Partial volume correction in arterial spin labeling perfusion MRI: A method to disentangle anatomy from physiology or an analysis step too far?
•Partial volume effects influence studies of brain perfusion.•Systematic and random effects on perfusion can occur within and between groups.•Partial volume correction strategies are available, but underused. The mismatch in the spatial resolution of Arterial Spin Labeling (ASL) MRI perfusion images...
Saved in:
| Published in: | NeuroImage (Orlando, Fla.) Vol. 238; p. 118236 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier Inc
01.09.2021
Elsevier Limited Elsevier |
| Subjects: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Partial volume effects influence studies of brain perfusion.•Systematic and random effects on perfusion can occur within and between groups.•Partial volume correction strategies are available, but underused.
The mismatch in the spatial resolution of Arterial Spin Labeling (ASL) MRI perfusion images and the anatomy of functionally distinct tissues in the brain leads to a partial volume effect (PVE), which in turn confounds the estimation of perfusion into a specific tissue of interest such as gray or white matter. This confound occurs because the image voxels contain a mixture of tissues with disparate perfusion properties, leading to estimated perfusion values that reflect primarily the volume proportions of tissues in the voxel rather than the perfusion of any particular tissue of interest within that volume. It is already recognized that PVE influences studies of brain perfusion, and that its effect might be even more evident in studies where changes in perfusion are co-incident with alterations in brain structure, such as studies involving a comparison between an atrophic patient population vs control subjects, or studies comparing subjects over a wide range of ages. However, the application of PVE correction (PVEc) is currently limited and the employed methodologies remain inconsistent.
In this article, we outline the influence of PVE in ASL measurements of perfusion, explain the main principles of PVEc, and provide a critique of the current state of the art for the use of such methods. Furthermore, we examine the current use of PVEc in perfusion studies and whether there is evidence to support its wider adoption.
We conclude that there is sound theoretical motivation for the use of PVEc alongside conventional, ‘uncorrected’, images, and encourage such combined reporting. Methods for PVEc are now available within standard neuroimaging toolboxes, which makes our recommendation straightforward to implement. However, there is still more work to be done to establish the value of PVEc as well as the efficacy and robustness of existing PVEc methods.
[Display omitted] |
|---|---|
| AbstractList | The mismatch in the spatial resolution of Arterial Spin Labeling (ASL) MRI perfusion images and the anatomy of functionally distinct tissues in the brain leads to a partial volume effect (PVE), which in turn confounds the estimation of perfusion into a specific tissue of interest such as gray or white matter. This confound occurs because the image voxels contain a mixture of tissues with disparate perfusion properties, leading to estimated perfusion values that reflect primarily the volume proportions of tissues in the voxel rather than the perfusion of any particular tissue of interest within that volume. It is already recognized that PVE influences studies of brain perfusion, and that its effect might be even more evident in studies where changes in perfusion are co-incident with alterations in brain structure, such as studies involving a comparison between an atrophic patient population vs control subjects, or studies comparing subjects over a wide range of ages. However, the application of PVE correction (PVEc) is currently limited and the employed methodologies remain inconsistent.In this article, we outline the influence of PVE in ASL measurements of perfusion, explain the main principles of PVEc, and provide a critique of the current state of the art for the use of such methods. Furthermore, we examine the current use of PVEc in perfusion studies and whether there is evidence to support its wider adoption.We conclude that there is sound theoretical motivation for the use of PVEc alongside conventional, ‘uncorrected’, images, and encourage such combined reporting. Methods for PVEc are now available within standard neuroimaging toolboxes, which makes our recommendation straightforward to implement. However, there is still more work to be done to establish the value of PVEc as well as the efficacy and robustness of existing PVEc methods. •Partial volume effects influence studies of brain perfusion.•Systematic and random effects on perfusion can occur within and between groups.•Partial volume correction strategies are available, but underused. The mismatch in the spatial resolution of Arterial Spin Labeling (ASL) MRI perfusion images and the anatomy of functionally distinct tissues in the brain leads to a partial volume effect (PVE), which in turn confounds the estimation of perfusion into a specific tissue of interest such as gray or white matter. This confound occurs because the image voxels contain a mixture of tissues with disparate perfusion properties, leading to estimated perfusion values that reflect primarily the volume proportions of tissues in the voxel rather than the perfusion of any particular tissue of interest within that volume. It is already recognized that PVE influences studies of brain perfusion, and that its effect might be even more evident in studies where changes in perfusion are co-incident with alterations in brain structure, such as studies involving a comparison between an atrophic patient population vs control subjects, or studies comparing subjects over a wide range of ages. However, the application of PVE correction (PVEc) is currently limited and the employed methodologies remain inconsistent. In this article, we outline the influence of PVE in ASL measurements of perfusion, explain the main principles of PVEc, and provide a critique of the current state of the art for the use of such methods. Furthermore, we