Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging

There is an urgent need for quantitative magnetic resonance approaches for assessing brain development, as well as for studying the effects of drugs on neural tissue inflammation. Aviv Mezer and colleagues have developed a neuroimaging method for the quantification of local tissue volume and tissue-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature medicine Ročník 19; číslo 12; s. 1667 - 1672
Hlavní autoři: Mezer, Aviv, Yeatman, Jason D, Stikov, Nikola, Kay, Kendrick N, Cho, Nam-Joon, Dougherty, Robert F, Perry, Michael L, Parvizi, Josef, Hua, Le H, Butts-Pauly, Kim, Wandell, Brian A
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.12.2013
Nature Publishing Group
Témata:
ISSN:1078-8956, 1546-170X, 1546-170X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract There is an urgent need for quantitative magnetic resonance approaches for assessing brain development, as well as for studying the effects of drugs on neural tissue inflammation. Aviv Mezer and colleagues have developed a neuroimaging method for the quantification of local tissue volume and tissue-surface interaction, producing reliable quantitative measurements across a range of scanners. They apply their method to both the healthy brain and individuals with relapsing-remitting multiple sclerosis. Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV can be obtained across a range of scanners. MTV estimates are sufficiently precise to enable a comparison between data obtained from an individual subject with control population data. We describe two applications. First, we show that MTV estimates can be combined with T1 and diffusion measurements to augment our understanding of the tissue properties. Second, we show that MTV provides a sensitive measure of disease status in individual patients with multiple sclerosis. The MTV maps are obtained using short clinically appropriate scans that can reveal how tissue changes influence behavior and cognition.
AbstractList Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV can be obtained across a range of scanners. MTV estimates are sufficiently precise to enable a comparison between data obtained from an individual subject with control population data. We describe two applications. First, we show that MTV estimates can be combined with T1 and diffusion measurements to augment our understanding of the tissue properties. Second, we show that MTV provides a sensitive measure of disease status in individual patients with multiple sclerosis. The MTV maps are obtained using short clinically appropriate scans that can reveal how tissue changes influence behavior and cognition.
Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV can be obtained across a range of scanners. MTV estimates are sufficiently precise to enable a comparison between data obtained from an individual subject with control population data. We describe two applications. First, we show that MTV estimates can be combined with T1 and diffusion measurements to augment our understanding of the tissue properties. Second, we show that MTV provides a sensitive measure of disease status in individual patients with multiple sclerosis. The MTV maps are obtained using short clinically appropriate scans that can reveal how tissue changes influence behavior and cognition.Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV can be obtained across a range of scanners. MTV estimates are sufficiently precise to enable a comparison between data obtained from an individual subject with control population data. We describe two applications. First, we show that MTV estimates can be combined with T1 and diffusion measurements to augment our understanding of the tissue properties. Second, we show that MTV provides a sensitive measure of disease status in individual patients with multiple sclerosis. The MTV maps are obtained using short clinically appropriate scans that can reveal how tissue changes influence behavior and cognition.
There is an urgent need for quantitative magnetic resonance approaches for assessing brain development, as well as for studying the effects of drugs on neural tissue inflammation. Aviv Mezer and colleagues have developed a neuroimaging method for the quantification of local tissue volume and tissue-surface interaction, producing reliable quantitative measurements across a range of scanners. They apply their method to both the healthy brain and individuals with relapsing-remitting multiple sclerosis. Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV can be obtained across a range of scanners. MTV estimates are sufficiently precise to enable a comparison between data obtained from an individual subject with control population data. We describe two applications. First, we show that MTV estimates can be combined with T1 and diffusion measurements to augment our understanding of the tissue properties. Second, we show that MTV provides a sensitive measure of disease status in individual patients with multiple sclerosis. The MTV maps are obtained using short clinically appropriate scans that can reveal how tissue changes influence behavior and cognition.
Audience Academic
Author Mezer, Aviv
Dougherty, Robert F
Perry, Michael L
Butts-Pauly, Kim
Kay, Kendrick N
Cho, Nam-Joon
Hua, Le H
Yeatman, Jason D
Parvizi, Josef
Wandell, Brian A
Stikov, Nikola
Author_xml – sequence: 1
  givenname: Aviv
  surname: Mezer
  fullname: Mezer, Aviv
  email: avivmezer@gmail.com
  organization: Department of Psychology, Stanford University
– sequence: 2
  givenname: Jason D
  surname: Yeatman
  fullname: Yeatman, Jason D
  organization: Department of Psychology, Stanford University
– sequence: 3
  givenname: Nikola
  surname: Stikov
  fullname: Stikov, Nikola
  organization: Montreal Neurological Institute, McGill University
– sequence: 4
  givenname: Kendrick N
  surname: Kay
  fullname: Kay, Kendrick N
  organization: Department of Psychology, Stanford University
– sequence: 5
  givenname: Nam-Joon
  surname: Cho
  fullname: Cho, Nam-Joon
  organization: Department of Chemical Engineering, Stanford University, School of Materials Science and Engineering, Nanyang Technological University
– sequence: 6
  givenname: Robert F
  surname: Dougherty
  fullname: Dougherty, Robert F
  organization: Center for Cognitive and Neurobiological Imaging, Stanford University
– sequence: 7
  givenname: Michael L
  surname: Perry
  fullname: Perry, Michael L
  organization: Department of Psychology, Stanford University
– sequence: 8
  givenname: Josef
  surname: Parvizi
  fullname: Parvizi, Josef
  organization: Department of Neurology and Neurological Sciences, Stanford University
– sequence: 9
  givenname: Le H
  surname: Hua
  fullname: Hua, Le H
  organization: Department of Neurology and Neurological Sciences, Stanford University
– sequence: 10
  givenname: Kim
  surname: Butts-Pauly
  fullname: Butts-Pauly, Kim
  organization: Department of Radiology, Stanford University
– sequence: 11
  givenname: Brian A
  surname: Wandell
  fullname: Wandell, Brian A
  organization: Department of Psychology, Stanford University, Center for Cognitive and Neurobiological Imaging, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24185694$$D View this record in MEDLINE/PubMed
