High-Order Numerical Methods for 2D Parabolic Problems in Single and Composite Domains

In this work, we discuss and compare three methods for the numerical approximation of constant- and variable-coefficient diffusion equations in both single and composite domains with possible discontinuity in the solution/flux at interfaces, considering (i) the Cut Finite Element Method; (ii) the Di...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of scientific computing Ročník 76; číslo 2; s. 812 - 847
Hlavní autori: Ludvigsson, Gustav, Steffen, Kyle R., Sticko, Simon, Wang, Siyang, Xia, Qing, Epshteyn, Yekaterina, Kreiss, Gunilla
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.08.2018
Springer Nature B.V
Predmet:
ISSN:0885-7474, 1573-7691, 1573-7691
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this work, we discuss and compare three methods for the numerical approximation of constant- and variable-coefficient diffusion equations in both single and composite domains with possible discontinuity in the solution/flux at interfaces, considering (i) the Cut Finite Element Method; (ii) the Difference Potentials Method; and (iii) the summation-by-parts Finite Difference Method. First we give a brief introduction for each of the three methods. Next, we propose benchmark problems, and consider numerical tests—with respect to accuracy and convergence—for linear parabolic problems on a single domain, and continue with similar tests for linear parabolic problems on a composite domain (with the interface defined either explicitly or implicitly). Lastly, a comparative discussion of the methods and numerical results will be given.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
1573-7691
DOI:10.1007/s10915-017-0637-y