Increasing the degree of parallelism using speculative execution in task-based runtime systems

Task-based programming models have demonstrated their efficiency in the development of scientific applications on modern high-performance platforms. They allow delegation of the management of parallelization to the runtime system (RS), which is in charge of the data coherency, the scheduling, and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science Jg. 5; S. e183
1. Verfasser: Bramas, Bérenger
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States PeerJ. Ltd 18.03.2019
PeerJ, Inc
PeerJ
PeerJ Inc
Schlagworte:
ISSN:2376-5992, 2376-5992
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Task-based programming models have demonstrated their efficiency in the development of scientific applications on modern high-performance platforms. They allow delegation of the management of parallelization to the runtime system (RS), which is in charge of the data coherency, the scheduling, and the assignment of the work to the computational units. However, some applications have a limited degree of parallelism such that no matter how efficient the RS implementation, they may not scale on modern multicore CPUs. In this paper, we propose using speculation to unleash the parallelism when it is uncertain if some tasks will modify data, and we formalize a new methodology to enable speculative execution in a graph of tasks. This description is partially implemented in our new C++ RS called SPETABARU, which is capable of executing tasks in advance if some others are not certain to modify the data. We study the behavior of our approach to compute Monte Carlo and replica exchange Monte Carlo simulations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.183