Molecular mechanism of IKK catalytic dimer docking to NF-κB substrates
The inhibitor of κB (IκB) kinase (IKK) is a central regulator of NF-κB signaling. All IKK complexes contain hetero- or homodimers of the catalytic IKKβ and/or IKKα subunits. Here, we identify a YDDΦxΦ motif, which is conserved in substrates of canonical (IκBα, IκBβ) and alternative (p100) NF-κB path...
Saved in:
| Published in: | Nature communications Vol. 15; no. 1; pp. 7692 - 19 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
03.09.2024
Nature Publishing Group Springer Science and Business Media LLC Nature Portfolio |
| Subjects: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The inhibitor of κB (IκB) kinase (IKK) is a central regulator of NF-κB signaling. All IKK complexes contain hetero- or homodimers of the catalytic IKKβ and/or IKKα subunits. Here, we identify a YDDΦxΦ motif, which is conserved in substrates of canonical (IκBα, IκBβ) and alternative (p100) NF-κB pathways, and which mediates docking to catalytic IKK dimers. We demonstrate a quantitative correlation between docking affinity and IKK activity related to IκBα phosphorylation/degradation. Furthermore, we show that phosphorylation of the motif’s conserved tyrosine, an event previously reported to promote IκBα accumulation and inhibition of NF-κB gene expression, suppresses the docking interaction. Results from integrated structural analyzes indicate that the motif binds to a groove at the IKK dimer interface. Consistently, suppression of IKK dimerization also abolishes IκBα substrate binding. Finally, we show that an optimized bivalent motif peptide inhibits NF-κB signaling. This work unveils a function for IKKα/β dimerization in substrate motif recognition.
The inhibitor of kB kinase (IKK) is a central regulator of NF-kB signalling. Here the authors identify a motif conserved in substrates of canonical and alternative NF-kB pathways which mediates docking to catalytic IKK dimers: they show that phosphorylation of the conserved tyrosine suppresses the docking interaction. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 scopus-id:2-s2.0-85202994520 |
| ISSN: | 2041-1723 2041-1723 |
| DOI: | 10.1038/s41467-024-52076-0 |