BookMark eNqN0tlq3DAUBmBTUpqlpW9QBIUuF55qsWT5MoQugUDoSu-MLB_bCrY0leS0efvKzTTJhIEWG2zEpyN0zn-Y7VlnIcueErwimMk3dloxVuEH2QHhhchJib_vpX9cylxWXOxnhyFcYIwZ5tWjbJ8WRHJRFQfZ8HFWNpruytgexQHQ6LQaUTQhzIAu3ThPgJRtkXbT2gUTjbPILG9rLk07J9t4ZWxAP00c0KR6C9Fo5CE4q6wGZNJaKv44e9ipMcCTzfco-_ru7ZeTD_nZ-fvTk-OzXAtCY64Y1bxURYMVpV2jOool5Y3mnW44EVKIFpeMKNxBy6AlTaOBtFK0AoiiFWZH2avrumvvfswQYj2ZoGEclQU3h5qka1cSl4T-mxaCS0El44k-v0cv3OxtusgfRWnFsLxVvRqhNrZz0Su9FK2PUxFGGZEsqXyH6sGCV2Maa2fS8pZf7fDpaWEyeueG11sbkonwK_ZqDqE-_fzp_-35t2374o4dQI1xCCkhSybCNny26dbcTNDWa59C4K_qv7FL4OU10N6F4KG7IQTXS6BrO9VLoG-bdSO1iWo5MTXBjDv8ZqYhVbQ9-DuDukd_Ay4GAEA
CitedBy_id crossref_primary_10_1016_j_neuroimage_2015_06_038
crossref_primary_10_1016_j_neuroimage_2017_11_066
crossref_primary_10_1016_j_biopsych_2025_04_014
crossref_primary_10_1016_j_neuroimage_2022_119529
crossref_primary_10_1007_s00429_022_02600_z
crossref_primary_10_1038_ncomms5932
crossref_primary_10_1016_j_neuroimage_2021_117744
crossref_primary_10_3389_fnhum_2021_662031
crossref_primary_10_1002_advs_202400316
crossref_primary_10_1002_hbm_70232
crossref_primary_10_1016_j_cortex_2016_04_001
crossref_primary_10_1016_j_bandl_2019_104654
crossref_primary_10_3389_fnins_2025_1542957
crossref_primary_10_1016_j_nicl_2017_07_020
crossref_primary_10_1002_mrm_28509
crossref_primary_10_1088_1361_6560_acb30b
crossref_primary_10_1038_s41467_023_40999_z
crossref_primary_10_1016_j_neuroimage_2022_119750
crossref_primary_10_3389_fninf_2023_1060511
crossref_primary_10_1038_s41467_023_43146_w
crossref_primary_10_3233_JAD_220197
crossref_primary_10_1038_s41467_021_22524_2
crossref_primary_10_1002_nbm_4209
crossref_primary_10_1002_hbm_70102
crossref_primary_10_1093_cercor_bhaa203
crossref_primary_10_1016_j_neuroimage_2021_118161
crossref_primary_10_1016_j_neuroimage_2019_116121
crossref_primary_10_1016_j_bbih_2021_100376
crossref_primary_10_1016_j_neuroimage_2022_119660
crossref_primary_10_1016_j_visres_2015_01_015
crossref_primary_10_1007_s00115_017_0373_4
crossref_primary_10_1016_j_neuroimage_2020_117204
crossref_primary_10_1126_science_aag0311
crossref_primary_10_3389_fpsyg_2019_01607
crossref_primary_10_1002_mrm_25135
crossref_primary_10_1371_journal_pone_0297244
crossref_primary_10_1002_hbm_26414
crossref_primary_10_1038_s41531_025_01020_0
crossref_primary_10_1093_sleep_zsz247
crossref_primary_10_1007_s12311_020_01162_2
crossref_primary_10_1016_j_nicl_2019_102044
crossref_primary_10_1002_hbm_23264
crossref_primary_10_1371_journal_pone_0189933
crossref_primary_10_1016_j_neuroimage_2022_119777
crossref_primary_10_1016_j_jneumeth_2020_108990
crossref_primary_10_1016_j_neuroimage_2017_09_037
crossref_primary_10_1016_j_nicl_2019_101756
crossref_primary_10_1073_pnas_2303491120
crossref_primary_10_1038_s41467_018_03166_3
crossref_primary_10_1002_mrm_28995
crossref_primary_10_1016_j_nicl_2016_04_003
crossref_primary_10_1002_mrm_27421
crossref_primary_10_1002_hbm_22721
crossref_primary_10_1016_j_bandl_2015_01_012
crossref_primary_10_1016_j_neuroimage_2023_120312
crossref_primary_10_1038_s41598_018_28852_6
crossref_primary_10_1016_j_neuroimage_2019_116439
crossref_primary_10_1371_journal_pone_0189944
crossref_primary_10_1038_s42003_021_02706_w
crossref_primary_10_1002_mrm_29990
crossref_primary_10_1016_j_media_2017_06_007
crossref_primary_10_1002_mrm_28427
crossref_primary_10_1016_j_neuroimage_2014_11_017
crossref_primary_10_1016_j_neuroimage_2020_117669
crossref_primary_10_1148_radiol_2016152149
crossref_primary_10_1016_j_neuroimage_2017_02_056
crossref_primary_10_3389_fneur_2023_1264322
crossref_primary_10_1016_j_neuroimage_2016_12_067
crossref_primary_10_1038_s41562_021_01141_5
crossref_primary_10_1038_nrn3647
crossref_primary_10_1016_j_neuroimage_2017_06_076
crossref_primary_10_1038_s41598_017_02062_y
crossref_primary_10_1371_journal_pone_0306006
crossref_primary_10_1016_j_neuroscience_2014_06_052
crossref_primary_10_1002_hbm_25860
crossref_primary_10_1002_mrm_27442
crossref_primary_10_1016_j_jfludis_2017_09_002
crossref_primary_10_1073_pnas_1418503111
crossref_primary_10_1371_journal_pone_0318415
crossref_primary_10_1007_s12264_017_0141_2
crossref_primary_10_1016_j_neuroimage_2017_02_040
crossref_primary_10_1038_nmeth_3098
crossref_primary_10_1038_s41467_019_11319_1
crossref_primary_10_1016_j_schres_2015_05_034
crossref_primary_10_1007_s00429_019_01952_3
crossref_primary_10_1007_s10334_016_0585_9
crossref_primary_10_1016_j_neuroimage_2022_119743
crossref_primary_10_1016_j_neuroimage_2018_07_023
crossref_primary_10_1177_0883073815592223
crossref_primary_10_1177_23982128211011923
crossref_primary_10_1016_j_neuron_2017_08_007
crossref_primary_10_1016_j_neuroimage_2021_118453
crossref_primary_10_1038_nrn3747
crossref_primary_10_1002_mrm_26945
crossref_primary_10_1146_annurev_neuro_070815_013815
crossref_primary_10_1073_pnas_1904931116
crossref_primary_10_1093_cercor_bhab076
crossref_primary_10_1038_s41598_018_33463_2
crossref_primary_10_1016_j_cortex_2021_02_027
crossref_primary_10_1016_j_jmbbm_2017_08_029
crossref_primary_10_1007_s10334_025_01238_2
crossref_primary_10_1038_s41597_022_01571_4
crossref_primary_10_1002_mrm_30192
crossref_primary_10_1016_j_neures_2018_10_011
crossref_primary_10_1016_j_neuroimage_2022_119240
crossref_primary_10_3233_JAD_150841
crossref_primary_10_1007_s00429_018_1813_z
crossref_primary_10_7554_eLife_78756
crossref_primary_10_1073_pnas_1803003115
crossref_primary_10_1038_s41467_022_28326_4
crossref_primary_10_1523_JNEUROSCI_1886_16_2016
crossref_primary_10_1016_j_mri_2019_11_013
crossref_primary_10_1016_j_cortex_2018_06_011
crossref_primary_10_1097_WCO_0000000000000222
crossref_primary_10_1016_j_neuroimage_2015_08_047
crossref_primary_10_1093_cercor_bhac453
crossref_primary_10_1152_jn_00316_2018
crossref_primary_10_1093_cercor_bhac221
crossref_primary_10_1007_s00415_014_7551_0
crossref_primary_10_1016_j_biomaterials_2016_10_043
crossref_primary_10_3389_fneur_2016_00016
crossref_primary_10_1038_srep43316
crossref_primary_10_1007_s00429_014_0881_y
crossref_primary_10_3389_fnhum_2019_00139
crossref_primary_10_1111_mbe_70017
crossref_primary_10_1016_j_neuroimage_2020_116884
crossref_primary_10_1093_cercor_bhaa288
crossref_primary_10_1073_pnas_1804741115
crossref_primary_10_1038_s41593_022_01136_z
crossref_primary_10_1007_s12311_018_1003_9
crossref_primary_10_1016_j_neuroimage_2013_08_068
crossref_primary_10_3389_fnins_2025_1577991
crossref_primary_10_1016_j_neuroimage_2018_11_056
crossref_primary_10_1002_hbm_24510
crossref_primary_10_1093_cercor_bhaa180
crossref_primary_10_1016_j_neuroimage_2015_12_032
crossref_primary_10_1016_j_neuroimage_2016_05_022
crossref_primary_10_1371_journal_pone_0198250
crossref_primary_10_1016_j_neuroimage_2016_09_018
crossref_primary_10_1002_da_22325
crossref_primary_10_1162_imag_a_00470
crossref_primary_10_1016_j_ymeth_2017_07_025
crossref_primary_10_1016_j_neuroimage_2016_02_003
crossref_primary_10_3233_BPL_160031
crossref_primary_10_1002_hbm_24626
crossref_primary_10_1016_j_neuroimage_2018_11_023
crossref_primary_10_3390_brainsci13050715
crossref_primary_10_1016_j_neuroimage_2019_03_025
crossref_primary_10_1146_annurev_vision_102016_061214
crossref_primary_10_1007_s00429_024_02821_4
crossref_primary_10_1002_mrm_30226
crossref_primary_10_1016_j_nicl_2015_10_008
crossref_primary_10_1007_s10334_017_0608_1
crossref_primary_10_1038_s41467_019_11424_1
crossref_primary_10_1371_journal_pone_0142860
crossref_primary_10_1016_j_neuroimage_2017_10_052
crossref_primary_10_1523_JNEUROSCI_2619_16_2016
crossref_primary_10_1016_j_neuroimage_2018_02_055
crossref_primary_10_1038_s41598_020_69920_0
crossref_primary_10_1093_cercor_bhy178
crossref_primary_10_1007_s00234_018_2137_7