examine the current use of PVEc in perfusion studies and whether there is evidence to support its wider adoption. We conclude that there is sound theoretical motivation for the use of PVEc alongside conventional, ‘uncorrected’, images, and encourage such combined reporting. Methods for PVEc are now available within standard neuroimaging toolboxes, which makes our recommendation straightforward to implement. However, there is still more work to be done to establish the value of PVEc as well as the efficacy and robustness of existing PVEc methods. [Display omitted] The mismatch in the spatial resolution of Arterial Spin Labeling (ASL) MRI perfusion images and the anatomy of functionally distinct tissues in the brain leads to a partial volume effect (PVE), which in turn confounds the estimation of perfusion into a specific tissue of interest such as gray or white matter. This confound occurs because the image voxels contain a mixture of tissues with disparate perfusion properties, leading to estimated perfusion values that reflect primarily the volume proportions of tissues in the voxel rather than the perfusion of any particular tissue of interest within that volume. It is already recognized that PVE influences studies of brain perfusion, and that its effect might be even more evident in studies where changes in perfusion are co-incident with alterations in brain structure, such as studies involving a comparison between an atrophic patient population vs control subjects, or studies comparing subjects over a wide range of ages. However, the application of PVE correction (PVEc) is currently limited and the employed methodologies remain inconsistent. In this article, we outline the influence of PVE in ASL measurements of perfusion, explain the main principles of PVEc, and provide a critique of the current state of the art for the use of such methods. Furthermore, we examine the current use of PVEc in perfusion studies and whether there is evidence to support its wider adoption. We conclude that there is sound theoretical motivation for the use of PVEc alongside conventional, 'uncorrected', images, and encourage such combined reporting. Methods for PVEc are now available within standard neuroimaging toolboxes, which makes our recommendation straightforward to implement. However, there is still more work to be done to establish the value of PVEc as well as the efficacy and robustness of existing PVEc methods.The mismatch in the spatial resolution of Arterial Spin Labeling (ASL) MRI perfusion images and the anatomy of functionally distinct tissues in the brain leads to a partial volume effect (PVE), which in turn confounds the estimation of perfusion into a specific tissue of interest such as gray or white matter. This confound occurs because the image voxels contain a mixture of tissues with disparate perfusion properties, leading to estimated perfusion values that reflect primarily the volume proportions of tissues in the voxel rather than the perfusion of any particular tissue of interest within that volume. It is already recognized that PVE influences studies of brain perfusion, and that its effect might be even more evident in studies where changes in perfusion are co-incident with alterations in brain structure, such as studies involving a comparison between an atrophic patient population vs control subjects, or studies comparing subjects over a wide range of ages. However, the application of PVE correction (PVEc) is currently limited and the employed methodologies remain inconsistent. In this article, we outline the influence of PVE in ASL measurements of perfusion, explain the main principles of PVEc, and provide a critique of the current state of the art for the use of such methods. Furthermore, we examine the current use of PVEc in perfusion studies and whether there is evidence to support its wider adoption. We conclude that there is sound theoretical motivation for the use of PVEc alongside conventional, 'uncorrected', images, and encourage such combined reporting. Methods for PVEc are now available within standard neuroimaging toolboxes, which makes our recommendation straightforward to implement. However, there is still more work to be done to establish the value of PVEc as well as the efficacy and robustness of existing PVEc methods. |
| ArticleNumber | 118236 |
| Author | Asllani, Iris Golay, Xavier Günther, Matthias McConnell, Flora A. Kennedy Chappell, Michael A. Hernandez-Tamames, Juan A. van Osch, Matthias J. |
| Author_xml | – sequence: 1 givenname: Michael A. surname: Chappell fullname: Chappell, Michael A. email: michael.chappell@nottingham.ac.uk organization: Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK – sequence: 2 givenname: Flora A. Kennedy surname: McConnell fullname: McConnell, Flora A. Kennedy organization: Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK – sequence: 3 givenname: Xavier surname: Golay fullname: Golay, Xavier organization: Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK – sequence: 4 givenname: Matthias surname: Günther fullname: Günther, Matthias organization: Fraunhofer MEVIS, Bremen, Germany – sequence: 5 givenname: Juan A. surname: Hernandez-Tamames fullname: Hernandez-Tamames, Juan A. organization: Radiology and Nuclear Medicine Department, Erasmus MC, Rotterdam, the Netherlands – sequence: 6 givenname: Matthias J. surname: van Osch fullname: van Osch, Matthias J. organization: C.J. Gorter Center for High Field MRI, Radiology Department, Leiden University Medical Center, Leiden, the Netherlands – sequence: 7 givenname: Iris surname: Asllani fullname: Asllani, Iris organization: Clinical Imaging Sciences Centre, Department of Neuroscience, University of Sussex, UK |
| BookMark | eNqNUstu1DAUjVCRaAv_YIkNmxls5zEOC6CtoIxUBELdW459nXpw7GA7lfIV_DIOKUKa1axs3_OQfM69KM6cd1AUiOAtwaR5e9g6mII3g-hhSzElW0IYLZtnxTnBbb1p6x09W-51uWGEtC-KixgPGOOWVOy8-P1dhGSERY_eTgMg6UMAmYx3yDiUMQgLGsf8sqIDa1yPRgh6igvn64_9O3SFBkgPXqHkkTIRXBKut4CEE8kPM9LBD2h8mLPC-n5GPmRoQW0eRRQTjFnqkRbhw8viuRY2wqun87K4__zp_ubL5u7b7f7m6m4jG8LSpsQdqJp0XS1AYS0EtExpBZLqtsVl1-GG5UFNMSuxBNqQSlU7RSmjzU6I8rLYr7bKiwMfQ44vzNwLw_8OfOj5kou0wLWGhrYV7qoqJwa601KqTuGO7YBi1WSvN6vXGPyvCWLig4kSrBUO_BQ5rUuGK9ZQkqmvj6gHP4UcxMKqq7LMlbLMer-yZPAxBtBcmiSWTlIQxnKC-VI9P_D_1fOler5Wnw3YkcG_H54gvV6lkMN_NBB4lAacBGWWvcjxmFNMPh6ZyLw3Rgr7E-bTLP4AW1bqfg |
| CitedBy_id | crossref_primary_10_1016_j_neurobiolaging_2022_09_006 crossref_primary_10_1002_hbm_26242 crossref_primary_10_1002_mrm_30166 crossref_primary_10_1002_brb3_70008 crossref_primary_10_1002_mrm_29572 crossref_primary_10_29254_2077_4214_2022_3_166_216_219 crossref_primary_10_3389_fnins_2022_934471 crossref_primary_10_1002_alz_14059 crossref_primary_10_1055_a_2119_5574 crossref_primary_10_1162_imag_a_00041 crossref_primary_10_1016_j_heliyon_2023_e23340 crossref_primary_10_1016_j_compbiomed_2023_107543 crossref_primary_10_3389_fnagi_2022_928925 crossref_primary_10_3389_fnagi_2022_847218 crossref_primary_10_1177_0271678X221083471 crossref_primary_10_1162_imag_a_00444 crossref_primary_10_1016_j_mri_2023_06_010 crossref_primary_10_1177_0271678X241310731 crossref_primary_10_1162_imag_a_00118 crossref_primary_10_1002_mrm_30376 crossref_primary_10_1016_j_neuroimage_2022_119512 crossref_primary_10_1002_jmri_28555 crossref_primary_10_1016_j_mri_2024_03_044 crossref_primary_10_1038_s41592_022_01458_7 crossref_primary_10_1038_s41598_023_48439_0 crossref_primary_10_1177_0271678X231173587 crossref_primary_10_1002_mrm_29869 crossref_primary_10_1002_alz_14382 crossref_primary_10_1016_j_neuroimage_2024_120979 crossref_primary_10_3390_diagnostics11101888 crossref_primary_10_1016_j_neuroimage_2023_120039 crossref_primary_10_3389_fphys_2023_1271254 crossref_primary_10_1002_mrm_30091 crossref_primary_10_1016_j_cccb_2024_100376 crossref_primary_10_1016_j_compgeo_2023_105887 |
| Cites_doi | 10.1016/j.arr.2016.01.002 10.1007/s10334-006-0034-2 10.1523/JNEUROSCI.3252-09.2009 10.1038/jcbfm.1983.21 10.1073/pnas.200033797 10.1002/mrm.21670 10.1007/s00234-015-1571-z 10.1172/JCI101994 10.1016/j.neuroimage.2015.03.025 10.1016/j.neuroimage.2014.10.029 10.1007/s00259-007-0454-x 10.1002/nbm.1075 10.1016/j.neuroimage.2010.12.032 10.1038/nn.4393 10.1148/radiol.2343040197 10.1523/JNEUROSCI.1392-08.2008 10.1002/mrm.24601 10.1016/j.neuroimage.2017.08.072 10.1002/mrm.25671 10.1002/mrm.25197 10.1038/ncomms11934 10.1016/j.neuroimage.2008.06.006 10.1038/jcbfm.2010.89 10.1088/0031-9155/57/21/R119 10.1016/j.mri.2015.11.002 10.1016/j.neuroimage.2011.08.112 10.1002/mrm.24279 10.1016/j.neuroimage.2016.02.042 10.1371/journal.pone.0066612 10.1038/s41586-018-0571-7 10.1007/s00330-015-3789-x 10.1016/j.neuroimage.2018.09.060 10.1016/j.neuroimage.2014.10.052 10.1002/mrm.22641 10.1002/mrm.24266 10.1016/j.neuroimage.2017.07.041 10.1002/hbm.20719 10.1002/nbm.4448 10.1148/radiol.12120928 10.1016/S0197-4580(00)00116-0 10.1002/nbm.3164 10.1016/S0306-4522(98)00659-9 10.1088/0031-9155/61/22/7975 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Elsevier Limited Sep 2021 Copyright © 2021. Published by Elsevier Inc. |
| Copyright_xml | – notice: 2021 – notice: Copyright Elsevier Limited Sep 2021 – notice: Copyright © 2021. Published by Elsevier Inc. |
| DBID | 6I. AAFTH AAYXX CITATION 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
| DOI | 10.1016/j.neuroimage.2021.118236 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1095-9572 |
| ExternalDocumentID | oai_doaj_org_article_ffe62940b44148efbfccdbd0b87e20d6 10_1016_j_neuroimage_2021_118236 S1053811921005139 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 9DU AAYXX AFFHD CITATION 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c618t-30bed51bb5aed0faae98dfdec2f9903bb0688df520830ce2614d47d228267aa3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679331600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Fri Oct 03 12:53:18 EDT 2025 Sun Sep 28 11:44:46 EDT 2025 Sat Nov 29 14:21:34 EST 2025 Sat Nov 29 07:02:58 EST 2025 Tue Nov 18 20:38:45 EST 2025 Fri Feb 23 02:40:26 EST 2024 Tue Oct 14 19:40:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cerebral Blood Flow Atrophy fMRI Perfusion MRI Arterial spin labeling Aging and dementia Partial volume effect |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c618t-30bed51bb5aed0faae98dfdec2f9903bb0688df520830ce2614d47d228267aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://doaj.org/article/ffe62940b44148efbfccdbd0b87e20d6 |
| PQID | 2554331018 |
| PQPubID | 2031077 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ffe62940b44148efbfccdbd0b87e20d6 proquest_miscellaneous_2538048621 proquest_journals_2554331018 crossref_citationtrail_10_1016_j_neuroimage_2021_118236 crossref_primary_10_1016_j_neuroimage_2021_118236 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118236 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118236 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 20210901 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Jong, Farkas, Stienstra, Plass, Keijser, Torre, Luiten (bib0028) 1999; 91 Alsop, Casement, Bazelaire, Fong, Press (bib0003) 2008; 42 Bause, Ehses, Mirkes, Shajan, Scheffler, Pohmann (bib0008) 2016; 75 Chappell, M.A., Groves, A.R., Macintosh, B.J., Donahue, M.J., Jezzard, P., Woolrich, M.W., 2011. Partial volume correction of multiple inversion time arterial spin labeling MRI data. Magnetic resonance in medicine 65, 1173–1183. 10.1002/mrm.22641 Ahlgren, Wirestam, Petersen, Ståhlberg, Knutsson (bib0002) 2014; 27 Greve, Salat, Bowen, Izquierdo-Garcia, Schultz, Catana, Becker, Svarer, Knudsen, Sperling, Johnson (bib0022) 2016; 132 Zuo, Wang, Zhuo, Xue, Lawrence, Wang (bib0048) 2013; 8 Telischak, Detre, Zaharchuk (bib0043) 2014; 41 Thomas, Cuplov, Bousse, Mendes, Thielemans, Hutton, Erlandsson (bib0044) 2016; 61 Niesporek, Hoffmann, Berger, Benkhedah, Kujawa, Bachert, Nagel (bib0037) 2015; 112 Huang, Carson, Hoffman, Carson, MacDonald, Barrio, Phelps (bib0024) 1983; 3 Steketee, Bron, Meijboom, Houston, Klein, Mutsaerts, Orellana, Jong, Swieten, Lugt, Smits (bib0042) 2015; 26 Huber, Uludağ, Möller (bib0025) 2019; 197 Binnewijzend, Kuijer, Benedictus, Flier, van derWink, Wattjes, Berckel, Scheltens, Barkhof (bib0009) 2013; 267 Wiersma, Deichmann, Ordidge, Turner (bib0046) 2006; 19 Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson, Griffanti, Douaud, Okell, Weale, Dragonu, Garratt, Hudson, Collins, Jenkinson, Matthews, Smith (bib0036) 2016; 19 Chen, Rosas, Salat (bib0013) 2011; 55 Abad, Garcia-Polo, O'Daly, Hernandez-Tamames, Zelaya (bib0001) 2016; 34 Donahue, Lu, Jones, Pekar, Zijl (bib0016) 2006; 19 Kim, Song, Yoon, Kim, Chung, Noh (bib0031) 2021; 34 Johnson, Jahng, Weiner, Miller, Chui, Jagust, Gorno-Tempini, Schuff (bib0027) 2005; 234 Meltzer, Cantwell, Greer, Ben-Eliezer, Smith, Frank, Kaye, Houck, Price (bib0035) 2000; 41 Cada, Torre, Lima (bib0011) 2000; 21 Fischl, Dale (bib0019) 2000; 97 Grade, Tamames, Pizzini, Achten, Golay, Smits (bib0021) 2015; 57 Luh, Talagala, Li, Bandettini (bib0034) 2013; 69 Samuraki, Matsunari, Chen, Yajima, Yanase, Fujikawa, Takeda, Nishimura, Matsuda, Yamada (bib0041) 2007; 34 Liang, Connelly, Calamante (bib0033) 2013; 69 Iturria-Medina, Sotero, Toussaint, Mateos-Pérez, Evans (bib0026) 2016; 7 Li, Wang, Auerbach, Moeller, Ugurbil, Metzger (bib0032) 2015; 106 Harms, Somerville, Ances, Andersson, Barch, Bastiani, Bookheimer, Brown, Buckner, Burgess, Coalson, Chappell, Dapretto, Douaud, Fischl, Glasser, Greve, Hodge, Jamison, Jbabdi, Kandala, Li, Mair, Mangia, Marcus, Mascali, Moeller, Nichols, Robinson, Salat, Smith, Sotiropoulos, Terpstra, Thomas, Tisdall, Ugurbil, Kouwe, Woods, Zöllei, Essen, Yacoub (bib0023) 2018; 183 Fjell, Walhovd, Fennema-Notestine, McEvoy, Hagler, Holland, Brewer, Dale (bib0020) 2009; 29 Zhao, Mezue, Segerdahl, Okell, Tracey, Xiao, Chappell (bib0047) 2017; 162 Asllani, Borogovac, Brown (bib0006) 2008; 60 Alsop, Detre, Golay, Günther, Hendrikse, Hernandez-Garcia, Lu, MacIntosh, Parkes, Smits, Osch, Wang, Wong, Zaharchuk (bib0004) 2015; 73 Kandel, Wang, Detre, Gee, Avants (bib0029) 2015; 105 Villain, Desgranges, Viader, Sayette, Mézenge, Landeau, Baron, Eustache, Chételat (bib0045) 2008; 28 Álvarez, Stobbe, Beaulieu (bib0005) 2019; 14 Borogovac, Habeck, Small, Asllani (bib0010) 2010; 30 Asllani, Habeck, Borogovac, Brown, Brickman, Stern (bib0007) 2009; 30 Erlandsson, Buvat, Pretorius, Thomas, Hutton (bib0018) 2012; 57 Kety, Schmidt (bib0030) 1948; 27 Pini, Pievani, Bocchetta, Altomare, Bosco, Cavedo, Galluzzi, Marizzoni, Frisoni (bib0040) 2016; 30 Elliott, Sharp, Alfaro-Almagro, Shi, Miller, Douaud, Marchini, Smith (bib0017) 2018; 562 Chen, Salat, Rosas (bib0015) 2012; 59 Petr, Mutsaerts, Vita, Steketee, Smits, Nederveen, Hofheinz, Hoff, Asllani (bib0038) 2018 Petr, Schramm, Hofheinz, Langner, Hoff (bib0039) 2013; 70 Telischak (10.1016/j.neuroimage.2021.118236_bib0043) 2014; 41 Thomas (10.1016/j.neuroimage.2021.118236_bib0044) 2016; 61 Huang (10.1016/j.neuroimage.2021.118236_bib0024) 1983; 3 Iturria-Medina (10.1016/j.neuroimage.2021.118236_bib0026) 2016; 7 Kandel (10.1016/j.neuroimage.2021.118236_bib0029) 2015; 105 Zuo (10.1016/j.neuroimage.2021.118236_bib0048) 2013; 8 Luh (10.1016/j.neuroimage.2021.118236_bib0034) 2013; 69 Asllani (10.1016/j.neuroimage.2021.118236_bib0006) 2008; 60 Liang (10.1016/j.neuroimage.2021.118236_bib0033) 2013; 69 Ahlgren (10.1016/j.neuroimage.2021.118236_bib0002) 2014; 27 Zhao (10.1016/j.neuroimage.2021.118236_bib0047) 2017; 162 Alsop (10.1016/j.neuroimage.2021.118236_bib0004) 2015; 73 Fischl (10.1016/j.neuroimage.2021.118236_bib0019) 2000; 97 Chen (10.1016/j.neuroimage.2021.118236_bib0013) 2011; 55 Harms (10.1016/j.neuroimage.2021.118236_bib0023) 2018; 183 Greve (10.1016/j.neuroimage.2021.118236_bib0022) 2016; 132 Petr (10.1016/j.neuroimage.2021.118236_bib0038) 2018 Álvarez (10.1016/j.neuroimage.2021.118236_bib0005) 2019; 14 Abad (10.1016/j.neuroimage.2021.118236_bib0001) 2016; 34 Chen (10.1016/j.neuroimage.2021.118236_bib0015) 2012; 59 Huber (10.1016/j.neuroimage.2021.118236_bib0025) 2019; 197 Fjell (10.1016/j.neuroimage.2021.118236_bib0020) 2009; 29 Villain (10.1016/j.neuroimage.2021.118236_bib0045) 2008; 28 Elliott (10.1016/j.neuroimage.2021.118236_bib0017) 2018; 562 Niesporek (10.1016/j.neuroimage.2021.118236_bib0037) 2015; 112 Pini (10.1016/j.neuroimage.2021.118236_bib0040) 2016; 30 Binnewijzend (10.1016/j.neuroimage.2021.118236_bib0009) 2013; 267 Wiersma (10.1016/j.neuroimage.2021.118236_bib0046) 2006; 19 Samuraki (10.1016/j.neuroimage.2021.118236_bib0041) 2007; 34 Johnson (10.1016/j.neuroimage.2021.118236_bib0027) 2005; 234 Kety (10.1016/j.neuroimage.2021.118236_bib0030) 1948; 27 Li (10.1016/j.neuroimage.2021.118236_bib0032) 2015; 106 Grade (10.1016/j.neuroimage.2021.118236_bib0021) 2015; 57 Kim (10.1016/j.neuroimage.2021.118236_bib0031) 2021; 34 Borogovac (10.1016/j.neuroimage.2021.118236_bib0010) 2010; 30 Cada (10.1016/j.neuroimage.2021.118236_bib0011) 2000; 21 Erlandsson (10.1016/j.neuroimage.2021.118236_bib0018) 2012; 57 10.1016/j.neuroimage.2021.118236_bib0012 Meltzer (10.1016/j.neuroimage.2021.118236_bib0035) 2000; 41 Petr (10.1016/j.neuroimage.2021.118236_bib0039) 2013; 70 Jong (10.1016/j.neuroimage.2021.118236_bib0028) 1999; 91 Asllani (10.1016/j.neuroimage.2021.118236_bib0007) 2009; 30 Bause (10.1016/j.neuroimage.2021.118236_bib0008) 2016; 75 Alsop (10.1016/j.neuroimage.2021.118236_bib0003) 2008; 42 Miller (10.1016/j.neuroimage.2021.118236_bib0036) 2016; 19 Steketee (10.1016/j.neuroimage.2021.118236_bib0042) 2015; 26 Donahue (10.1016/j.neuroimage.2021.118236_bib0016) 2006; 19 |
| References_xml | – volume: 30 start-page: 25 year: 2016 end-page: 48 ident: bib0040 article-title: Brain atrophy in Alzheimer's disease and aging publication-title: Ageing Res. Rev. – volume: 70 start-page: 1535 year: 2013 end-page: 1543 ident: bib0039 article-title: Partial volume correction in arterial spin labeling using a Look-Locker sequence publication-title: Magn. Reson. Med. – volume: 105 start-page: 156 year: 2015 end-page: 170 ident: bib0029 article-title: Decomposing cerebral blood flow MRI into functional and structural components: a non-local approach based on prediction publication-title: Neuroimage – volume: 29 start-page: 15223 year: 2009 end-page: 15231 ident: bib0020 article-title: One-year brain atrophy evident in healthy aging publication-title: J Neurosci – volume: 562 start-page: 210 year: 2018 end-page: 216 ident: bib0017 article-title: Genome-wide association studies of brain imaging phenotypes in UK Biobank publication-title: Nature – volume: 60 start-page: 1362 year: 2008 end-page: 1371 ident: bib0006 article-title: Regression algorithm correcting for partial volume effects in arterial spin labeling MRI publication-title: Magn. Reson. Med. – volume: 19 start-page: 1043 year: 2006 end-page: 1054 ident: bib0016 article-title: An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation publication-title: NMR Biomed. – volume: 91 start-page: 203 year: 1999 end-page: 210 ident: bib0028 article-title: Cerebral hypoperfusion yields capillary damage in the hippocampal CA1 area that correlates with spatial memory impairment publication-title: Neuroscience – volume: 34 start-page: 1658 year: 2007 end-page: 1669 ident: bib0041 article-title: Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer's disease publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 69 start-page: 531 year: 2013 end-page: 537 ident: bib0033 article-title: Improved partial volume correction for single inversion time arterial spin labeling data publication-title: Magn. Reson. Med. – volume: 106 start-page: 170 year: 2015 end-page: 181 ident: bib0032 article-title: Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging publication-title: Neuroimage – volume: 7 start-page: 11934 year: 2016 ident: bib0026 article-title: Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis publication-title: Nat. Commun. – volume: 61 start-page: 7975 year: 2016 end-page: 7993 ident: bib0044 article-title: PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography publication-title: Phys. Med. Biol. – volume: 59 start-page: 1043 year: 2012 end-page: 1051 ident: bib0015 article-title: Complex relationships between cerebral blood flow and brain atrophy in early Huntington's disease publication-title: Neuroimage – volume: 41 year: 2014 ident: bib0043 article-title: Arterial spin labeling MRI: clinical applications in the brain. - PubMed - NCBI publication-title: J. Magn. Reson. Imaging JMRI – volume: 132 start-page: 334 year: 2016 end-page: 343 ident: bib0022 article-title: Different partial volume correction methods lead to different conclusions: an 18F-FDG-PET study of aging publication-title: Neuroimage – volume: 267 start-page: 221 year: 2013 end-page: 230 ident: bib0009 article-title: Cerebral blood flow measured with 3D Pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity publication-title: Radiology – volume: 57 start-page: R119 year: 2012 end-page: R159 ident: bib0018 article-title: A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology publication-title: Phys. Med. Biol. – reference: Chappell, M.A., Groves, A.R., Macintosh, B.J., Donahue, M.J., Jezzard, P., Woolrich, M.W., 2011. Partial volume correction of multiple inversion time arterial spin labeling MRI data. Magnetic resonance in medicine 65, 1173–1183. 10.1002/mrm.22641 – volume: 57 start-page: 1181 year: 2015 end-page: 1202 ident: bib0021 article-title: A neuroradiologist's guide to arterial spin labeling MRI in clinical practice publication-title: Neuroradiology – volume: 183 start-page: 972 year: 2018 end-page: 984 ident: bib0023 article-title: Extending the human Connectome project across ages: imaging protocols for the lifespan development and aging projects publication-title: Neuroimage – volume: 69 start-page: 402 year: 2013 end-page: 410 ident: bib0034 article-title: Pseudo-continuous arterial spin labeling at 7 T for human brain: estimation and correction for off-resonance effects using a Prescan publication-title: Magn. Reson. Med. – volume: 3 start-page: 141 year: 1983 end-page: 153 ident: bib0024 article-title: Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 15O-Water publication-title: J. Cereb. Blood Flow Metab. – start-page: 1 year: 2018 end-page: 10 ident: bib0038 article-title: Effects of systematic partial volume errors on the estimation of gray matter cerebral blood flow with arterial spin labeling MRI publication-title: Magn. Reson. Mater. Phys. Biol. Med. – volume: 26 start-page: 244 year: 2015 end-page: 253 ident: bib0042 article-title: Early-stage differentiation between presenile Alzheimer's disease and frontotemporal dementia using arterial spin labeling MRI publication-title: PubMed - NCBI Eur. Radiol. – volume: 8 start-page: e66612 year: 2013 ident: bib0048 article-title: Turbo-FLASH based arterial spin labeled perfusion MRI at 7 T publication-title: PLoS ONE – volume: 21 start-page: 225 year: 2000 end-page: 233 ident: bib0011 article-title: Chronic cerebrovascular ischemia in aged rats: effects on brain metabolic capacity and behavior☆ publication-title: Neurobiol. Aging – volume: 27 start-page: 476 year: 1948 end-page: 483 ident: bib0030 article-title: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values publication-title: J. Clin. Invest. – volume: 19 start-page: 1523 year: 2016 end-page: 1536 ident: bib0036 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nat. Neurosci. – volume: 28 start-page: 6174 year: 2008 end-page: 6181 ident: bib0045 article-title: Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease publication-title: J. Neurosci. Off. J. Soc. Neurosci. – volume: 97 start-page: 11050 year: 2000 end-page: 11055 ident: bib0019 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. – volume: 234 start-page: 851 year: 2005 end-page: 859 ident: bib0027 article-title: Pattern of cerebral hypoperfusion in alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience1 publication-title: Radiology – volume: 34 start-page: e4448 year: 2021 ident: bib0031 article-title: Voxel-wise partial volume correction method for accurate estimation of tissue sodium concentration in 23Na-MRI at 7 T publication-title: NMR Biomed. – volume: 27 start-page: 1112 year: 2014 end-page: 1122 ident: bib0002 article-title: Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling publication-title: NMR Biomed. – volume: 112 start-page: 353 year: 2015 end-page: 363 ident: bib0037 article-title: Partial volume correction for in vivo 23Na-MRI data of the human brain publication-title: Neuroimage – volume: 75 start-page: 1054 year: 2016 end-page: 1063 ident: bib0008 article-title: Quantitative and functional pulsed arterial spin labeling in the human brain at 9.4 t publication-title: Magn. Reson. Med. – volume: 19 start-page: 115 year: 2006 end-page: 123 ident: bib0046 article-title: Removing the effects of CSF partial voluming on fitted CBF and arterial transit times using FAIR, a pulsed arterial spin labeling technique publication-title: Magn. Reson. Mater. Phys. Biol. Med. – volume: 162 start-page: 384 year: 2017 end-page: 397 ident: bib0047 article-title: A systematic study of the sensitivity of partial volume correction methods for the quantification of perfusion from pseudo-continuous arterial spin labeling MRI publication-title: Neuroimage – volume: 73 start-page: 102 year: 2015 end-page: 116 ident: bib0004 article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn. Reson. Med. – volume: 55 start-page: 468 year: 2011 end-page: 478 ident: bib0013 article-title: Age-associated reductions in cerebral blood flow are independent from regional atrophy publication-title: Neuroimage – volume: 30 start-page: 1721 year: 2010 end-page: 1733 ident: bib0010 article-title: Mapping brain function using a 30-day interval between baseline and activation: a novel arterial spin labeling fMRI approach publication-title: J. Cereb. Blood Flow Metab. – volume: 30 start-page: 2927 year: 2009 end-page: 2935 ident: bib0007 article-title: Separating function from structure in perfusion imaging of the aging brain publication-title: Hum. Brain Mapp. – volume: 197 start-page: 742 year: 2019 end-page: 760 ident: bib0025 article-title: Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2 publication-title: Neuroimage – volume: 41 start-page: 1842 year: 2000 end-page: 1848 ident: bib0035 article-title: Does cerebral blood flow decline in healthy aging? A PET study with partial-volume correction publication-title: J. Nucl. Med. – volume: 42 start-page: 1267 year: 2008 end-page: 1274 ident: bib0003 article-title: Hippocampal hyperperfusion in Alzheimer's disease publication-title: Neuroimage – volume: 14 year: 2019 ident: bib0005 article-title: High resolution continuous arterial spin labeling of human cerebral perfusion using a separate neck tagging RF coil publication-title: PLoS ONE – volume: 34 start-page: 334 year: 2016 end-page: 344 ident: bib0001 article-title: ASAP (Automatic Software for ASL Processing): a toolbox for processing arterial spin labeling images publication-title: Magn. Reson. Imaging – volume: 30 start-page: 25 year: 2016 ident: 10.1016/j.neuroimage.2021.118236_bib0040 article-title: Brain atrophy in Alzheimer's disease and aging publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2016.01.002 – volume: 19 start-page: 115 year: 2006 ident: 10.1016/j.neuroimage.2021.118236_bib0046 article-title: Removing the effects of CSF partial voluming on fitted CBF and arterial transit times using FAIR, a pulsed arterial spin labeling technique publication-title: Magn. Reson. Mater. Phys. Biol. Med. doi: 10.1007/s10334-006-0034-2 – volume: 29 start-page: 15223 year: 2009 ident: 10.1016/j.neuroimage.2021.118236_bib0020 article-title: One-year brain atrophy evident in healthy aging publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3252-09.2009 – volume: 3 start-page: 141 year: 1983 ident: 10.1016/j.neuroimage.2021.118236_bib0024 article-title: Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 15O-Water publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.1983.21 – volume: 97 start-page: 11050 year: 2000 ident: 10.1016/j.neuroimage.2021.118236_bib0019 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.200033797 – volume: 60 start-page: 1362 year: 2008 ident: 10.1016/j.neuroimage.2021.118236_bib0006 article-title: Regression algorithm correcting for partial volume effects in arterial spin labeling MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21670 – volume: 57 start-page: 1181 year: 2015 ident: 10.1016/j.neuroimage.2021.118236_bib0021 article-title: A neuroradiologist's guide to arterial spin labeling MRI in clinical practice publication-title: Neuroradiology doi: 10.1007/s00234-015-1571-z – volume: 27 start-page: 476 year: 1948 ident: 10.1016/j.neuroimage.2021.118236_bib0030 article-title: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values publication-title: J. Clin. Invest. doi: 10.1172/JCI101994 – volume: 112 start-page: 353 year: 2015 ident: 10.1016/j.neuroimage.2021.118236_bib0037 article-title: Partial volume correction for in vivo 23Na-MRI data of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.03.025 – volume: 106 start-page: 170 year: 2015 ident: 10.1016/j.neuroimage.2021.118236_bib0032 article-title: Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.029 – volume: 34 start-page: 1658 year: 2007 ident: 10.1016/j.neuroimage.2021.118236_bib0041 article-title: Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer's disease publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-007-0454-x – volume: 19 start-page: 1043 year: 2006 ident: 10.1016/j.neuroimage.2021.118236_bib0016 article-title: An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation publication-title: NMR Biomed. doi: 10.1002/nbm.1075 – volume: 55 start-page: 468 year: 2011 ident: 10.1016/j.neuroimage.2021.118236_bib0013 article-title: Age-associated reductions in cerebral blood flow are independent from regional atrophy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.12.032 – volume: 41 start-page: 1842 year: 2000 ident: 10.1016/j.neuroimage.2021.118236_bib0035 article-title: Does cerebral blood flow decline in healthy aging? A PET study with partial-volume correction publication-title: J. Nucl. Med. – volume: 19 start-page: 1523 year: 2016 ident: 10.1016/j.neuroimage.2021.118236_bib0036 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nat. Neurosci. doi: 10.1038/nn.4393 – volume: 234 start-page: 851 year: 2005 ident: 10.1016/j.neuroimage.2021.118236_bib0027 article-title: Pattern of cerebral hypoperfusion in alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience1 publication-title: Radiology doi: 10.1148/radiol.2343040197 – start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118236_bib0038 article-title: Effects of systematic partial volume errors on the estimation of gray matter cerebral blood flow with arterial spin labeling MRI publication-title: Magn. Reson. Mater. Phys. Biol. Med. – volume: 28 start-page: 6174 year: 2008 ident: 10.1016/j.neuroimage.2021.118236_bib0045 article-title: Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease publication-title: J. Neurosci. Off. J. Soc. Neurosci. doi: 10.1523/JNEUROSCI.1392-08.2008 – volume: 70 start-page: 1535 year: 2013 ident: 10.1016/j.neuroimage.2021.118236_bib0039 article-title: Partial volume correction in arterial spin labeling using a Look-Locker sequence publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24601 – volume: 162 start-page: 384 year: 2017 ident: 10.1016/j.neuroimage.2021.118236_bib0047 article-title: A systematic study of the sensitivity of partial volume correction methods for the quantification of perfusion from pseudo-continuous arterial spin labeling MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.072 – volume: 75 start-page: 1054 year: 2016 ident: 10.1016/j.neuroimage.2021.118236_bib0008 article-title: Quantitative and functional pulsed arterial spin labeling in the human brain at 9.4 t publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25671 – volume: 73 start-page: 102 year: 2015 ident: 10.1016/j.neuroimage.2021.118236_bib0004 article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25197 – volume: 7 start-page: 11934 year: 2016 ident: 10.1016/j.neuroimage.2021.118236_bib0026 article-title: Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis publication-title: Nat. Commun. doi: 10.1038/ncomms11934 – volume: 42 start-page: 1267 year: 2008 ident: 10.1016/j.neuroimage.2021.118236_bib0003 article-title: Hippocampal hyperperfusion in Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.06.006 – volume: 30 start-page: 1721 year: 2010 ident: 10.1016/j.neuroimage.2021.118236_bib0010 article-title: Mapping brain function using a 30-day interval between baseline and activation: a novel arterial spin labeling fMRI approach publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2010.89 – volume: 57 start-page: R119 year: 2012 ident: 10.1016/j.neuroimage.2021.118236_bib0018 article-title: A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/21/R119 – volume: 34 start-page: 334 year: 2016 ident: 10.1016/j.neuroimage.2021.118236_bib0001 article-title: ASAP (Automatic Software for ASL Processing): a toolbox for processing arterial spin labeling images publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2015.11.002 – volume: 59 start-page: 1043 year: 2012 ident: 10.1016/j.neuroimage.2021.118236_bib0015 article-title: Complex relationships between cerebral blood flow and brain atrophy in early Huntington's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.112 – volume: 69 start-page: 531 year: 2013 ident: 10.1016/j.neuroimage.2021.118236_bib0033 article-title: Improved partial volume correction for single inversion time arterial spin labeling data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24279 – volume: 132 start-page: 334 year: 2016 ident: 10.1016/j.neuroimage.2021.118236_bib0022 article-title: Different partial volume correction methods lead to different conclusions: an 18F-FDG-PET study of aging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.042 – volume: 8 start-page: e66612 year: 2013 ident: 10.1016/j.neuroimage.2021.118236_bib0048 article-title: Turbo-FLASH based arterial spin labeled perfusion MRI at 7 T publication-title: PLoS ONE doi: 10.1371/journal.pone.0066612 – volume: 562 start-page: 210 year: 2018 ident: 10.1016/j.neuroimage.2021.118236_bib0017 article-title: Genome-wide association studies of brain imaging phenotypes in UK Biobank publication-title: Nature doi: 10.1038/s41586-018-0571-7 – volume: 26 start-page: 244 year: 2015 ident: 10.1016/j.neuroimage.2021.118236_bib0042 article-title: Early-stage differentiation between presenile Alzheimer's disease and frontotemporal dementia using arterial spin labeling MRI publication-title: PubMed - NCBI Eur. Radiol. doi: 10.1007/s00330-015-3789-x – volume: 183 start-page: 972 year: 2018 ident: 10.1016/j.neuroimage.2021.118236_bib0023 article-title: Extending the human Connectome project across ages: imaging protocols for the lifespan development and aging projects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.09.060 – volume: 105 start-page: 156 year: 2015 ident: 10.1016/j.neuroimage.2021.118236_bib0029 article-title: Decomposing cerebral blood flow MRI into functional and structural components: a non-local approach based on prediction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.052 – ident: 10.1016/j.neuroimage.2021.118236_bib0012 doi: 10.1002/mrm.22641 – volume: 69 start-page: 402 year: 2013 ident: 10.1016/j.neuroimage.2021.118236_bib0034 article-title: Pseudo-continuous arterial spin labeling at 7 T for human brain: estimation and correction for off-resonance effects using a Prescan publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24266 – volume: 197 start-page: 742 year: 2019 ident: 10.1016/j.neuroimage.2021.118236_bib0025 article-title: Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.041 – volume: 30 start-page: 2927 year: 2009 ident: 10.1016/j.neuroimage.2021.118236_bib0007 article-title: Separating function from structure in perfusion imaging of the aging brain publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20719 – volume: 14 year: 2019 ident: 10.1016/j.neuroimage.2021.118236_bib0005 article-title: High resolution continuous arterial spin labeling of human cerebral perfusion using a separate neck tagging RF coil publication-title: PLoS ONE – volume: 34 start-page: e4448 year: 2021 ident: 10.1016/j.neuroimage.2021.118236_bib0031 article-title: Voxel-wise partial volume correction method for accurate estimation of tissue sodium concentration in 23Na-MRI at 7 T publication-title: NMR Biomed. doi: 10.1002/nbm.4448 – volume: 267 start-page: 221 year: 2013 ident: 10.1016/j.neuroimage.2021.118236_bib0009 article-title: Cerebral blood flow measured with 3D Pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity publication-title: Radiology doi: 10.1148/radiol.12120928 – volume: 21 start-page: 225 year: 2000 ident: 10.1016/j.neuroimage.2021.118236_bib0011 article-title: Chronic cerebrovascular ischemia in aged rats: effects on brain metabolic capacity and behavior☆ publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(00)00116-0 – volume: 41 year: 2014 ident: 10.1016/j.neuroimage.2021.118236_bib0043 article-title: Arterial spin labeling MRI: clinical applications in the brain. - PubMed - NCBI publication-title: J. Magn. Reson. Imaging JMRI – volume: 27 start-page: 1112 year: 2014 ident: 10.1016/j.neuroimage.2021.118236_bib0002 article-title: Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling publication-title: NMR Biomed. doi: 10.1002/nbm.3164 – volume: 91 start-page: 203 year: 1999 ident: 10.1016/j.neuroimage.2021.118236_bib0028 article-title: Cerebral hypoperfusion yields capillary damage in the hippocampal CA1 area that correlates with spatial memory impairment publication-title: Neuroscience doi: 10.1016/S0306-4522(98)00659-9 – volume: 61 start-page: 7975 year: 2016 ident: 10.1016/j.neuroimage.2021.118236_bib0044 article-title: PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/22/7975 |
| SSID | ssj0009148 |
| Score | 2.5431526 |
| SecondaryResourceType | review_article |
| Snippet | •Partial volume effects influence studies of brain perfusion.•Systematic and random effects on perfusion can occur within and between groups.•Partial volume... The mismatch in the spatial resolution of Arterial Spin Labeling (ASL) MRI perfusion images and the anatomy of functionally distinct tissues in the brain leads... |
| SourceID | doaj proquest crossref elsevier |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118236 |
| SubjectTerms | Aging Aging and dementia Algorithms Alzheimer's disease Anatomy Anatomy & physiology Arterial spin labeling Atrophy Brain Cerebral Blood Flow Dementia fMRI Influence Magnetic resonance imaging Motivation MRI Neuroimaging Partial volume effect Perfusion Physiology Spatial discrimination Spin labeling Substantia alba |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQQogLKqWo2wKaSlxD844DBwSoqBxACHHgZvlZLYJkld2txK_gLzNjJwvtpXvoMbEnsjyTedgz3zB2YDj1fStMlNQGAxSZ6kiilYwMRhuZ5A5NvPLNJqrra35_X9-8a_VFOWEBHjhs3HfnbJnWeazQbufcOuW0NsrEilc2jY0H20avZwimBrhdnNvn7YRsLo8OOX7CfxRjwjQ5JL_awzK_GSOP2f-HTfpLO3uTc_GBbfa-IpyGNW6xFdt8ZOtX_W34Nnu5oeXjjKBiQFOnDV-nAOMGfLImjU4n-ITM9pXnMLGdm9MRGVzdXh7BKYQe0jBrgS5rGnQWfz1akA1G40_PQOUn4I8__Pk7tB0O0aiHMgGUkQmStuBkd_KJ3V38uDv_GfUNFiJdJnwWZbGypkiUKqQ1sZPS1tw4Y3Xq0EhlSlFHGuMK3OAs1haDrdzklUkxTCsrKbMdttq0jf3MoJSuUuj85VVp89rx2hntSvyg0bbShRuxathooXvwceqB8SiGLLMH8cYiQSwSgUUjliwoJwGAYwmaM-LlYj5BaPsXKFiiFyzxL8EasXqQBDFUqaJexQ-Nl1jA8YK292SCh7Ik9e4geKLXKFOBoR8Vt8UJH7Fvi2HUBXTBIxvbzmlOxglCMU2-_I8d-Mo2aFUho26Xrc66ud1ja_r3bDzt9v0P9wqYODd2 priority: 102 providerName: Directory of Open Access Journals |
| Title | Partial volume correction in arterial spin labeling perfusion MRI: A method to disentangle anatomy from physiology or an analysis step too far? |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921005139 https://dx.doi.org/10.1016/j.neuroimage.2021.118236 https://www.proquest.com/docview/2554331018 https://www.proquest.com/docview/2538048621 https://doaj.org/article/ffe62940b44148efbfccdbd0b87e20d6 |
| Volume | 238 |
| WOSCitedRecordID | wos000679331600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RFiEuPFoQgRItEuJm8Pq1azhUKWoFh0RR1UNu1j6roNY2ToLEr-AvM7NeJ4IDisTFUrKeXUs7O6-d-YaQt0Zg37fcRKw04KDIREcStGRkwNtIpXCg4pVvNsFnM7FYlPMQcFuFtMpBJnpBbRqNMfIPYPpicU_MxFn7PcKuUXi7GlpoHJAjRElIferefAe6y7K-FC5PI8FYGTJ5-vwujxe5vINTC15iwt6jpe2BmnfqyaP4_6Gl_pLXXgldPv7fz39CHgXzk056fnlK7tn6mJxManC9737Sd9QnhPpI-zF5MA337ifk1xw5DAh7YUY19vTwFRF0WVOfFoqjqxZ-AVv5Gnfa2s5tMBhHp1dfP9IJ7btV03VD8VqoBrP05tZSGRbHQhfabtenTQdDOOpBUyhwYwukDXWyO3tGri8vrj9_iUIrh0gXTKyjNFbW5EypXFoTOyltKYwzVicO1GGqFPa-MS5PwCKMtQW3LjMZNwk4hAWXMn1ODuumti8ILaTjCszMjBc2K50ondGugAmNtlznbkT4sIGVDjDn2G3jthry2b5Vu62vcOurfutHhG0p2x7qYw-ac-SR7fsI1u3_aLqbKpz9yjlbJGUWKzA9M2GdclobZWIluE1iA5OUA4dVQz0sSHCYaLnHB3za0gabqbeF9qQ-Hbi1CrJrVe1YdUTebIdB6uBVkqxts8F3UoFgjQl7-e8pXpGHuF6flXdKDtfdxr4m9_WP9XLVjckBX3D_FGNydH4xm1-NfVQEntNkOvbH-Te1fFKZ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgoALjxZEoMAiATcXe_1ag1AVHlWjNlGFeuhttc8qqLWNk4D6K_gl_Edm1nYiOKBceuCYrGfWsufpnZmPkJeGI-5baoKoMJCgSKYDCV4yMJBtxJI7cPHKg03kkwk_PS2ON8ivvhcGyyp7m-gNtak0fiN_A6EvNveEEd-rvwWIGoWnqz2ERisWh_byB6Rss_ejT_B-XzG2__nk40HQoQoEOov4PIhDZU0aKZVKa0InpS24ccZq5sAyx0ohDItxKYPgJNQWMozEJLlhkJtkuZQxsL1GrieQCCFSxJiNVzN-o6TtvEvjgEdR0RUOteVkfjzl9AKMBCSlLNrFwN7PhV55Qw8a8IdT_Ms9eJ-3f_c_e1r3yJ0uuKbDVhvukw1bbpHtYSnn1cUlfU19uas_R9giN8ddVcE2-XmM-gOErammGhFLfL8HnZbUF73i6qyGX6A0voOf1rZxC_zUSMdfRm_pkLZY3HReUTz0KiHoPju3VHabYxsPrZf706qBJVz1I2Eo6FoNpBV1stl7QE6u4iE9JJtlVdpHhGbS5QqC6CTPbFI4XjijXQYMjba5Tt2A5L28CN0NcUcskXPRV-t9FStJEyhpopW0AYmWlHU7yGQNmg8oksvrcRS5_6NqzkRn2YRzNmNFEioIrBNunXJaG2VCxXPLQgNMil6gRd_tC_4JGE3XuIF3S9ouImwjvTWpd3rlEJ1lnomVZgzIi-Uy2FQ8KJOlrRZ4TcxxFCWLHv-bxXNy6-BkfCSORpPDJ-Q27t3WH-6QzXmzsE_JDf19Pp01z7yloERcsa79Bsdrq1o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgiouBVoqUgosEnAz9dtrEKoCJSIqjSLUQ2-rfVZBrW2cBNRfwe_h3zGzfkRwQLn0wDFZz6xlz9P7zQwhLzTDuW-J9oJcQ4IiQuUJ8JKehmwjEsyCi5du2EQ2mbDz83y6QX51tTAIq-xsojPUulT4jfwQQl8s7vEDdmhbWMT0eHRUffNwghSetHbjNBoROTHXPyB9m78bH8O7fhmGo49nHz557YQBT6UBW3iRL41OAikTYbRvhTA501YbFVqw0pGUOJJF2ySEQMVXBrKNWMeZDiFPSTMhImB7i9zOsGe5Qw1OV_1-g7ipwksijwVB3oKIGmiZa1U5uwKDAQlqGLzGIN_1iF55RjdA4A8H-ZercP5vdO8_fnL3yXYbdNNhoyUPyIYpdsjusBCL8uqavqIOBuvOF3bI1mmLNtglP6eoV0DYmHCqcJKJqwOhs4I6MCyuziv4BcrkKvtpZWq7xE-Q9PTL-A0d0mZGN12UFA_DCgjGLy4NFe3mWN5Dq35_WtawhKuuVQwFHayAtKRW1EcPydlNPKQ9slmUhXlEaCpsJiG4jrPUxLlludXKpsBQK5OpxA5I1skOV21zd5wxcsk7FN9XvpI6jlLHG6kbkKCnrJoGJ2vQvEfx7K_HFuXuj7K-4K3F49aaNMxjX0LAHTNjpVVKS-1LlpnQ18Ak74Sbd1XA4LeA0WyNG3jb07aRYhMBrkl90CkKby32nK-0ZECe98tga_EATRSmXOI1EcMWlWGw_28Wz8gWqBj_PJ6cPCZ3cesGlnhANhf10jwhd9T3xWxeP3VGgxJ-w6r2G07xtCs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+volume+correction+in+arterial+spin+labeling+perfusion+MRI%3A+A+method+to+disentangle+anatomy+from+physiology+or+an+analysis+step+too+far%3F&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Chappell%2C+Michael+A.&rft.au=McConnell%2C+Flora+A.+Kennedy&rft.au=Golay%2C+Xavier&rft.au=G%C3%BCnther%2C+Matthias&rft.date=2021-09-01&rft.issn=1053-8119&rft.volume=238&rft.spage=118236&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118236&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2021_118236 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |