A fast randomized algorithm for overdetermined linear least-squares regression
We introduce a randomized algorithm for overdetermined linear least-squares regression. Given an arbitrary full-rank m x n matrix A with m >/= n, any m x 1 vector b, and any positive real number epsilon, the procedure computes an n x 1 vector x such that x minimizes the Euclidean norm ||Ax - b ||...
Uložené v:
| Vydané v: | Proceedings of the National Academy of Sciences - PNAS Ročník 105; číslo 36; s. 13212 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
09.09.2008
|
| Predmet: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!