crossref_primary_10_1371_journal_pone_0141894
crossref_primary_10_1007_s00429_016_1302_1
crossref_primary_10_1016_j_neuroimage_2015_05_023
crossref_primary_10_1016_j_neuroimage_2017_09_053
crossref_primary_10_1016_j_cortex_2020_03_015
crossref_primary_10_1016_j_neuroscience_2017_10_033
crossref_primary_10_1523_JNEUROSCI_0809_24_2024
crossref_primary_10_1007_s00429_014_0912_8
crossref_primary_10_1038_s41467_018_04627_5
crossref_primary_10_1016_j_media_2018_11_012
crossref_primary_10_1016_j_neuroimage_2023_119860
crossref_primary_10_1002_wnan_1482
crossref_primary_10_1007_s00429_021_02358_w
crossref_primary_10_1016_j_neuroimage_2018_04_009
crossref_primary_10_1038_s41598_024_80274_9
crossref_primary_10_1016_j_nicl_2020_102446
crossref_primary_10_1016_j_neuroimage_2017_04_044
crossref_primary_10_1162_nol_a_00098
crossref_primary_10_1002_nbm_3546
crossref_primary_10_1016_j_neuron_2014_12_027
crossref_primary_10_1038_s41598_018_23527_8
crossref_primary_10_1177_20552173221147620
crossref_primary_10_1016_j_neuroimage_2017_04_040
crossref_primary_10_1038_s41380_021_01272_1
crossref_primary_10_1007_s00429_017_1492_1
crossref_primary_10_1016_j_neuroimage_2017_08_038
crossref_primary_10_1038_s41467_018_03297_7
crossref_primary_10_1038_s41467_023_37280_8
crossref_primary_10_1167_iovs_63_2_29
crossref_primary_10_1016_j_nicl_2019_101832
crossref_primary_10_3348_jksr_2017_77_5_317
crossref_primary_10_1016_j_neuroimage_2018_06_060
crossref_primary_10_1016_j_nicl_2019_101826
crossref_primary_10_1002_nbm_3658
crossref_primary_10_1016_j_neuroimage_2021_117895
crossref_primary_10_1111_jne_12907
crossref_primary_10_3389_fneur_2019_01333
crossref_primary_10_1002_hbm_23858
crossref_primary_10_1016_j_neuroimage_2015_10_006
Cites_doi 10.1073/pnas.0402680101
10.1007/978-1-61737-992-5_4
10.1002/ana.20703
10.1002/mrm.23206
10.1371/journal.pone.0049790
10.1523/JNEUROSCI.2180-11.2011
10.1148/radiol.2301021640
10.1016/0006-8993(92)90178-C
10.1016/j.tics.2011.12.005
10.1002/mrm.21122
10.1016/j.neuroimage.2008.03.036
10.1002/1522-2594(200101)45:1<71::AID-MRM1011>3.0.CO;2-2
10.1146/annurev.pc.31.100180.001105
10.1002/mrm.10060
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.1002/mrm.1910200210
10.1148/radiology.192.2.8029426
10.1016/j.neuroimage.2004.04.029
10.1016/S0006-3495(94)80934-8
10.1002/mrm.22497
10.1016/j.bandc.2009.06.002
10.1212/WNL.33.11.1444
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1148/radiol.11101362
10.1002/0470869526
10.1088/0031-9155/54/11/013
10.1016/j.neuroimage.2005.12.063
10.1073/pnas.0500003102
10.3174/ajnr.A1906
10.1016/0730-725X(87)90021-X
10.1016/S0006-3495(82)84477-9
10.1006/nimg.1998.0395
10.1111/j.1471-4159.1966.tb06794.x
10.1146/annurev-pathol-011811-132443
10.1016/j.nurt.2007.05.004
10.1097/NRL.0b013e31821a2643
10.1002/jmri.1076
10.1093/brain/awp042
10.1038/nrn3000
10.1118/1.595535
10.1073/pnas.200033797
10.3171/jns.1999.90.1.0109
10.1016/j.tics.2011.08.002
10.1002/mrm.1910030214
10.1007/s00415-004-0306-6
10.1006/nimg.2000.0582
10.1002/nbm.782
10.1016/j.bbamem.2005.07.006
10.1007/978-3-540-30136-3_82
10.1016/j.neuroimage.2010.08.068
10.1016/j.nic.2008.09.007
10.1002/mrm.21669
10.1007/s00234-010-0717-2
10.1016/j.neuroimage.2006.05.023
10.1089/brain.2011.0071
10.1016/j.nurt.2007.05.011
ContentType Journal Article
Copyright Springer Nature America, Inc. 2013
COPYRIGHT 2013 Nature Publishing Group
Copyright Nature Publishing Group Dec 2013
Copyright_xml – notice: Springer Nature America, Inc. 2013
– notice: COPYRIGHT 2013 Nature Publishing Group
– notice: Copyright Nature Publishing Group Dec 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/nm.3390
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Research Library Prep
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1546-170X
EndPage 1672
ExternalDocumentID 3147359801
A353323183
24185694
10_1038_nm_3390
Genre Research Support, U.S. Gov't, Non-P.H.S
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY003164
– fundername: NEI NIH HHS
  grantid: R01 EY015000
– fundername: NEI NIH HHS
  grantid: R01-EY15000
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACSTC
AFANA
AFFHD
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
XRW
AETEA
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
ACMFV
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c612t-a32c57a4b0a22fbaf20825bc5fcb516866d0731a0fed3ed1bbce1d86d6e1a2903
IEDL.DBID M2P
ISICitedReferencesCount 214
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328181400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1078-8956
1546-170X
IngestDate Sun Nov 09 14:42:22 EST 2025
Thu Oct 02 10:04:34 EDT 2025
Fri Oct 03 09:21:10 EDT 2025
Sat Nov 29 13:10:02 EST 2025
Sat Nov 29 11:19:10 EST 2025
Sun Nov 23 08:48:14 EST 2025
Wed Nov 26 10:29:51 EST 2025
Wed Nov 26 10:02:23 EST 2025
Thu May 22 21:08:53 EDT 2025
Thu Apr 03 06:59:26 EDT 2025
Tue Nov 18 22:34:14 EST 2025
Sat Nov 29 06:02:20 EST 2025
Fri Feb 21 02:37:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-a32c57a4b0a22fbaf20825bc5fcb516866d0731a0fed3ed1bbce1d86d6e1a2903
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://doi.org/10.1038/nm.3390
PMID 24185694
PQID 1465229308
PQPubID 33975
PageCount 6
ParticipantIDs proquest_miscellaneous_1694980712
proquest_miscellaneous_1465862835
proquest_journals_1465229308
gale_infotracmisc_A353323183
gale_infotracgeneralonefile_A353323183
gale_infotracacademiconefile_A353323183
gale_incontextgauss_ISR_A353323183
gale_incontextgauss_IOV_A353323183
gale_healthsolutions_A353323183
pubmed_primary_24185694
crossref_primary_10_1038_nm_3390
crossref_citationtrail_10_1038_nm_3390
springer_journals_10_1038_nm_3390
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2013
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References GogtayNDynamic mapping of human cortical development during childhood through early adulthoodProc. Natl. Acad. Sci. USA2004101817481791:CAS:528:DC%2BD2cXkslCit7c%3D15148381419576
SigalovskyISFischlBMelcherJRMapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differencesNeuroimage2006321524153716806989
NortonWTAutilioLAThe lipid composition of purified bovine brain myelinJ. Neurochem.1966132132221:CAS:528:DyaF28XhtVOnu7k%3D5937889
UlrichASWattsAMolecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMRBiophys. J.199466144114491:CAS:528:DyaK2cXkslKlsbg%3D80611931275864
LauleCMagnetic resonance imaging of myelinNeurotherapeutics200744604841:CAS:528:DC%2BD2sXps1SgsL4%3D175997127479725
MayAExperience-dependent structural plasticity in the adult human brainTrends Cogn. Sci.20111547548221906988
WakanaSJiangHNagae-PoetscherLMvan ZijlPCMoriSFiber tract-based atlas of human white matter anatomyRadiology2004230778714645885
BottomleyPAFosterTHArgersingerREPfeiferLMA review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and ageMed. Phys.1984114254481:CAS:528:DyaL2cXlsVOjs70%3D6482839
GlasserMFVan EssenDCMapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRIJ. Neurosci.20113111597116161:CAS:528:DC%2BC3MXhtVOru7jJ218321903167149
PoloniGMinagarAHaackeEMZivadinovRRecent developments in imaging of multiple sclerosisNeurologist20111718520421712664
Tofts, P. Quantitative MRI of the Brain Measuring Changes Caused by Disease (John Wiley & Sons, Chichester, West Sussex; Hoboken, NJ, 2003).
AboitizFScheibelABFisherRSZaidelEFiber composition of the human corpus callosumBrain Res.19925981431531:STN:280:DyaK3s7jslSjsQ%3D%3D1486477
Mansfield, P. & Morris, P.G. NMR Imaging in Biomedicine (Academic Press, London, 1982).
KucharczykWMacdonaldPMStaniszGJHenkelmanRMRelaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pHRadiology19941925215291:CAS:528:DyaK2cXmsV2lu7c%3D8029426
LauleCWater content and myelin water fraction in multiple sclerosis. A T2 relaxation studyJ. Neurol.20042512842931:STN:280:DC%2BD2c7itlSnsQ%3D%3D15015007
LövbladKOMR imaging in multiple sclerosis: review and recommendations for current practiceAJNR Am. J. Neuroradiol.201031983989200191037963928
CorougeIGouttardSGerigGA statistical shape model of individual fiber tracts extracted from diffusion tensor MRILect. Notes Comput. Sci.20043217671679
KanaiRReesGThe structural basis of inter-individual differences in human behaviour and cognitionNat. Rev. Neurosci.2011122312421:CAS:528:DC%2BC3MXjt1Wnsrw%3D21407245
KurtzkeJFRating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS)Neurology198333144414521:STN:280:DyaL2c%2FktValsQ%3D%3D6685237
PopescuBFLucchinettiCFPathology of demyelinating diseasesAnnu. Rev. Pathol.201271852171:CAS:528:DC%2BC38Xjs1Kqsb0%3D22313379
BeaulieuCThe basis of anisotropic water diffusion in the nervous system–a technical reviewNMR Biomed.20021543545512489094
MoriSCrainBJChackoVPvan ZijlPCThree-dimensional tracking of axonal projections in the brain by magnetic resonance imagingAnn. Neurol.1999452652691:STN:280:DyaK1M7kt1Oguw%3D%3D9989633
AlexanderALCharacterization of cerebral white matter properties using quantitative magnetic resonance imaging atainsBrain Connect.20111423426224329023360545
FramEKRapid calculation of T1 using variable flip angle gradient refocused imagingMagn. Reson. Imaging198752012081:STN:280:DyaL2szhsVaktw%3D%3D3626789
KoenigSHCholesterol of myelin is the determinant of gray-white contrast in MRI of brainMagn. Reson. Med.1991202852911:STN:280:DyaK387jtVOltw%3D%3D1775053
FilippiMRoccaMAMR imaging of multiple sclerosisRadiology201125965968121602503
PolmanCHDiagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”Ann. Neurol.20055884084616283615
HopkinsALYeungHNBrattonCBMultiple field strength in vivo T1 and T2 for cerebrospinal fluid protonsMagn. Reson. Med.198633033111:CAS:528:DyaL28XktlymtLs%3D3713494
FatourosPPMarmarouAUse of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal valuesJ. Neurosurg.1999901091151:STN:280:DyaK1MzjvFGjug%3D%3D10413163
NagleJFTheory of the main lipid bilayer phase transitionAnnu. Rev. Phys. Chem.1980311571961:CAS:528:DyaL3cXmtlartLk%3D
Le BihanDDiffusion tensor imaging: concepts and applicationsJ. Magn. Reson. Imaging2001135345461:STN:280:DC%2BD3M7os1eqsA%3D%3D11276097
DaleAMFischlBSerenoMICortical surface-based analysis. I. Segmentation and surface reconstructionNeuroimage199991791941:STN:280:DyaK1M7jt1Gisg%3D%3D9931268
RooneyWDMagnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivoMagn. Reson. Med.2007573083181:CAS:528:DC%2BD2sXisVOjtr4%3D17260370
VolzSNothUDeichmannRCorrection of systematic errors in quantitative proton density mappingMagn. Reson. Med.201268748522144171
KoenigBWGawrischKSpecific volumes of unsaturated phosphatidylcholines in the liquid crystalline lamellar phaseBiochim. Biophys. Acta2005171565701:CAS:528:DC%2BD2MXosVCksrs%3D16109383
NoterdaemeOAndersonMGleesonFBradySMIntensity correction with a pair of spoiled gradient recalled echo imagesPhys. Med. Biol.2009543473348919436101
BarralJKA robust methodology for in vivo T1 mappingMagn. Reson. Med.20106410571067205645972962940
FischlBDaleAMMeasuring the thickness of the human cerebral cortex from magnetic resonance imagesProc. Natl. Acad. Sci. USA20009711050110551:CAS:528:DC%2BD3cXnt1ahtrg%3D1098451727146
BasserPJPajevicSPierpaoliCDudaJAldroubiAIn vivo fiber tractography using DT-MRI dataMagn. Reson. Med.2000446256321:STN:280:DC%2BD3cvnvFCitA%3D%3D11025519
AshburnerJFristonKJVoxel-based morphometry–the methodsNeuroimage2000118058211:STN:280:DC%2BD3cvgt1Chug%3D%3D10860804
AlexanderALLeeJELazarMFieldASDiffusion tensor imaging of the brainNeurotherapeutics20074316329175996992041910
DoesMDGoreJCCompartmental study of T(1) and T(2) in rat brain and trigeminal nerve in vivoMagn. Reson. Med.20024727428311810670
DeoniSCMagnetic resonance relaxation and quantitative measurement in the brainMethods Mol. Biol.2011711651081:CAS:528:DC%2BC2cXhvFWms73N21279598
StikovNBound pool fractions complement diffusion measures to describe white matter micro and macrostructureNeuroimage2011541112112120828622
MacKayALMR relaxation in multiple sclerosisNeuroimaging Clin. N. Am.2009191261:STN:280:DC%2BD1M7jslCnsg%3D%3D19064196
YarnykhVLYuanCCross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brainNeuroimage20042340942415325389
Loosley-MillmanMERandRPParsegianVAEffects of monovalent ion binding and screening on measured electrostatic forces between charged phospholipid bilayersBiophys. J.1982402212321:CAS:528:DyaL3sXkvFSruw%3D%3D71833361328998
BarazanyDBasserPJAssafYIn vivo measurement of axon diameter distribution in the corpus callosum of rat brainBrain200913212101220194037882677796
GelmanNEwingJRGorellJMSpicklerEMSolomonEGInterregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contentsMagn. Reson. Med.20014571791:STN:280:DC%2BD3M7gtFShsQ%3D%3D11146488
PausTGrowth of white matter in the adolescent brain: myelin or axon?Brain Cogn.201072263519595493
WedeenVJDiffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibersNeuroimage200841126712771:STN:280:DC%2BD1czosVKmuw%3D%3D18495497
ChangLCKoayCGBasserPJPierpaoliCLinear least-squares method for unbiased estimation of T1 from SPGR signalsMagn. Reson. Med.200860496501186661084196213
DoughertyRFBen-ShacharMBammerRBrewerAAWandellBAFunctional organization of human occipital-callosal fiber tractsProc. Natl. Acad. Sci. USA2005102735073551:CAS:528:DC%2BD2MXks12nsbk%3D158833841129102
YeatmanJDDoughertyRFMyallNJWandellBAFeldmanHMTract profiles of white matter properties: automating fiber-tract quantificationPLoS ONE20127e497901:CAS:528:DC%2BC38XhslyisLjK231667713498174
ThomasCBakerCIRemodeling human cortex through training: comment on MayTrends Cogn. Sci.201216969722209598
NeebHZillesKShahNJA new method for fast quantitative mapping of absolute water content in vivoNeuroimage200631115611681:STN:280:DC%2BD28zmsVGjsQ%3D%3D16650780
KakedaSKorogiYThe efficacy of a voxel-based morphometry on the analysis of imaging in schizophrenia, temporal lobe epilepsy, and Alzheimer's disease/mild cognitive impairment: a reviewNeuroradiology20105271172120495793
JF Nagle (BFnm3390_CR44) 1980; 31
JK Barral (BFnm3390_CR47) 2010; 64
C Thomas (BFnm3390_CR14) 2012; 16
BFnm3390_CR1
VJ Wedeen (BFnm3390_CR29) 2008; 41
SC Deoni (BFnm3390_CR3) 2011; 711
VL Yarnykh (BFnm3390_CR52) 2004; 23
PA Bottomley (BFnm3390_CR16) 1984; 11
KO Lövblad (BFnm3390_CR33) 2010; 31
T Paus (BFnm3390_CR27) 2010; 72
MF Glasser (BFnm3390_CR38) 2011; 31
A May (BFnm3390_CR13) 2011; 15
BFnm3390_CR17
N Gelman (BFnm3390_CR30) 2001; 45
PJ Basser (BFnm3390_CR53) 2000; 44
C Laule (BFnm3390_CR2) 2007; 4
H Neeb (BFnm3390_CR7) 2006; 31
WD Rooney (BFnm3390_CR18) 2007; 57
C Laule (BFnm3390_CR6) 2004; 251
AS Ulrich (BFnm3390_CR43) 1994; 66
S Volz (BFnm3390_CR40) 2012; 68
M Filippi (BFnm3390_CR32) 2011; 259
S Wakana (BFnm3390_CR56) 2004; 230
AL Alexander (BFnm3390_CR25) 2007; 4
B Fischl (BFnm3390_CR9) 2000; 97
I Corouge (BFnm3390_CR57) 2004; 3217
F Aboitiz (BFnm3390_CR22) 1992; 598
D Le Bihan (BFnm3390_CR37) 2001; 13
AM Dale (BFnm3390_CR49) 1999; 9
JD Yeatman (BFnm3390_CR28) 2012; 7
AL Hopkins (BFnm3390_CR50) 1986; 3
IS Sigalovsky (BFnm3390_CR51) 2006; 32
PP Fatouros (BFnm3390_CR5) 1999; 90
CH Polman (BFnm3390_CR45) 2005; 58
N Gogtay (BFnm3390_CR10) 2004; 101
J Ashburner (BFnm3390_CR8) 2000; 11
WT Norton (BFnm3390_CR15) 1966; 13
D Barazany (BFnm3390_CR23) 2009; 132
JF Kurtzke (BFnm3390_CR46) 1983; 33
N Stikov (BFnm3390_CR24) 2011; 54
G Poloni (BFnm3390_CR34) 2011; 17
BW Koenig (BFnm3390_CR41) 2005; 1715
LC Chang (BFnm3390_CR48) 2008; 60
O Noterdaeme (BFnm3390_CR39) 2009; 54
RF Dougherty (BFnm3390_CR55) 2005; 102
SH Koenig (BFnm3390_CR20) 1991; 20
EK Fram (BFnm3390_CR19) 1987; 5
W Kucharczyk (BFnm3390_CR21) 1994; 192
S Mori (BFnm3390_CR54) 1999; 45
C Beaulieu (BFnm3390_CR26) 2002; 15
MD Does (BFnm3390_CR31) 2002; 47
R Kanai (BFnm3390_CR12) 2011; 12
AL MacKay (BFnm3390_CR35) 2009; 19
BF Popescu (BFnm3390_CR36) 2012; 7
AL Alexander (BFnm3390_CR4) 2011; 1
S Kakeda (BFnm3390_CR11) 2010; 52
ME Loosley-Millman (BFnm3390_CR42) 1982; 40
20495793 - Neuroradiology. 2010 Aug;52(8):711-21
20019103 - AJNR Am J Neuroradiol. 2010 Jun;31(6):983-9
5937889 - J Neurochem. 1966 Apr;13(4):213-22
9989633 - Ann Neurol. 1999 Feb;45(2):265-9
20828622 - Neuroimage. 2011 Jan 15;54(2):1112-21
17599712 - Neurotherapeutics. 2007 Jul;4(3):460-84
22313379 - Annu Rev Pathol. 2012;7:185-217
16283615 - Ann Neurol. 2005 Dec;58(6):840-6
8029426 - Radiology. 1994 Aug;192(2):521-9
11146488 - Magn Reson Med. 2001 Jan;45(1):71-9
19436101 - Phys Med Biol. 2009 Jun 7;54(11):3473-89
9931268 - Neuroimage. 1999 Feb;9(2):179-94
10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21
17599699 - Neurotherapeutics. 2007 Jul;4(3):316-29
1775053 - Magn Reson Med. 1991 Aug;20(2):285-91
21602503 - Radiology. 2011 Jun;259(3):659-81
10984517 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5
15015007 - J Neurol. 2004 Mar;251(3):284-93
15883384 - Proc Natl Acad Sci U S A. 2005 May 17;102(20):7350-5
21407245 - Nat Rev Neurosci. 2011 Apr;12(4):231-42
18495497 - Neuroimage. 2008 Jul 15;41(4):1267-77
21712664 - Neurologist. 2011 Jul;17(4):185-204
15325389 - Neuroimage. 2004 Sep;23(1):409-24
16806989 - Neuroimage. 2006 Oct 1;32(4):1524-37
3626789 - Magn Reson Imaging. 1987;5(3):201-8
21906988 - Trends Cogn Sci. 2011 Oct;15(10):475-82
11276097 - J Magn Reson Imaging. 2001 Apr;13(4):534-46
19403788 - Brain. 2009 May;132(Pt 5):1210-20
22209598 - Trends Cogn Sci. 2012 Feb;16(2):96-7; author reply 97-8
16109383 - Biochim Biophys Acta. 2005 Aug 30;1715(1):65-70
15148381 - Proc Natl Acad Sci U S A. 2004 May 25;101(21):8174-9
12489094 - NMR Biomed. 2002 Nov-Dec;15(7-8):435-55
19595493 - Brain Cogn. 2010 Feb;72(1):26-35
11810670 - Magn Reson Med. 2002 Feb;47(2):274-83
11025519 - Magn Reson Med. 2000 Oct;44(4):625-32
8061193 - Biophys J. 1994 May;66(5):1441-9
7183336 - Biophys J. 1982 Dec;40(3):221-32
6482839 - Med Phys. 1984 Jul-Aug;11(4):425-48
19064196 - Neuroimaging Clin N Am. 2009 Feb;19(1):1-26
21279598 - Methods Mol Biol. 2011;711:65-108
16650780 - Neuroimage. 2006 Jul 1;31(3):1156-68
22432902 - Brain Connect. 2011;1(6):423-46
23166771 - PLoS One. 2012;7(11):e49790
18666108 - Magn Reson Med. 2008 Aug;60(2):496-501
22144171 - Magn Reson Med. 2012 Jul;68(1):74-85
6685237 - Neurology. 1983 Nov;33(11):1444-52
1486477 - Brain Res. 1992 Dec 11;598(1-2):143-53
17260370 - Magn Reson Med. 2007 Feb;57(2):308-18
21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616
3713494 - Magn Reson Med. 1986 Apr;3(2):303-11
14645885 - Radiology. 2004 Jan;230(1):77-87
20564597 - Magn Reson Med. 2010 Oct;64(4):1057-67
10413163 - J Neurosurg. 1999 Jan;90(1):109-15
References_xml – reference: GelmanNEwingJRGorellJMSpicklerEMSolomonEGInterregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contentsMagn. Reson. Med.20014571791:STN:280:DC%2BD3M7gtFShsQ%3D%3D11146488
– reference: BarazanyDBasserPJAssafYIn vivo measurement of axon diameter distribution in the corpus callosum of rat brainBrain200913212101220194037882677796
– reference: DoesMDGoreJCCompartmental study of T(1) and T(2) in rat brain and trigeminal nerve in vivoMagn. Reson. Med.20024727428311810670
– reference: DaleAMFischlBSerenoMICortical surface-based analysis. I. Segmentation and surface reconstructionNeuroimage199991791941:STN:280:DyaK1M7jt1Gisg%3D%3D9931268
– reference: AshburnerJFristonKJVoxel-based morphometry–the methodsNeuroimage2000118058211:STN:280:DC%2BD3cvgt1Chug%3D%3D10860804
– reference: Loosley-MillmanMERandRPParsegianVAEffects of monovalent ion binding and screening on measured electrostatic forces between charged phospholipid bilayersBiophys. J.1982402212321:CAS:528:DyaL3sXkvFSruw%3D%3D71833361328998
– reference: ThomasCBakerCIRemodeling human cortex through training: comment on MayTrends Cogn. Sci.201216969722209598
– reference: PausTGrowth of white matter in the adolescent brain: myelin or axon?Brain Cogn.201072263519595493
– reference: BarralJKA robust methodology for in vivo T1 mappingMagn. Reson. Med.20106410571067205645972962940
– reference: AlexanderALCharacterization of cerebral white matter properties using quantitative magnetic resonance imaging atainsBrain Connect.20111423426224329023360545
– reference: UlrichASWattsAMolecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMRBiophys. J.199466144114491:CAS:528:DyaK2cXkslKlsbg%3D80611931275864
– reference: FischlBDaleAMMeasuring the thickness of the human cerebral cortex from magnetic resonance imagesProc. Natl. Acad. Sci. USA20009711050110551:CAS:528:DC%2BD3cXnt1ahtrg%3D1098451727146
– reference: BottomleyPAFosterTHArgersingerREPfeiferLMA review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and ageMed. Phys.1984114254481:CAS:528:DyaL2cXlsVOjs70%3D6482839
– reference: NortonWTAutilioLAThe lipid composition of purified bovine brain myelinJ. Neurochem.1966132132221:CAS:528:DyaF28XhtVOnu7k%3D5937889
– reference: BeaulieuCThe basis of anisotropic water diffusion in the nervous system–a technical reviewNMR Biomed.20021543545512489094
– reference: MacKayALMR relaxation in multiple sclerosisNeuroimaging Clin. N. Am.2009191261:STN:280:DC%2BD1M7jslCnsg%3D%3D19064196
– reference: MoriSCrainBJChackoVPvan ZijlPCThree-dimensional tracking of axonal projections in the brain by magnetic resonance imagingAnn. Neurol.1999452652691:STN:280:DyaK1M7kt1Oguw%3D%3D9989633
– reference: PoloniGMinagarAHaackeEMZivadinovRRecent developments in imaging of multiple sclerosisNeurologist20111718520421712664
– reference: YarnykhVLYuanCCross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brainNeuroimage20042340942415325389
– reference: Tofts, P. Quantitative MRI of the Brain Measuring Changes Caused by Disease (John Wiley & Sons, Chichester, West Sussex; Hoboken, NJ, 2003).
– reference: MayAExperience-dependent structural plasticity in the adult human brainTrends Cogn. Sci.20111547548221906988
– reference: StikovNBound pool fractions complement diffusion measures to describe white matter micro and macrostructureNeuroimage2011541112112120828622
– reference: NagleJFTheory of the main lipid bilayer phase transitionAnnu. Rev. Phys. Chem.1980311571961:CAS:528:DyaL3cXmtlartLk%3D
– reference: AboitizFScheibelABFisherRSZaidelEFiber composition of the human corpus callosumBrain Res.19925981431531:STN:280:DyaK3s7jslSjsQ%3D%3D1486477
– reference: KurtzkeJFRating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS)Neurology198333144414521:STN:280:DyaL2c%2FktValsQ%3D%3D6685237
– reference: KucharczykWMacdonaldPMStaniszGJHenkelmanRMRelaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pHRadiology19941925215291:CAS:528:DyaK2cXmsV2lu7c%3D8029426
– reference: DoughertyRFBen-ShacharMBammerRBrewerAAWandellBAFunctional organization of human occipital-callosal fiber tractsProc. Natl. Acad. Sci. USA2005102735073551:CAS:528:DC%2BD2MXks12nsbk%3D158833841129102
– reference: DeoniSCMagnetic resonance relaxation and quantitative measurement in the brainMethods Mol. Biol.2011711651081:CAS:528:DC%2BC2cXhvFWms73N21279598
– reference: KoenigSHCholesterol of myelin is the determinant of gray-white contrast in MRI of brainMagn. Reson. Med.1991202852911:STN:280:DyaK387jtVOltw%3D%3D1775053
– reference: NoterdaemeOAndersonMGleesonFBradySMIntensity correction with a pair of spoiled gradient recalled echo imagesPhys. Med. Biol.2009543473348919436101
– reference: BasserPJPajevicSPierpaoliCDudaJAldroubiAIn vivo fiber tractography using DT-MRI dataMagn. Reson. Med.2000446256321:STN:280:DC%2BD3cvnvFCitA%3D%3D11025519
– reference: KoenigBWGawrischKSpecific volumes of unsaturated phosphatidylcholines in the liquid crystalline lamellar phaseBiochim. Biophys. Acta2005171565701:CAS:528:DC%2BD2MXosVCksrs%3D16109383
– reference: VolzSNothUDeichmannRCorrection of systematic errors in quantitative proton density mappingMagn. Reson. Med.201268748522144171
– reference: WedeenVJDiffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibersNeuroimage200841126712771:STN:280:DC%2BD1czosVKmuw%3D%3D18495497
– reference: KakedaSKorogiYThe efficacy of a voxel-based morphometry on the analysis of imaging in schizophrenia, temporal lobe epilepsy, and Alzheimer's disease/mild cognitive impairment: a reviewNeuroradiology20105271172120495793
– reference: GlasserMFVan EssenDCMapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRIJ. Neurosci.20113111597116161:CAS:528:DC%2BC3MXhtVOru7jJ218321903167149
– reference: GogtayNDynamic mapping of human cortical development during childhood through early adulthoodProc. Natl. Acad. Sci. USA2004101817481791:CAS:528:DC%2BD2cXkslCit7c%3D15148381419576
– reference: RooneyWDMagnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivoMagn. Reson. Med.2007573083181:CAS:528:DC%2BD2sXisVOjtr4%3D17260370
– reference: FatourosPPMarmarouAUse of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal valuesJ. Neurosurg.1999901091151:STN:280:DyaK1MzjvFGjug%3D%3D10413163
– reference: WakanaSJiangHNagae-PoetscherLMvan ZijlPCMoriSFiber tract-based atlas of human white matter anatomyRadiology2004230778714645885
– reference: PolmanCHDiagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”Ann. Neurol.20055884084616283615
– reference: CorougeIGouttardSGerigGA statistical shape model of individual fiber tracts extracted from diffusion tensor MRILect. Notes Comput. Sci.20043217671679
– reference: Mansfield, P. & Morris, P.G. NMR Imaging in Biomedicine (Academic Press, London, 1982).
– reference: AlexanderALLeeJELazarMFieldASDiffusion tensor imaging of the brainNeurotherapeutics20074316329175996992041910
– reference: FilippiMRoccaMAMR imaging of multiple sclerosisRadiology201125965968121602503
– reference: LövbladKOMR imaging in multiple sclerosis: review and recommendations for current practiceAJNR Am. J. Neuroradiol.201031983989200191037963928
– reference: KanaiRReesGThe structural basis of inter-individual differences in human behaviour and cognitionNat. Rev. Neurosci.2011122312421:CAS:528:DC%2BC3MXjt1Wnsrw%3D21407245
– reference: YeatmanJDDoughertyRFMyallNJWandellBAFeldmanHMTract profiles of white matter properties: automating fiber-tract quantificationPLoS ONE20127e497901:CAS:528:DC%2BC38XhslyisLjK231667713498174
– reference: HopkinsALYeungHNBrattonCBMultiple field strength in vivo T1 and T2 for cerebrospinal fluid protonsMagn. Reson. Med.198633033111:CAS:528:DyaL28XktlymtLs%3D3713494
– reference: Le BihanDDiffusion tensor imaging: concepts and applicationsJ. Magn. Reson. Imaging2001135345461:STN:280:DC%2BD3M7os1eqsA%3D%3D11276097
– reference: NeebHZillesKShahNJA new method for fast quantitative mapping of absolute water content in vivoNeuroimage200631115611681:STN:280:DC%2BD28zmsVGjsQ%3D%3D16650780
– reference: ChangLCKoayCGBasserPJPierpaoliCLinear least-squares method for unbiased estimation of T1 from SPGR signalsMagn. Reson. Med.200860496501186661084196213
– reference: SigalovskyISFischlBMelcherJRMapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differencesNeuroimage2006321524153716806989
– reference: LauleCWater content and myelin water fraction in multiple sclerosis. A T2 relaxation studyJ. Neurol.20042512842931:STN:280:DC%2BD2c7itlSnsQ%3D%3D15015007
– reference: FramEKRapid calculation of T1 using variable flip angle gradient refocused imagingMagn. Reson. Imaging198752012081:STN:280:DyaL2szhsVaktw%3D%3D3626789
– reference: PopescuBFLucchinettiCFPathology of demyelinating diseasesAnnu. Rev. Pathol.201271852171:CAS:528:DC%2BC38Xjs1Kqsb0%3D22313379
– reference: LauleCMagnetic resonance imaging of myelinNeurotherapeutics200744604841:CAS:528:DC%2BD2sXps1SgsL4%3D175997127479725
– volume: 101
  start-page: 8174
  year: 2004
  ident: BFnm3390_CR10
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0402680101
– volume: 711
  start-page: 65
  year: 2011
  ident: BFnm3390_CR3
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61737-992-5_4
– volume: 58
  start-page: 840
  year: 2005
  ident: BFnm3390_CR45
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20703
– volume: 68
  start-page: 74
  year: 2012
  ident: BFnm3390_CR40
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23206
– volume: 7
  start-page: e49790
  year: 2012
  ident: BFnm3390_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0049790
– volume: 31
  start-page: 11597
  year: 2011
  ident: BFnm3390_CR38
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2180-11.2011
– volume: 230
  start-page: 77
  year: 2004
  ident: BFnm3390_CR56
  publication-title: Radiology
  doi: 10.1148/radiol.2301021640
– volume: 598
  start-page: 143
  year: 1992
  ident: BFnm3390_CR22
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(92)90178-C
– volume: 16
  start-page: 96
  year: 2012
  ident: BFnm3390_CR14
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2011.12.005
– volume: 57
  start-page: 308
  year: 2007
  ident: BFnm3390_CR18
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21122
– volume: 41
  start-page: 1267
  year: 2008
  ident: BFnm3390_CR29
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.036
– volume: 45
  start-page: 71
  year: 2001
  ident: BFnm3390_CR30
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200101)45:1<71::AID-MRM1011>3.0.CO;2-2
– volume: 31
  start-page: 157
  year: 1980
  ident: BFnm3390_CR44
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.31.100180.001105
– volume: 47
  start-page: 274
  year: 2002
  ident: BFnm3390_CR31
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10060
– volume: 44
  start-page: 625
  year: 2000
  ident: BFnm3390_CR53
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– volume: 20
  start-page: 285
  year: 1991
  ident: BFnm3390_CR20
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910200210
– volume: 192
  start-page: 521
  year: 1994
  ident: BFnm3390_CR21
  publication-title: Radiology
  doi: 10.1148/radiology.192.2.8029426
– volume: 23
  start-page: 409
  year: 2004
  ident: BFnm3390_CR52
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.04.029
– volume: 66
  start-page: 1441
  year: 1994
  ident: BFnm3390_CR43
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80934-8
– volume: 64
  start-page: 1057
  year: 2010
  ident: BFnm3390_CR47
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22497
– volume: 72
  start-page: 26
  year: 2010
  ident: BFnm3390_CR27
  publication-title: Brain Cogn.
  doi: 10.1016/j.bandc.2009.06.002
– volume: 33
  start-page: 1444
  year: 1983
  ident: BFnm3390_CR46
  publication-title: Neurology
  doi: 10.1212/WNL.33.11.1444
– volume: 45
  start-page: 265
  year: 1999
  ident: BFnm3390_CR54
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– volume: 259
  start-page: 659
  year: 2011
  ident: BFnm3390_CR32
  publication-title: Radiology
  doi: 10.1148/radiol.11101362
– ident: BFnm3390_CR1
  doi: 10.1002/0470869526
– volume: 54
  start-page: 3473
  year: 2009
  ident: BFnm3390_CR39
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/11/013
– volume: 31
  start-page: 1156
  year: 2006
  ident: BFnm3390_CR7
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.063
– volume: 102
  start-page: 7350
  year: 2005
  ident: BFnm3390_CR55
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0500003102
– volume: 31
  start-page: 983
  year: 2010
  ident: BFnm3390_CR33
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A1906
– volume: 5
  start-page: 201
  year: 1987
  ident: BFnm3390_CR19
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/0730-725X(87)90021-X
– volume: 40
  start-page: 221
  year: 1982
  ident: BFnm3390_CR42
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(82)84477-9
– volume: 9
  start-page: 179
  year: 1999
  ident: BFnm3390_CR49
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 13
  start-page: 213
  year: 1966
  ident: BFnm3390_CR15
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1966.tb06794.x
– volume: 7
  start-page: 185
  year: 2012
  ident: BFnm3390_CR36
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-011811-132443
– volume: 4
  start-page: 460
  year: 2007
  ident: BFnm3390_CR2
  publication-title: Neurotherapeutics
  doi: 10.1016/j.nurt.2007.05.004
– ident: BFnm3390_CR17
– volume: 17
  start-page: 185
  year: 2011
  ident: BFnm3390_CR34
  publication-title: Neurologist
  doi: 10.1097/NRL.0b013e31821a2643
– volume: 13
  start-page: 534
  year: 2001
  ident: BFnm3390_CR37
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.1076
– volume: 132
  start-page: 1210
  year: 2009
  ident: BFnm3390_CR23
  publication-title: Brain
  doi: 10.1093/brain/awp042
– volume: 12
  start-page: 231
  year: 2011
  ident: BFnm3390_CR12
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3000
– volume: 11
  start-page: 425
  year: 1984
  ident: BFnm3390_CR16
  publication-title: Med. Phys.
  doi: 10.1118/1.595535
– volume: 97
  start-page: 11050
  year: 2000
  ident: BFnm3390_CR9
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.200033797
– volume: 90
  start-page: 109
  year: 1999
  ident: BFnm3390_CR5
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.1999.90.1.0109
– volume: 15
  start-page: 475
  year: 2011
  ident: BFnm3390_CR13
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2011.08.002
– volume: 3
  start-page: 303
  year: 1986
  ident: BFnm3390_CR50
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910030214
– volume: 251
  start-page: 284
  year: 2004
  ident: BFnm3390_CR6
  publication-title: J. Neurol.
  doi: 10.1007/s00415-004-0306-6
– volume: 11
  start-page: 805
  year: 2000
  ident: BFnm3390_CR8
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0582
– volume: 15
  start-page: 435
  year: 2002
  ident: BFnm3390_CR26
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.782
– volume: 1715
  start-page: 65
  year: 2005
  ident: BFnm3390_CR41
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2005.07.006
– volume: 3217
  start-page: 671
  year: 2004
  ident: BFnm3390_CR57
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-30136-3_82
– volume: 54
  start-page: 1112
  year: 2011
  ident: BFnm3390_CR24
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.068
– volume: 19
  start-page: 1
  year: 2009
  ident: BFnm3390_CR35
  publication-title: Neuroimaging Clin. N. Am.
  doi: 10.1016/j.nic.2008.09.007
– volume: 60
  start-page: 496
  year: 2008
  ident: BFnm3390_CR48
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21669
– volume: 52
  start-page: 711
  year: 2010
  ident: BFnm3390_CR11
  publication-title: Neuroradiology
  doi: 10.1007/s00234-010-0717-2
– volume: 32
  start-page: 1524
  year: 2006
  ident: BFnm3390_CR51
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.05.023
– volume: 1
  start-page: 423
  year: 2011
  ident: BFnm3390_CR4
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0071
– volume: 4
  start-page: 316
  year: 2007
  ident: BFnm3390_CR25
  publication-title: Neurotherapeutics
  doi: 10.1016/j.nurt.2007.05.011
– reference: 5937889 - J Neurochem. 1966 Apr;13(4):213-22
– reference: 6482839 - Med Phys. 1984 Jul-Aug;11(4):425-48
– reference: 18666108 - Magn Reson Med. 2008 Aug;60(2):496-501
– reference: 20019103 - AJNR Am J Neuroradiol. 2010 Jun;31(6):983-9
– reference: 8061193 - Biophys J. 1994 May;66(5):1441-9
– reference: 8029426 - Radiology. 1994 Aug;192(2):521-9
– reference: 22432902 - Brain Connect. 2011;1(6):423-46
– reference: 19595493 - Brain Cogn. 2010 Feb;72(1):26-35
– reference: 22209598 - Trends Cogn Sci. 2012 Feb;16(2):96-7; author reply 97-8
– reference: 21279598 - Methods Mol Biol. 2011;711:65-108
– reference: 19064196 - Neuroimaging Clin N Am. 2009 Feb;19(1):1-26
– reference: 21712664 - Neurologist. 2011 Jul;17(4):185-204
– reference: 11025519 - Magn Reson Med. 2000 Oct;44(4):625-32
– reference: 18495497 - Neuroimage. 2008 Jul 15;41(4):1267-77
– reference: 11276097 - J Magn Reson Imaging. 2001 Apr;13(4):534-46
– reference: 21602503 - Radiology. 2011 Jun;259(3):659-81
– reference: 20828622 - Neuroimage. 2011 Jan 15;54(2):1112-21
– reference: 17599699 - Neurotherapeutics. 2007 Jul;4(3):316-29
– reference: 3713494 - Magn Reson Med. 1986 Apr;3(2):303-11
– reference: 21407245 - Nat Rev Neurosci. 2011 Apr;12(4):231-42
– reference: 10413163 - J Neurosurg. 1999 Jan;90(1):109-15
– reference: 1486477 - Brain Res. 1992 Dec 11;598(1-2):143-53
– reference: 12489094 - NMR Biomed. 2002 Nov-Dec;15(7-8):435-55
– reference: 15015007 - J Neurol. 2004 Mar;251(3):284-93
– reference: 20564597 - Magn Reson Med. 2010 Oct;64(4):1057-67
– reference: 11810670 - Magn Reson Med. 2002 Feb;47(2):274-83
– reference: 22144171 - Magn Reson Med. 2012 Jul;68(1):74-85
– reference: 20495793 - Neuroradiology. 2010 Aug;52(8):711-21
– reference: 16283615 - Ann Neurol. 2005 Dec;58(6):840-6
– reference: 3626789 - Magn Reson Imaging. 1987;5(3):201-8
– reference: 21906988 - Trends Cogn Sci. 2011 Oct;15(10):475-82
– reference: 6685237 - Neurology. 1983 Nov;33(11):1444-52
– reference: 11146488 - Magn Reson Med. 2001 Jan;45(1):71-9
– reference: 15325389 - Neuroimage. 2004 Sep;23(1):409-24
– reference: 10984517 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5
– reference: 21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616
– reference: 14645885 - Radiology. 2004 Jan;230(1):77-87
– reference: 16806989 - Neuroimage. 2006 Oct 1;32(4):1524-37
– reference: 16650780 - Neuroimage. 2006 Jul 1;31(3):1156-68
– reference: 7183336 - Biophys J. 1982 Dec;40(3):221-32
– reference: 15148381 - Proc Natl Acad Sci U S A. 2004 May 25;101(21):8174-9
– reference: 9989633 - Ann Neurol. 1999 Feb;45(2):265-9
– reference: 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21
– reference: 16109383 - Biochim Biophys Acta. 2005 Aug 30;1715(1):65-70
– reference: 15883384 - Proc Natl Acad Sci U S A. 2005 May 17;102(20):7350-5
– reference: 17599712 - Neurotherapeutics. 2007 Jul;4(3):460-84
– reference: 22313379 - Annu Rev Pathol. 2012;7:185-217
– reference: 9931268 - Neuroimage. 1999 Feb;9(2):179-94
– reference: 19436101 - Phys Med Biol. 2009 Jun 7;54(11):3473-89
– reference: 1775053 - Magn Reson Med. 1991 Aug;20(2):285-91
– reference: 19403788 - Brain. 2009 May;132(Pt 5):1210-20
– reference: 17260370 - Magn Reson Med. 2007 Feb;57(2):308-18
– reference: 23166771 - PLoS One. 2012;7(11):e49790
SSID ssj0003059
Score 2.5527894
Snippet There is an urgent need for quantitative magnetic resonance approaches for assessing brain development, as well as for studying the effects of drugs on neural...
Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1667
SubjectTerms 631/1647/245/1628
631/378/2606/1666
692/53/2421
692/698/1688/64
Adult
Anatomy
Autoimmune diseases
Biomedicine
Brain
Brain - diagnostic imaging
Brain - pathology
Brain Mapping - methods
Cancer Research
Case-Control Studies
Cognition & reasoning
Female
Humans
Image Processing, Computer-Assisted - methods
Infectious Diseases
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical examination
Metabolic Diseases
Methods
Molecular Medicine
Multiple Sclerosis - diagnostic imaging
Multiple Sclerosis - pathology
Neuroimaging
Neurosciences
NMR
Nuclear magnetic resonance
Organ Size
Physiological aspects
Radiography
Reproducibility of Results
Studies
technical-report
Tissues
Validation Studies as Topic
Title Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging
URI https://link.springer.com/article/10.1038/nm.3390
https://www.ncbi.nlm.nih.gov/pubmed/24185694
https://www.proquest.com/docview/1465229308
https://www.proquest.com/docview/1465862835
https://www.proquest.com/docview/1694980712
Volume 19
WOSCitedRecordID wos000328181400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M7P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: 7X7
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: BENPR
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M2O
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M2P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFhAXHuUVKItBqJxCE2eTOCdUUCs4dLuUh_YWObazVGKT0t1F4t8zYzvLpqAKCSnyxV8kJ_Pw2PMCeFGpVEYmNaFOTBYOK5S5IlZZaLRIhzXPkriObLOJfDQSk0kx9hducx9W2elEq6h1q-iOfA8lGk2FIonE67PvIXWNIu-qb6GxAVto2cQU0nXExytNjLxcuJhDEQo8CLikWSoJvtfMXiUJKeK13eiiTl7blC54Se3mc3jrf5d9G256s5PtOz65A1dMsw3XXCPKn9tw_ci72O_C1w9LSQFElP7E0DpkdrdjC0sg5pQZk41mFIzuI77YKT1dZherqO3EnNEVL5vJaUN5kgyP9S0V9zDsdGY7I92Dz4cHn96-C307hlChGbQIZcJVmkukp-S8rmTN6XiJxK5VlcaZyDKN-iKWUW2Q8DquKmViLTKdmVjyIkruw2bTNuYhsCHPFZkuQttc16pKTK55lKaa1_WQxwHsdmQpla9VTi0zvpXWZ56IspmVRL8A2Ap45spz_Al5SnQtXV7pSqDL_QQtXU4qLYDnFkHlMBqKt5nK5Xxevj_-8g-gjyc90EsPqltcr5I-xwG_msps9ZC7PeTUFRn_G3CnB0TpV_3pju9Kr33m5W-mC-DZaprepIi6xrRLh8HTLBrgl2CyYlgINEJ5AA-cKKz-MqeqRziPb3eysbaAPgkeXb7Ix3CDU5MRGyS0A5uL86V5AlfVD2Tt8wFs5JPcjmIAW28ORuOTAYn5sR3HNObjX49DWN0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8rzwKC9DoQuC9mRqrx-xDwhVQNWobShQUG_uencdKhGnxAmof4rfyMyubeKCKi49IOXmz9HYnqf9zQzAs1xGwtORdlWgYzfM0eZSX8auVkkUFjwO_MIzyyZ6g0FycJDuLcDPpheGaJWNTzSOWo0lvSNfR4vGVCENvOTV8TeXtkbR19VmhYZVi2198gNLtupl_w0-3-ecb77df73l1lsFXInRfOqKgMuoJ1AswXmRi4JTlYQyFzKP_DiJY4Vq7wuv0Ci_8vNcal8lsYq1L3jqBfi_F-BiSJPFiCrI91rPj7aTWo5j4iZYeNgmXRpBvl6OXgQBOf656Hc6BswFwVNfZU2w27zxv92mm3C9TqvZhrWDW7CgyyW4bBdtnizBld2aQnAbvryfCSJIUXsXw-yXmWjOpkYBmXXWTJSKEdm-ZrSxI_o1nWssp7UaFaNX2GwkhiX1gbKJpqIGTYgdjczmpzvw6Vyu-C4sluNS3wcW8p6k1CxRppc3zwPdU9yLIsWLIuS-A6uNGmSynsVOK0G-ZoYTECRZOcpIXxxgLfDYjh_5E7JCepTZvtnWYWUbAWbynFy2A08NgsZ9lMQnGopZVWX9d5__AfTxQwe0VoOKMcorRd3DgVdNY8Q6yNUOcmiHqP8NuNwBoneT3cONnme1d62y30ruwJP2MJ1JjMFSj2cWg9U6FhhnYOI0TBNMsrkD96zptXeZ01QnPI5nN7Y4J0D3ETw4W8gVuLq1v7uT7fQH2w_hGqeFKoYQtQyL08lMP4JL8juq-eSxcScMDs_bMH8BmS6yeQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKVRcWMpmKHRAUE4m9ng_IFRoI6JCCC2g3sx4ZhwqEadkAfWv8et4z2ObuKCKSw9Iuc3naMZ-31vstwA8zmQgHB1oW3k6tP0MOZe4MrS1igM_56Hn5k45bCIaDOLDw2S4Aj_rWhhKq6x1Yqmo1UTSO_IuMhpdhcRz4m5epUUMd3ovjr_ZNEGKvrTW4zSMiOzpkx8Yvs2e93fwWT_hvLf74dVru5owYEu07HNbeFwGkcAtCs7zTOScIibcfy6zwA3jMFRIAVc4ucazKDfLpHZVHKpQu4Injof_ewFWI3Qy_A6svtwdDPcbO4BMSkzGY2zHGIaYkl1qSN4txs88j8zAki08bRGWTOKpb7Sl6etd_Z9v2jW4UjncbNsw5Dqs6GIdLpkRnCfrsPa2Si64AV_eLwSlTlHhF0O_mJV2ns1L0WRGjTNRKEZp-FWuGzuiX13TxjIauDFj9HKbjcWooApRNtUU7iC52NG4nAl1Ez6ey4lvQaeYFPoOMJ9Hkpy2WJVVvlnm6UhxJwgUz3OfuxZs1SKRyqpLOw0L-ZqW2QJenBbjlGTHAtYAj01jkj8hmyRTqamobVRZuu2hj89JmVvwqERQI5CCpGMkFrNZ2n_36R9AB_st0NMKlE9wv1JU1R14amow1kJutZAj0179b8CNFhD1nmwv1zKfVnp3lv4WeAseNst0JeUSFnqyMBiM4zH0OAMTJn4So_vNLbhtaNjcZU79nnAdr655ubSB9iO4e_YmN2EN-Zi-6Q_27sFlTpNWykypDejMpwt9Hy7K7yjl0weVbmHw-byZ-QvAY7yT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+local+tissue+volume+and+composition+in+individual+brains+with+magnetic+resonance+imaging&rft.jtitle=Nature+medicine&rft.au=Mezer%2C+Aviv&rft.au=Yeatman%2C+Jason+D&rft.au=Stikov%2C+Nikola&rft.au=Kay%2C+Kendrick+N&rft.date=2013-12-01&rft.issn=1546-170X&rft.eissn=1546-170X&rft.volume=19&rft.issue=12&rft.spage=1667&rft_id=info:doi/10.1038%2Fnm.3390&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon