overfitting and its Solutions
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1168/2/022022
– volume: 10
  start-page: 6
  issue: 1
  year: 1991
  ident: pone.0282924.ref004
  article-title: An Application of Unsupervised Neural Network Methodology Kohonen Topology-Preserving Mapping to QSAR Analysis
  publication-title: Mol Inform
– volume: 63
  start-page: 68
  issue: 1
  year: 2019
  ident: pone.0282924.ref073
  article-title: Techniques for Interpretable Machine Learning
  publication-title: Commun ACM
  doi: 10.1145/3359786
– start-page: 1135
  volume-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining
  year: 2016
  ident: pone.0282924.ref071
– volume: 323
  start-page: 305
  issue: 4
  year: 2020
  ident: pone.0282924.ref085
  article-title: Challenges to the Reproducibility of Machine Learning Models in Health Care
  publication-title: JAMA
  doi: 10.1001/jama.2019.20866
– volume: 23
  start-page: 1538
  year: 2018
  ident: pone.0282924.ref011
  article-title: Machine learning in chemoinformatics and drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2018.05.010
– volume: 26
  start-page: 694
  year: 2007
  ident: pone.0282924.ref042
  article-title: Principles of QSAR models validation: internal and external
  publication-title: QSAR Comb Sci
  doi: 10.1002/qsar.200610151
– start-page: 111
  volume-title: Ecotoxicological QSARs, Methods in Pharmacology and Toxicology
  year: 2020
  ident: pone.0282924.ref010
– volume: 35
  start-page: 1039
  issue: 6
  year: 1995
  ident: pone.0282924.ref074
  article-title: Electrotopological State Indices for Atom Types: A Novel Combination of Electronic, Topological, and Valence State Information
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00028a014
– volume: 91
  start-page: 2000053
  year: 2020
  ident: pone.0282924.ref076
  article-title: Interpretable Machine Learning–Tools to interpret the Predictions of a Machine Learning Model Predicting the Electrical Energy Consumption of an Electric Arc Furnace
  publication-title: Steel Res Int
  doi: 10.1002/srin.202000053
– volume: 11
  start-page: 58
  year: 2019
  ident: pone.0282924.ref023
  article-title: SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data
  publication-title: J Cheminform
  doi: 10.1186/s13321-019-0383-2
– start-page: 565
  volume-title: Knowledge-Based Intelligent Information and Engineering Systems
  year: 2008
  ident: pone.0282924.ref055
– volume: 3
  start-page: 33
  year: 2011
  ident: pone.0282924.ref020
  article-title: Open Babel: An open chemical toolbox
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-3-33
– volume: 14
  start-page: 829
  issue: 6
  year: 2016
  ident: pone.0282924.ref039
  article-title: Deep vs. Shallow Networks: an Approximation Theory Perspective
  publication-title: Anal Appl
  doi: 10.1142/S0219530516400042
– start-page: 2623
  volume-title: Optuna: A Next-generation Hyperparameter Opimization Framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ‘19)
  year: 2019
  ident: pone.0282924.ref043
– volume: 27
  start-page: 583
  year: 2013
  ident: pone.0282924.ref021
  article-title: From data point timelines to a well curated data set, data mining of experimental data and chemical structure data from scientific articles, problems and possible solutions
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-013-9664-4
– year: 2020
  ident: pone.0282924.ref072
  article-title: Survey of Explainable Machine Learning with Visual and Granular Methods beyond Quasi-explanations
  publication-title: arXiv:2009.10221v1
– volume: 7
  start-page: 289
  year: 1997
  ident: pone.0282924.ref022
  article-title: Tetratox: Tetrahymena pyriformis population growth impairment endpoint–a surrogate for fish lethality
  publication-title: Toxicol Mech Methods
  doi: 10.1080/105172397243079
– volume: 40
  start-page: 185
  year: 2000
  ident: pone.0282924.ref036
  article-title: Novel Variable Selection Quantitative Structure-Property Relationship Approach Based on the k-Nearest Neighbor Principle
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci980033m
– year: 2019
  ident: pone.0282924.ref075
  article-title: Unrestricted Permutation forces Extrapolation: Variable Importance Requires at least One More Model, or There Is No Free Variable Importance
  publication-title: arXiv:1905.03151
– start-page: 291
  year: 2007
  ident: pone.0282924.ref035
  article-title: Applications of Support Vector Machines in Chemistry
  publication-title: Reviews in Computational Chemistry
  doi: 10.1002/9780470116449.ch6
– volume: 13
  start-page: 41
  year: 2021
  ident: pone.0282924.ref091
  article-title: Benchmarks for interpretation of QSAR models
  publication-title: J Cheminform
  doi: 10.1186/s13321-021-00519-x
– volume: 28
  start-page: 31
  issue: 1
  year: 1988
  ident: pone.0282924.ref019
  article-title: a chemical language and information system. 1. Introduction to methodology and encoding rules
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00057a005
– volume: 55
  start-page: 263
  issue: 2
  year: 2015
  ident: pone.0282924.ref040
  article-title: Deep Neural Nets as a Method for Quantitative Structure−Activity Relationships
  publication-title: J Chem Inf Model
  doi: 10.1021/ci500747n
– volume: 36
  start-page: 27
  year: 2013
  ident: pone.0282924.ref054
  article-title: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2012.07348.x
– volume: 16
  start-page: 171
  year: 2005
  ident: pone.0282924.ref049
  article-title: The impact of variable selection on the modelling of oestrogenicity
  publication-title: SAR QSAR Environ Res
  doi: 10.1080/10629360412331319808
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: pone.0282924.ref094
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 10
  start-page: e1475
  year: 2020
  ident: pone.0282924.ref005
  article-title: In silico toxicology: From structure–activity relationships towards deep learning and adverse outcome pathways
  publication-title: Wiley Interdiscip Rev Comput. Mol Sci
  doi: 10.1002/wcms.1475
– volume: 190
  start-page: 110179
  year: 2020
  ident: pone.0282924.ref079
  article-title: Development of pp-LFER and QSPR models for predicting the diffusion coefficients of hydrophobic organic compounds in LDPE
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2020.110179
– year: 2018
  ident: pone.0282924.ref030
  article-title: Deep Learning using Rectified Linear Units (ReLU)
  publication-title: arXiv:1803.08375
– volume: 34
  start-page: 541
  issue: 2
  year: 2021
  ident: pone.0282924.ref068
  article-title: Trade-off Predictivity and Explainability for Machine-Learning Powered Predictive Toxicology: An in-Depth Investigation with Tox21 Data Sets
  publication-title: Chem Res Toxicol
  doi: 10.1021/acs.chemrestox.0c00373
– volume: 23
  start-page: 6
  issue: 1
  year: 1982
  ident: pone.0282924.ref003
  article-title: Multivariate Quantitative Structure-Activity Relationships (QSAR): Conditions for Their Applicability
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00037a002
– volume: 30
  start-page: 593
  issue: 6–7
  year: 2011
  ident: pone.0282924.ref070
  article-title: Interpretation of QSAR Models Based on Random Forest Methods
  publication-title: Mol Inform
  doi: 10.1002/minf.201000173
– ident: pone.0282924.ref013
– volume: 13
  issue: 586
  year: 2021
  ident: pone.0282924.ref089
  article-title: Reproducibility in Machine Learning for Health
  publication-title: Sci Transl Med
– volume: 8
  start-page: 7129
  year: 2018
  ident: pone.0282924.ref090
  article-title: Model-based and Model-free Machine Learning Techniques for Diagnostic Prediction and Classification of Clinical Outcomes in Parkinson’s Disease
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24783-4
– start-page: 152
  year: 2020
  ident: pone.0282924.ref063
  article-title: Generalization of Machine Learning Approaches to Identify Notifiable Conditions from a Statewide Health Information Exchange
  publication-title: AMIA Jt Summits Transl Sci Proc
– volume: 18
  start-page: 1132
  year: 2021
  ident: pone.0282924.ref088
  article-title: Reproducibility standards for machine learning in the life sciences
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01256-7
– year: 2016
  ident: pone.0282924.ref026
  article-title: XGBoost: A Scalable Tree Boosting System
  publication-title: arXiv:1603.02754
– volume: 44
  start-page: 1
  year: 2004
  ident: pone.0282924.ref061
  article-title: 2004. The Problem of Overfitting
  publication-title: J Chem Inf Comput Sci
– volume: 37
  start-page: 1600118
  year: 2017
  ident: pone.0282924.ref041
  article-title: Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR
  publication-title: Mol Inform
  doi: 10.1002/minf.201600118
– volume: 202
  start-page: 117230
  year: 2022
  ident: pone.0282924.ref053
  article-title: When stakes are high: Balancing accuracy and transparency with Model-Agnostic Interpretable Data-driven suRRogates
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117230
– volume: 109
  start-page: 146
  issue: 2
  year: 2011
  ident: pone.0282924.ref051
  article-title: Comparative QSARs for antimalarial endochins: Importance of descriptor-thinning and noise reduction prior to feature selection
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2011.08.007
– volume: 56
  start-page: 2353
  year: 2016
  ident: pone.0282924.ref033
  article-title: Extreme Gradient Boosting as a Method for Quantitative Structure-Activity Relationships
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00591
– volume: 123
  start-page: 104956
  year: 2021
  ident: pone.0282924.ref012
  article-title: Determination of “fitness-for-purpose” of quantitative structure-activity relationship (QSAR) models to predict (eco-) toxicological endpoints for regulatory use
  publication-title: Regul Toxicol Pharmacol
  doi: 10.1016/j.yrtph.2021.104956
– volume: 9
  start-page: 144352
  year: 2021
  ident: pone.0282924.ref077
  article-title: Shapley Values for Feature Selection: The Good, the Bad, and the Axioms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3119110
– volume: 12
  start-page: 2825
  year: 2011
  ident: pone.0282924.ref025
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J Mach Learn Res
– volume: 32
  issue: 1
  year: 2018
  ident: pone.0282924.ref015
  article-title: State of the Art: Reproducibility in Artificial Intelligence
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v32i1.11503
– volume: 12
  start-page: 9
  year: 2020
  ident: pone.0282924.ref083
  article-title: Towards reproducible computational drug discovery
  publication-title: J Cheminform
  doi: 10.1186/s13321-020-0408-x
– volume: 2
  start-page: 56
  year: 2020
  ident: pone.0282924.ref048
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0138-9
– year: 2015
  ident: pone.0282924.ref028
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
  publication-title: arXiv:1603.04467v2
– volume: 187
  start-page: 95
  year: 2015
  ident: pone.0282924.ref064
  article-title: Cross-validation for selecting a model selection procedure
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2015.02.006
– start-page: 151
  volume-title: Ecotoxicological QSARs, Methods in Pharmacology and Toxicology
  year: 2020
  ident: pone.0282924.ref007
– volume: 13
  start-page: 1075
  year: 2018
  ident: pone.0282924.ref092
  article-title: Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR)
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2018.1542428
– volume: 62
  start-page: 5317
  issue: 22
  year: 2022
  ident: pone.0282924.ref009
  article-title: The (Re)-Evolution of Quantitative Structure–Activity Relationship (QSAR) Studies Propelled by the Surge of Machine Learning Methods
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.2c01422
– volume-title: Neural Networks Algorithms, Applications, and Programming Techniques
  year: 1991
  ident: pone.0282924.ref038
– volume: 41
  start-page: 111
  year: 2013
  ident: pone.0282924.ref081
  article-title: Uncertainty in QSAR predictions
  publication-title: Altern Lab Anim
  doi: 10.1177/026119291304100111
– volume: 106
  start-page: 90
  year: 2019
  ident: pone.0282924.ref018
  article-title: Identification and description of the uncertainty, variability, bias and influence in quantitative structure-activity relationships (QSARs) for toxicity prediction
  publication-title: Regul Toxicol Pharmacol
  doi: 10.1016/j.yrtph.2019.04.007
– volume: 8
  start-page: 832
  issue: 8
  year: 2019
  ident: pone.0282924.ref069
  article-title: Machine Learning Interpretability: A Survey on Methods and Metrics
  publication-title: Electronics
  doi: 10.3390/electronics8080832
– volume: 13
  start-page: 281
  year: 2012
  ident: pone.0282924.ref044
  article-title: Random Search for Hyper-Parameter Optimization
  publication-title: J Mach Learn Res
– year: 2018
  ident: pone.0282924.ref087
  article-title: Building a Reproducible Machine Learning Pipeline
  publication-title: arXiv:1810.04570
– volume: 2
  start-page: 405
  issue: 4
  year: 2006
  ident: pone.0282924.ref057
  article-title: The role of hydrophobicity in toxicity prediction
  publication-title: Curr Comput Aided Drug Des
  doi: 10.2174/157340906778992346
– year: 2019
  ident: pone.0282924.ref093
  article-title: The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial
  publication-title: arXiv:1905.12787
– volume: 225
  start-page: 292
  year: 2019
  ident: pone.0282924.ref065
  article-title: Prediction of compressive strength and Portland cement composition using cross-validation and feature ranking techniques
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2019.07.224
– volume: 7
  start-page: 221
  issue: 4
  year: 2019
  ident: pone.0282924.ref037
  article-title: Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review
  publication-title: Big Data
  doi: 10.1089/big.2018.0175
– volume: 3
  issue: 2
  year: 2016
  ident: pone.0282924.ref052
  article-title: A mechanistic interpretation, if possible’: How does predictive modelling causality affect the regulation of chemicals?
  publication-title: Big Data Soc
  doi: 10.1177/2053951716670189
– year: 2015
  ident: pone.0282924.ref027
– volume: 20
  start-page: 273
  year: 1995
  ident: pone.0282924.ref034
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 52
  start-page: 1413
  issue: 6
  year: 2012
  ident: pone.0282924.ref008
  article-title: Machine Learning Methods for Property Prediction in Chemoinformatics: Quo Vadis?
  publication-title: J Chem Inf Model
  doi: 10.1021/ci200409x
– volume: 57
  start-page: 4977
  issue: 12
  year: 2014
  ident: pone.0282924.ref002
  article-title: QSAR Modeling: Where Have You Been? Where Are You Going To?
  publication-title: J Med Chem
  doi: 10.1021/jm4004285
– volume: 188
  start-page: 34
  year: 2022
  ident: pone.0282924.ref060
  article-title: Evaluation of Variability Across Rat Acute Oral Systemic Toxicity Studies
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfac042
– volume: 22
  start-page: 1
  year: 2021
  ident: pone.0282924.ref082
  article-title: Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program)
  publication-title: J Mach Learn Res
– volume: 26
  start-page: 1340
  issue: 10
  year: 2010
  ident: pone.0282924.ref046
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq134
– volume: 22
  start-page: 857
  year: 2008
  ident: pone.0282924.ref067
  article-title: On the interpretation and interpretability of quantitative structure-activity relationship models
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-008-9240-5
– volume: 45
  start-page: 5
  year: 2001
  ident: pone.0282924.ref031
  article-title: Random Forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– year: 2014
  ident: pone.0282924.ref029
  article-title: Adam: A Method for Stochastic Optimization
  publication-title: arXiv:1412.6980
– volume: 79
  start-page: 72
  issue: 1
  year: 2010
  ident: pone.0282924.ref056
  article-title: Toxicity of organic chemicals to Tetrahymena pyriformis: Effect of polarity and ionization on toxicity
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.12.055
– volume: 200
  start-page: 65
  year: 2022
  ident: pone.0282924.ref014
  article-title: Conceptual challenges for interpretable machine learning
  publication-title: Synthese
  doi: 10.1007/s11229-022-03485-5
– volume: 32
  start-page: 1466
  year: 2011
  ident: pone.0282924.ref024
  article-title: PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21707
– year: 2021
  ident: pone.0282924.ref078
  article-title: Rational Shapley Values
  publication-title: arXiv:2106.10191v2
– volume: 48
  start-page: 146
  issue: 4
  year: 2020
  ident: pone.0282924.ref001
  article-title: A Review of In Silico Tools as Alternatives to Animal Testing: Prinicples, Resources and Applications
  publication-title: Altern Lab Anim
  doi: 10.1177/0261192920965977
– volume: 189
  start-page: 7
  issue: 1
  year: 2022
  ident: pone.0282924.ref017
  article-title: Machine Learning and Artificial Intelligence in Toxicological Sciences
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfac075
– year: 2022
  ident: pone.0282924.ref066
  article-title: Interpretable Machine Learning for Self-Service High-Risk Decision-Making
  publication-title: arXiv:2205.04032
– volume: 55
  start-page: 1897
  issue: 3
  year: 2021
  ident: pone.0282924.ref080
  article-title: Development of an Enhanced Mechanistically Driven Mode of Action Classification Scheme for Adverse Effects on Environmental Species
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c06551
SSID ssj0053866
Score 2.5308635
Snippet Recent years have seen a substantial growth in the adoption of machine learning approaches for the purposes of quantitative structure-activity relationship...
SourceID plos
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0282924
SubjectTerms Algorithms
Analysis
Animals
Best practice
Biocompatibility
Biology and Life Sciences
Computer and Information Sciences
Datasets
Decision trees
Learning algorithms
Machine Learning
Medicine and Health Sciences
Mitigation
Neural networks
Optimization
Pattern recognition
Physical Sciences
Principles
Quantitative Structure-Activity Relationship
Regression analysis
Reproducibility of Results
Research and Analysis Methods
Software
Statistical analysis
Statistical methods
Structure-activity relationships
Toxicity
Toxicological interactions
Toxicology
Uncertainty
SummonAdditionalLinks – databaseName: Public Library of Science (PLoS) : Open Access Journals [open access]
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVg4cAFKF9dKGAQEvSQsrazjnNcIRaQqlJaqHqL_BFvI5Vk2WwQ_4S_y9hx0qZqBZz9HDljz_hZnnlG6BVLjIrNNI0YUzqKU5tH0kxMRC0H-qoYUT7b4mg32dsTx8fp_tlB8cINPkvI22DTnWVV5jv-4o_G19ENyjh3h635_m4XecF3OQ_lcVf1HGw_IQiPlqdVfRnDvJgoeW7nmd_53zHfRbcDx8SzdlFsoGt5eQ9tBC-u8ZsgNb19H_3-0BTGzTsG7ooXVWVwVzaFixIDOcTnbrhxZfF3n3yZ4_DaxMLBzFnikYOsq1-F7mIq_tHI0heyQVjFrVpts4Kp0u2zFXjVZeOdFEsY25fD2UG9_QB9m7__-u5jFJ5qiDSnyTrKBVOcT6UUxHKrRZJyYgXJpZgaaQWLpbBGAp1JueKpTGNiJxJiPvi8IdRK9hCNSjDWJsKJ1tqV7yqlgD4IK6wGWmEtoUZPc63GiHUzmOmgY-6e0zjN_OVcAueZ1syZs34WrD9GUd9r2ep4_AX_3C2OrK1G7cNANkvcCS_lUzpGLz3CiWiULktnIZu6zj59PvoH0OHBAPQ6gGwFf6JlqIyA4ThxrgFya4CEUKAHzZtuKXc_VGdUEKd3R4WAnt3yvrz5Rd_sPuoy78q8ajwGWLKTkRyjR6039AYE4wFfnYCxxMBPeoDTLh-2lMWJ1zAnXqdpkj6-eshP0C0KjDLyUrlbaAQrNH-Kbuqf66JePfOe_wfh1F4J
  priority: 102
  providerName: Public Library of Science
Title Guidance for good practice in the application of machine learning in development of toxicological quantitative structure-activity relationships (QSARs)
URI https://www.ncbi.nlm.nih.gov/pubmed/37163504
https://www.proquest.com/docview/2811921288
https://www.proquest.com/docview/2812507440
https://pubmed.ncbi.nlm.nih.gov/PMC10171609
http://dx.doi.org/10.1371/journal.pone.0282924
Volume 18
WOSCitedRecordID wos001022290100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) : Open Access Journals [open access]
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLeg48AFGF8rjGIQEuyQrk4axzmhblph2lZCB1XhEjl23EUaSde0iP-Ef5dnx-kWNAESl3fxc-SP5-df7Pd-RuiVF8ikL_3Q8bxEOP1QpQ6XPem4igJ8TTySmGiLyXEwGrHpNIzsgVtpwyprn2gctSyEPiPfdRnR1F0uY2_nF45-NUrfrtonNG6iDaKxMdhzMJ7UnhjWMqU2Xc4LyK6dne68yNOuuUJ0-43tyDrl1vy8KK9DnL8HTl7ZiYZ3_7cP99Adi0HxoDKaTXQjze-jTbvKS_zGUlHvPEA_360yqe0CA7bFs6KQuE6rwlmOATziKzfguFD4mwnOTLF9jWKm1eRlYJJWWRY_MlH7XHyx4rlJdAO3iys229UCplJUz1rgRR2td5bNoW0fTwfjcuch-jw8-LT_3rFPOTiCusHSSZmXUOpzzoiiSrAgpEQxknLmS66Y1-dMSQ5wJ6QJDXnYJ6rHYU8AnyCJq7j3CLVymLYthAMhhE7vTZIE4AVTTAmAHUoRVwo_FUkbefWMxsLynOvnNs5jc3kXwP9ONcyxtoPY2kEbOeta84rn4y_6z7WxxFW26tpNxINA_wGG1Hfb6KXR0CQbuY7imfFVWcaHHyb_oHQ6bii9tkqqgJ4IbjMnoDmavKuhud3QBFchGsVb2rTrDpXxpUFCzdpkry9-sS7WH9WReXlarIwOoGhNM9lGj6vVsR5AGDzAsz0YLNZYN2sFzW3eLMmzM8NxTgyPUy988ud2PUW3XUCdjqHT3UYtsNL0Gbolvi-zctEx3kDLaWAkA8n2SQdt7B2MonHHHMCAHEbHII_2uiBPekdaBpGRpyAj_yvUiA5Poi-_AIwbfGY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGQYIXYNxWGMwgEOwhW-IkjvOAUAWMVStlbGOaeAmOHXeRRtI1LZdfwr_gN3LsON2CJuBlDzz7S-Scnpvrc76D0GM_kmkgw9jx_VQ4Qawyh0tXOkRRSF9T30tNtcX-IBoO2cFBvL2Afja9MLqssvGJxlHLUuj_yNcJ8zR1F2HsxfjY0VOj9O1qM0KjVout7PtXOLJVz_uv4Pd9QsjG672Xm46dKuAISqKpkzE_pTTknHmKKsGimHqKeRlnoeSK-QFnSnKIvDFNaczjwFMuB_cE6ik9orgP772ALgYBcbUVbYcfG88PvoNS257nR9661Ya1cVlka-bKkgSt8GeDQGd8VFZnZbi_F2qeinwb1_43mV1HV22OjXu1USyihay4gRatF6vwM0u1vXoT_Xgzy6XWewy5Ox6VpcRN2xjOCwzJMT51w49LhT-b4tMM22kbIw2TJ4VXGjItv-WiiSn4eMYL08gHYQXXbL2zCaiqqMd24ElTjXiYj2Fv73d7O9XqLfThXAR0G3UKUJMlhCMhhG5fTtMU0iemmBKQVinlESnCTKRd5DcalAjL467HiRwl5nIygvNcLeZE611i9a6LnPlT45rH5C_4Fa2cSd2NO3eDSS_SJ9yYhqSLHhmEJhEpdJXSiM-qKum_2_8H0O5OC_TUglQJXyK47QyB7WhyshZyuYUEVyhay0valJoPqpITA4AnGxM5e_nhfFm_VFceFlk5Mxg4JWgazS66U1vjXIAgPMjXXRAWa9npHKC529srRX5oONw9w1Plxnf_vK8VdHlz7-0gGfSHW_fQFQIZtmOog5dRBzQ2u48uiS_TvJo8MJ4Io0_nbca_AHI1zjs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgBAXoLwaKHRBIOjBbbyO7fUBoYgSiFqF0EJVcTHrXW9qqdhpnPD4JfwXfh0z63Vaowq49MB5x9Z6880rO_MNIY-9UCVd5UeO5yXS6UY6dYTqKIfpAMLXxHMTU22xvxMOh_zgIBotkZ91LwyWVdY20RhqVUj8j3yTcRepuxgkbNqWRYy2-i8mxw5OkMKb1nqcRgWR7fT7V0jfyueDLfitnzDWf_X-5RvHThhwZMDCmZNyLwkCXwju6kBLHkaBq7mbCu4robnXFVwrAV44CpIgElHX1R0BpgqgqlymhQfvvUAuhpBjYjnhyP9YewGwI0FgW_W80N20yNiYFHm6Ya4vWbfhCq1DaE2OivKsaPf3os1TXrB_7X8-v-vkqo29aa9SlmWylOY3yLK1biV9Zim412-SH6_nmUJ9oBDT03FRKFq3k9EspxA001M3_7TQ9LMpSk2pncIxRjF1UpCFIrPiWyZrX0OP5yI3DX7gbmjF4jufAoRlNc6DTusqxcNsAnt7t9fbLddvkQ_nckC3SSsHyKwQGkopsa05SRIIq7jmWkK4pbXLlPRTmbSJV6MplpbfHceMHMXm0jKEPK865hgxGFsMtomzeGpS8Zv8RX4NgRpXXboL8xj3Qsx8o8BnbfLISCC5SI4wG4t5WcaDt_v_ILS32xB6aoV0AV8ihe0Yge0gaVlDcrUhCSZSNpZXUK3qDyrjE2WAJ2t1OXv54WIZX4oViXlazI0MZA9Ir9kmdyrNXBwgHB7E8R04LN7Q2YUAcro3V_Ls0HC7u4a_qhPd_fO-1shl0N54ZzDcvkeuMAi8HcMovEpaANj0Prkkv8yycvrAGCVKPp23Fv8Cf9jXBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+for+good+practice+in+the+application+of+machine+learning+in+development+of+toxicological+quantitative+structure-activity+relationships&rft.jtitle=PloS+one&rft.au=Belfield%2C+Samuel+J&rft.au=Cronin%2C+Mark+T.D&rft.au=Enoch%2C+Steven+J&rft.au=Firman%2C+James+W&rft.date=2023-05-10&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=5&rft.spage=e0282924&rft_id=info:doi/10.1371%2Fjournal.pone.0282924&rft.externalDBID=IOV&rft.externalDocID=A748759652
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon