Echinococcus granulosus Antigen B Structure: Subunit Composition and Oligomeric States

Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases Jg. 6; H. 3; S. e1551
Hauptverfasser: Monteiro, Karina M., Cardoso, Mateus B., Follmer, Cristian, da Silveira, Nádya P., Vargas, Daiani M., Kitajima, Elliot W., Zaha, Arnaldo, Ferreira, Henrique B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 01.03.2012
Public Library of Science (PLoS)
Schlagworte:
ISSN:1935-2735, 1935-2727, 1935-2735
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3>rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the current knowledge on AgB expression and structure, highlighting issues that may help to understand the parasite adaptive response during chronic infection.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: KMM MBC CF NPS AZ HBF. Performed the experiments: KMM MBC CF DMV EWK. Analyzed the data: KMM MBC CF NPS AZ HBF. Contributed reagents/materials/analysis tools: KMM MBC CF NPS EWK AZ HBF. Wrote the paper: KMM AZ HBF.
ISSN:1935-2735
1935-2727
1935-2735
DOI:10.1371/journal.pntd.0001551