Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging
There is an urgent need for quantitative magnetic resonance approaches for assessing brain development, as well as for studying the effects of drugs on neural tissue inflammation. Aviv Mezer and colleagues have developed a neuroimaging method for the quantification of local tissue volume and tissue-...
Uloženo v:
| Vydáno v: | Nature medicine Ročník 19; číslo 12; s. 1667 - 1672 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Nature Publishing Group US
01.12.2013
Nature Publishing Group |
| Témata: | |
| ISSN: | 1078-8956, 1546-170X, 1546-170X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | There is an urgent need for quantitative magnetic resonance approaches for assessing brain development, as well as for studying the effects of drugs on neural tissue inflammation. Aviv Mezer and colleagues have developed a neuroimaging method for the quantification of local tissue volume and tissue-surface interaction, producing reliable quantitative measurements across a range of scanners. They apply their method to both the healthy brain and individuals with relapsing-remitting multiple sclerosis.
Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV can be obtained across a range of scanners. MTV estimates are sufficiently precise to enable a comparison between data obtained from an individual subject with control population data. We describe two applications. First, we show that MTV estimates can be combined with T1 and diffusion measurements to augment our understanding of the tissue properties. Second, we show that MTV provides a sensitive measure of disease status in individual patients with multiple sclerosis. The MTV maps are obtained using short clinically appropriate scans that can reveal how tissue changes influence behavior and cognition. |
|---|---|
| AbstractList | Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV can be obtained across a range of scanners. MTV estimates are sufficiently precise to enable a comparison between data obtained from an individual subject with control population data. We describe two applications. First, we show that MTV estimates can be combined with T1 and diffusion measurements to augment our understanding of the tissue properties. Second, we show that MTV provides a sensitive measure of disease status in individual patients with multiple sclerosis. The MTV maps are obtained using short clinically appropriate scans that can reveal how tissue changes influence behavior and cognition. Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV can be obtained across a range of scanners. MTV estimates are sufficiently precise to enable a comparison between data obtained from an individual subject with control population data. We describe two applications. First, we show that MTV estimates can be combined with T1 and diffusion measurements to augment our understanding of the tissue properties. Second, we show that MTV provides a sensitive measure of disease status in individual patients with multiple sclerosis. The MTV maps are obtained using short clinically appropriate scans that can reveal how tissue changes influence behavior and cognition.Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV can be obtained across a range of scanners. MTV estimates are sufficiently precise to enable a comparison between data obtained from an individual subject with control population data. We describe two applications. First, we show that MTV estimates can be combined with T1 and diffusion measurements to augment our understanding of the tissue properties. Second, we show that MTV provides a sensitive measure of disease status in individual patients with multiple sclerosis. The MTV maps are obtained using short clinically appropriate scans that can reveal how tissue changes influence behavior and cognition. There is an urgent need for quantitative magnetic resonance approaches for assessing brain development, as well as for studying the effects of drugs on neural tissue inflammation. Aviv Mezer and colleagues have developed a neuroimaging method for the quantification of local tissue volume and tissue-surface interaction, producing reliable quantitative measurements across a range of scanners. They apply their method to both the healthy brain and individuals with relapsing-remitting multiple sclerosis. Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV can be obtained across a range of scanners. MTV estimates are sufficiently precise to enable a comparison between data obtained from an individual subject with control population data. We describe two applications. First, we show that MTV estimates can be combined with T1 and diffusion measurements to augment our understanding of the tissue properties. Second, we show that MTV provides a sensitive measure of disease status in individual patients with multiple sclerosis. The MTV maps are obtained using short clinically appropriate scans that can reveal how tissue changes influence behavior and cognition. |
| Audience | Academic |
| Author | Mezer, Aviv Dougherty, Robert F Perry, Michael L Butts-Pauly, Kim Kay, Kendrick N Cho, Nam-Joon Hua, Le H Yeatman, Jason D Parvizi, Josef Wandell, Brian A Stikov, Nikola |
| Author_xml | – sequence: 1 givenname: Aviv surname: Mezer fullname: Mezer, Aviv email: avivmezer@gmail.com organization: Department of Psychology, Stanford University – sequence: 2 givenname: Jason D surname: Yeatman fullname: Yeatman, Jason D organization: Department of Psychology, Stanford University – sequence: 3 givenname: Nikola surname: Stikov fullname: Stikov, Nikola organization: Montreal Neurological Institute, McGill University – sequence: 4 givenname: Kendrick N surname: Kay fullname: Kay, Kendrick N organization: Department of Psychology, Stanford University – sequence: 5 givenname: Nam-Joon surname: Cho fullname: Cho, Nam-Joon organization: Department of Chemical Engineering, Stanford University, School of Materials Science and Engineering, Nanyang Technological University – sequence: 6 givenname: Robert F surname: Dougherty fullname: Dougherty, Robert F organization: Center for Cognitive and Neurobiological Imaging, Stanford University – sequence: 7 givenname: Michael L surname: Perry fullname: Perry, Michael L organization: Department of Psychology, Stanford University – sequence: 8 givenname: Josef surname: Parvizi fullname: Parvizi, Josef organization: Department of Neurology and Neurological Sciences, Stanford University – sequence: 9 givenname: Le H surname: Hua fullname: Hua, Le H organization: Department of Neurology and Neurological Sciences, Stanford University – sequence: 10 givenname: Kim surname: Butts-Pauly fullname: Butts-Pauly, Kim organization: Department of Radiology, Stanford University – sequence: 11 givenname: Brian A surname: Wandell fullname: Wandell, Brian A organization: Department of Psychology, Stanford University, Center for Cognitive and Neurobiological Imaging, Stanford University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24185694$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0tlq3DAUBmBTUpqlpW9QBIUuF55qsWT5MoQugUDoSu-MLB_bCrY0leS0efvKzTTJhIEWG2zEpyN0zn-Y7VlnIcueErwimMk3dloxVuEH2QHhhchJib_vpX9cylxWXOxnhyFcYIwZ5tWjbJ8WRHJRFQfZ8HFWNpruytgexQHQ6LQaUTQhzIAu3ThPgJRtkXbT2gUTjbPILG9rLk07J9t4ZWxAP00c0KR6C9Fo5CE4q6wGZNJaKv44e9ipMcCTzfco-_ru7ZeTD_nZ-fvTk-OzXAtCY64Y1bxURYMVpV2jOool5Y3mnW44EVKIFpeMKNxBy6AlTaOBtFK0AoiiFWZH2avrumvvfswQYj2ZoGEclQU3h5qka1cSl4T-mxaCS0El44k-v0cv3OxtusgfRWnFsLxVvRqhNrZz0Su9FK2PUxFGGZEsqXyH6sGCV2Maa2fS8pZf7fDpaWEyeueG11sbkonwK_ZqDqE-_fzp_-35t2374o4dQI1xCCkhSybCNny26dbcTNDWa59C4K_qv7FL4OU10N6F4KG7IQTXS6BrO9VLoG-bdSO1iWo5MTXBjDv8ZqYhVbQ9-DuDukd_Ay4GAEA |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2015_06_038 crossref_primary_10_1016_j_neuroimage_2017_11_066 crossref_primary_10_1016_j_biopsych_2025_04_014 crossref_primary_10_1016_j_neuroimage_2022_119529 crossref_primary_10_1007_s00429_022_02600_z crossref_primary_10_1038_ncomms5932 crossref_primary_10_1016_j_neuroimage_2021_117744 crossref_primary_10_3389_fnhum_2021_662031 crossref_primary_10_1002_advs_202400316 crossref_primary_10_1002_hbm_70232 crossref_primary_10_1016_j_cortex_2016_04_001 crossref_primary_10_1016_j_bandl_2019_104654 crossref_primary_10_3389_fnins_2025_1542957 crossref_primary_10_1016_j_nicl_2017_07_020 crossref_primary_10_1002_mrm_28509 crossref_primary_10_1088_1361_6560_acb30b crossref_primary_10_1038_s41467_023_40999_z crossref_primary_10_1016_j_neuroimage_2022_119750 crossref_primary_10_3389_fninf_2023_1060511 crossref_primary_10_1038_s41467_023_43146_w crossref_primary_10_3233_JAD_220197 crossref_primary_10_1038_s41467_021_22524_2 crossref_primary_10_1002_nbm_4209 crossref_primary_10_1002_hbm_70102 crossref_primary_10_1093_cercor_bhaa203 crossref_primary_10_1016_j_neuroimage_2021_118161 crossref_primary_10_1016_j_neuroimage_2019_116121 crossref_primary_10_1016_j_bbih_2021_100376 crossref_primary_10_1016_j_neuroimage_2022_119660 crossref_primary_10_1016_j_visres_2015_01_015 crossref_primary_10_1007_s00115_017_0373_4 crossref_primary_10_1016_j_neuroimage_2020_117204 crossref_primary_10_1126_science_aag0311 crossref_primary_10_3389_fpsyg_2019_01607 crossref_primary_10_1002_mrm_25135 crossref_primary_10_1371_journal_pone_0297244 crossref_primary_10_1002_hbm_26414 crossref_primary_10_1038_s41531_025_01020_0 crossref_primary_10_1093_sleep_zsz247 crossref_primary_10_1007_s12311_020_01162_2 crossref_primary_10_1016_j_nicl_2019_102044 crossref_primary_10_1002_hbm_23264 crossref_primary_10_1371_journal_pone_0189933 crossref_primary_10_1016_j_neuroimage_2022_119777 crossref_primary_10_1016_j_jneumeth_2020_108990 crossref_primary_10_1016_j_neuroimage_2017_09_037 crossref_primary_10_1016_j_nicl_2019_101756 crossref_primary_10_1073_pnas_2303491120 crossref_primary_10_1038_s41467_018_03166_3 crossref_primary_10_1002_mrm_28995 crossref_primary_10_1016_j_nicl_2016_04_003 crossref_primary_10_1002_mrm_27421 crossref_primary_10_1002_hbm_22721 crossref_primary_10_1016_j_bandl_2015_01_012 crossref_primary_10_1016_j_neuroimage_2023_120312 crossref_primary_10_1038_s41598_018_28852_6 crossref_primary_10_1016_j_neuroimage_2019_116439 crossref_primary_10_1371_journal_pone_0189944 crossref_primary_10_1038_s42003_021_02706_w crossref_primary_10_1002_mrm_29990 crossref_primary_10_1016_j_media_2017_06_007 crossref_primary_10_1002_mrm_28427 crossref_primary_10_1016_j_neuroimage_2014_11_017 crossref_primary_10_1016_j_neuroimage_2020_117669 crossref_primary_10_1148_radiol_2016152149 crossref_primary_10_1016_j_neuroimage_2017_02_056 crossref_primary_10_3389_fneur_2023_1264322 crossref_primary_10_1016_j_neuroimage_2016_12_067 crossref_primary_10_1038_s41562_021_01141_5 crossref_primary_10_1038_nrn3647 crossref_primary_10_1016_j_neuroimage_2017_06_076 crossref_primary_10_1038_s41598_017_02062_y crossref_primary_10_1371_journal_pone_0306006 crossref_primary_10_1016_j_neuroscience_2014_06_052 crossref_primary_10_1002_hbm_25860 crossref_primary_10_1002_mrm_27442 crossref_primary_10_1016_j_jfludis_2017_09_002 crossref_primary_10_1073_pnas_1418503111 crossref_primary_10_1371_journal_pone_0318415 crossref_primary_10_1007_s12264_017_0141_2 crossref_primary_10_1016_j_neuroimage_2017_02_040 crossref_primary_10_1038_nmeth_3098 crossref_primary_10_1038_s41467_019_11319_1 crossref_primary_10_1016_j_schres_2015_05_034 crossref_primary_10_1007_s00429_019_01952_3 crossref_primary_10_1007_s10334_016_0585_9 crossref_primary_10_1016_j_neuroimage_2022_119743 crossref_primary_10_1016_j_neuroimage_2018_07_023 crossref_primary_10_1177_0883073815592223 crossref_primary_10_1177_23982128211011923 crossref_primary_10_1016_j_neuron_2017_08_007 crossref_primary_10_1016_j_neuroimage_2021_118453 crossref_primary_10_1038_nrn3747 crossref_primary_10_1002_mrm_26945 crossref_primary_10_1146_annurev_neuro_070815_013815 crossref_primary_10_1073_pnas_1904931116 crossref_primary_10_1093_cercor_bhab076 crossref_primary_10_1038_s41598_018_33463_2 crossref_primary_10_1016_j_cortex_2021_02_027 crossref_primary_10_1016_j_jmbbm_2017_08_029 crossref_primary_10_1007_s10334_025_01238_2 crossref_primary_10_1038_s41597_022_01571_4 crossref_primary_10_1002_mrm_30192 crossref_primary_10_1016_j_neures_2018_10_011 crossref_primary_10_1016_j_neuroimage_2022_119240 crossref_primary_10_3233_JAD_150841 crossref_primary_10_1007_s00429_018_1813_z crossref_primary_10_7554_eLife_78756 crossref_primary_10_1073_pnas_1803003115 crossref_primary_10_1038_s41467_022_28326_4 crossref_primary_10_1523_JNEUROSCI_1886_16_2016 crossref_primary_10_1016_j_mri_2019_11_013 crossref_primary_10_1016_j_cortex_2018_06_011 crossref_primary_10_1097_WCO_0000000000000222 crossref_primary_10_1016_j_neuroimage_2015_08_047 crossref_primary_10_1093_cercor_bhac453 crossref_primary_10_1152_jn_00316_2018 crossref_primary_10_1093_cercor_bhac221 crossref_primary_10_1007_s00415_014_7551_0 crossref_primary_10_1016_j_biomaterials_2016_10_043 crossref_primary_10_3389_fneur_2016_00016 crossref_primary_10_1038_srep43316 crossref_primary_10_1007_s00429_014_0881_y crossref_primary_10_3389_fnhum_2019_00139 crossref_primary_10_1111_mbe_70017 crossref_primary_10_1016_j_neuroimage_2020_116884 crossref_primary_10_1093_cercor_bhaa288 crossref_primary_10_1073_pnas_1804741115 crossref_primary_10_1038_s41593_022_01136_z crossref_primary_10_1007_s12311_018_1003_9 crossref_primary_10_1016_j_neuroimage_2013_08_068 crossref_primary_10_3389_fnins_2025_1577991 crossref_primary_10_1016_j_neuroimage_2018_11_056 crossref_primary_10_1002_hbm_24510 crossref_primary_10_1093_cercor_bhaa180 crossref_primary_10_1016_j_neuroimage_2015_12_032 crossref_primary_10_1016_j_neuroimage_2016_05_022 crossref_primary_10_1371_journal_pone_0198250 crossref_primary_10_1016_j_neuroimage_2016_09_018 crossref_primary_10_1002_da_22325 crossref_primary_10_1162_imag_a_00470 crossref_primary_10_1016_j_ymeth_2017_07_025 crossref_primary_10_1016_j_neuroimage_2016_02_003 crossref_primary_10_3233_BPL_160031 crossref_primary_10_1002_hbm_24626 crossref_primary_10_1016_j_neuroimage_2018_11_023 crossref_primary_10_3390_brainsci13050715 crossref_primary_10_1016_j_neuroimage_2019_03_025 crossref_primary_10_1146_annurev_vision_102016_061214 crossref_primary_10_1007_s00429_024_02821_4 crossref_primary_10_1002_mrm_30226 crossref_primary_10_1016_j_nicl_2015_10_008 crossref_primary_10_1007_s10334_017_0608_1 crossref_primary_10_1038_s41467_019_11424_1 crossref_primary_10_1371_journal_pone_0142860 crossref_primary_10_1016_j_neuroimage_2017_10_052 crossref_primary_10_1523_JNEUROSCI_2619_16_2016 crossref_primary_10_1016_j_neuroimage_2018_02_055 crossref_primary_10_1038_s41598_020_69920_0 crossref_primary_10_1093_cercor_bhy178 crossref_primary_10_1007_s00234_018_2137_7 crossref_primary_10_1371_journal_pone_0141894 crossref_primary_10_1007_s00429_016_1302_1 crossref_primary_10_1016_j_neuroimage_2015_05_023 crossref_primary_10_1016_j_neuroimage_2017_09_053 crossref_primary_10_1016_j_cortex_2020_03_015 crossref_primary_10_1016_j_neuroscience_2017_10_033 crossref_primary_10_1523_JNEUROSCI_0809_24_2024 crossref_primary_10_1007_s00429_014_0912_8 crossref_primary_10_1038_s41467_018_04627_5 crossref_primary_10_1016_j_media_2018_11_012 crossref_primary_10_1016_j_neuroimage_2023_119860 crossref_primary_10_1002_wnan_1482 crossref_primary_10_1007_s00429_021_02358_w crossref_primary_10_1016_j_neuroimage_2018_04_009 crossref_primary_10_1038_s41598_024_80274_9 crossref_primary_10_1016_j_nicl_2020_102446 crossref_primary_10_1016_j_neuroimage_2017_04_044 crossref_primary_10_1162_nol_a_00098 crossref_primary_10_1002_nbm_3546 crossref_primary_10_1016_j_neuron_2014_12_027 crossref_primary_10_1038_s41598_018_23527_8 crossref_primary_10_1177_20552173221147620 crossref_primary_10_1016_j_neuroimage_2017_04_040 crossref_primary_10_1038_s41380_021_01272_1 crossref_primary_10_1007_s00429_017_1492_1 crossref_primary_10_1016_j_neuroimage_2017_08_038 crossref_primary_10_1038_s41467_018_03297_7 crossref_primary_10_1038_s41467_023_37280_8 crossref_primary_10_1167_iovs_63_2_29 crossref_primary_10_1016_j_nicl_2019_101832 crossref_primary_10_3348_jksr_2017_77_5_317 crossref_primary_10_1016_j_neuroimage_2018_06_060 crossref_primary_10_1016_j_nicl_2019_101826 crossref_primary_10_1002_nbm_3658 crossref_primary_10_1016_j_neuroimage_2021_117895 crossref_primary_10_1111_jne_12907 crossref_primary_10_3389_fneur_2019_01333 crossref_primary_10_1002_hbm_23858 crossref_primary_10_1016_j_neuroimage_2015_10_006 |
| Cites_doi | 10.1073/pnas.0402680101 10.1007/978-1-61737-992-5_4 10.1002/ana.20703 10.1002/mrm.23206 10.1371/journal.pone.0049790 10.1523/JNEUROSCI.2180-11.2011 10.1148/radiol.2301021640 10.1016/0006-8993(92)90178-C 10.1016/j.tics.2011.12.005 10.1002/mrm.21122 10.1016/j.neuroimage.2008.03.036 10.1002/1522-2594(200101)45:1<71::AID-MRM1011>3.0.CO;2-2 10.1146/annurev.pc.31.100180.001105 10.1002/mrm.10060 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1002/mrm.1910200210 10.1148/radiology.192.2.8029426 10.1016/j.neuroimage.2004.04.029 10.1016/S0006-3495(94)80934-8 10.1002/mrm.22497 10.1016/j.bandc.2009.06.002 10.1212/WNL.33.11.1444 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1148/radiol.11101362 10.1002/0470869526 10.1088/0031-9155/54/11/013 10.1016/j.neuroimage.2005.12.063 10.1073/pnas.0500003102 10.3174/ajnr.A1906 10.1016/0730-725X(87)90021-X 10.1016/S0006-3495(82)84477-9 10.1006/nimg.1998.0395 10.1111/j.1471-4159.1966.tb06794.x 10.1146/annurev-pathol-011811-132443 10.1016/j.nurt.2007.05.004 10.1097/NRL.0b013e31821a2643 10.1002/jmri.1076 10.1093/brain/awp042 10.1038/nrn3000 10.1118/1.595535 10.1073/pnas.200033797 10.3171/jns.1999.90.1.0109 10.1016/j.tics.2011.08.002 10.1002/mrm.1910030214 10.1007/s00415-004-0306-6 10.1006/nimg.2000.0582 10.1002/nbm.782 10.1016/j.bbamem.2005.07.006 10.1007/978-3-540-30136-3_82 10.1016/j.neuroimage.2010.08.068 10.1016/j.nic.2008.09.007 10.1002/mrm.21669 10.1007/s00234-010-0717-2 10.1016/j.neuroimage.2006.05.023 10.1089/brain.2011.0071 10.1016/j.nurt.2007.05.011 |
| ContentType | Journal Article |
| Copyright | Springer Nature America, Inc. 2013 COPYRIGHT 2013 Nature Publishing Group Copyright Nature Publishing Group Dec 2013 |
| Copyright_xml | – notice: Springer Nature America, Inc. 2013 – notice: COPYRIGHT 2013 Nature Publishing Group – notice: Copyright Nature Publishing Group Dec 2013 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
| DOI | 10.1038/nm.3390 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep Neurosciences Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1546-170X |
| EndPage | 1672 |
| ExternalDocumentID | 3147359801 A353323183 24185694 10_1038_nm_3390 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY003164 – fundername: NEI NIH HHS grantid: R01 EY015000 – fundername: NEI NIH HHS grantid: R01-EY15000 |
| GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACSTC AFANA AFFHD ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB XRW AETEA CGR CUY CVF ECM EIF NFIDA NPM ACMFV 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c612t-a32c57a4b0a22fbaf20825bc5fcb516866d0731a0fed3ed1bbce1d86d6e1a2903 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 214 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328181400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1078-8956 1546-170X |
| IngestDate | Sun Nov 09 14:42:22 EST 2025 Thu Oct 02 10:04:34 EDT 2025 Fri Oct 03 09:21:10 EDT 2025 Sat Nov 29 13:10:02 EST 2025 Sat Nov 29 11:19:10 EST 2025 Sun Nov 23 08:48:14 EST 2025 Wed Nov 26 10:29:51 EST 2025 Wed Nov 26 10:02:23 EST 2025 Thu May 22 21:08:53 EDT 2025 Thu Apr 03 06:59:26 EDT 2025 Tue Nov 18 22:34:14 EST 2025 Sat Nov 29 06:02:20 EST 2025 Fri Feb 21 02:37:35 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c612t-a32c57a4b0a22fbaf20825bc5fcb516866d0731a0fed3ed1bbce1d86d6e1a2903 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | http://doi.org/10.1038/nm.3390 |
| PMID | 24185694 |
| PQID | 1465229308 |
| PQPubID | 33975 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1694980712 proquest_miscellaneous_1465862835 proquest_journals_1465229308 gale_infotracmisc_A353323183 gale_infotracgeneralonefile_A353323183 gale_infotracacademiconefile_A353323183 gale_incontextgauss_ISR_A353323183 gale_incontextgauss_IOV_A353323183 gale_healthsolutions_A353323183 pubmed_primary_24185694 crossref_primary_10_1038_nm_3390 crossref_citationtrail_10_1038_nm_3390 springer_journals_10_1038_nm_3390 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-12-01 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Nature medicine |
| PublicationTitleAbbrev | Nat Med |
| PublicationTitleAlternate | Nat Med |
| PublicationYear | 2013 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | GogtayNDynamic mapping of human cortical development during childhood through early adulthoodProc. Natl. Acad. Sci. USA2004101817481791:CAS:528:DC%2BD2cXkslCit7c%3D15148381419576 SigalovskyISFischlBMelcherJRMapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differencesNeuroimage2006321524153716806989 NortonWTAutilioLAThe lipid composition of purified bovine brain myelinJ. Neurochem.1966132132221:CAS:528:DyaF28XhtVOnu7k%3D5937889 UlrichASWattsAMolecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMRBiophys. J.199466144114491:CAS:528:DyaK2cXkslKlsbg%3D80611931275864 LauleCMagnetic resonance imaging of myelinNeurotherapeutics200744604841:CAS:528:DC%2BD2sXps1SgsL4%3D175997127479725 MayAExperience-dependent structural plasticity in the adult human brainTrends Cogn. Sci.20111547548221906988 WakanaSJiangHNagae-PoetscherLMvan ZijlPCMoriSFiber tract-based atlas of human white matter anatomyRadiology2004230778714645885 BottomleyPAFosterTHArgersingerREPfeiferLMA review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and ageMed. Phys.1984114254481:CAS:528:DyaL2cXlsVOjs70%3D6482839 GlasserMFVan EssenDCMapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRIJ. Neurosci.20113111597116161:CAS:528:DC%2BC3MXhtVOru7jJ218321903167149 PoloniGMinagarAHaackeEMZivadinovRRecent developments in imaging of multiple sclerosisNeurologist20111718520421712664 Tofts, P. Quantitative MRI of the Brain Measuring Changes Caused by Disease (John Wiley & Sons, Chichester, West Sussex; Hoboken, NJ, 2003). AboitizFScheibelABFisherRSZaidelEFiber composition of the human corpus callosumBrain Res.19925981431531:STN:280:DyaK3s7jslSjsQ%3D%3D1486477 Mansfield, P. & Morris, P.G. NMR Imaging in Biomedicine (Academic Press, London, 1982). KucharczykWMacdonaldPMStaniszGJHenkelmanRMRelaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pHRadiology19941925215291:CAS:528:DyaK2cXmsV2lu7c%3D8029426 LauleCWater content and myelin water fraction in multiple sclerosis. A T2 relaxation studyJ. Neurol.20042512842931:STN:280:DC%2BD2c7itlSnsQ%3D%3D15015007 LövbladKOMR imaging in multiple sclerosis: review and recommendations for current practiceAJNR Am. J. Neuroradiol.201031983989200191037963928 CorougeIGouttardSGerigGA statistical shape model of individual fiber tracts extracted from diffusion tensor MRILect. Notes Comput. Sci.20043217671679 KanaiRReesGThe structural basis of inter-individual differences in human behaviour and cognitionNat. Rev. Neurosci.2011122312421:CAS:528:DC%2BC3MXjt1Wnsrw%3D21407245 KurtzkeJFRating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS)Neurology198333144414521:STN:280:DyaL2c%2FktValsQ%3D%3D6685237 PopescuBFLucchinettiCFPathology of demyelinating diseasesAnnu. Rev. Pathol.201271852171:CAS:528:DC%2BC38Xjs1Kqsb0%3D22313379 BeaulieuCThe basis of anisotropic water diffusion in the nervous system–a technical reviewNMR Biomed.20021543545512489094 MoriSCrainBJChackoVPvan ZijlPCThree-dimensional tracking of axonal projections in the brain by magnetic resonance imagingAnn. Neurol.1999452652691:STN:280:DyaK1M7kt1Oguw%3D%3D9989633 AlexanderALCharacterization of cerebral white matter properties using quantitative magnetic resonance imaging atainsBrain Connect.20111423426224329023360545 FramEKRapid calculation of T1 using variable flip angle gradient refocused imagingMagn. Reson. Imaging198752012081:STN:280:DyaL2szhsVaktw%3D%3D3626789 KoenigSHCholesterol of myelin is the determinant of gray-white contrast in MRI of brainMagn. Reson. Med.1991202852911:STN:280:DyaK387jtVOltw%3D%3D1775053 FilippiMRoccaMAMR imaging of multiple sclerosisRadiology201125965968121602503 PolmanCHDiagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”Ann. Neurol.20055884084616283615 HopkinsALYeungHNBrattonCBMultiple field strength in vivo T1 and T2 for cerebrospinal fluid protonsMagn. Reson. Med.198633033111:CAS:528:DyaL28XktlymtLs%3D3713494 FatourosPPMarmarouAUse of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal valuesJ. Neurosurg.1999901091151:STN:280:DyaK1MzjvFGjug%3D%3D10413163 NagleJFTheory of the main lipid bilayer phase transitionAnnu. Rev. Phys. Chem.1980311571961:CAS:528:DyaL3cXmtlartLk%3D Le BihanDDiffusion tensor imaging: concepts and applicationsJ. Magn. Reson. Imaging2001135345461:STN:280:DC%2BD3M7os1eqsA%3D%3D11276097 DaleAMFischlBSerenoMICortical surface-based analysis. I. Segmentation and surface reconstructionNeuroimage199991791941:STN:280:DyaK1M7jt1Gisg%3D%3D9931268 RooneyWDMagnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivoMagn. Reson. Med.2007573083181:CAS:528:DC%2BD2sXisVOjtr4%3D17260370 VolzSNothUDeichmannRCorrection of systematic errors in quantitative proton density mappingMagn. Reson. Med.201268748522144171 KoenigBWGawrischKSpecific volumes of unsaturated phosphatidylcholines in the liquid crystalline lamellar phaseBiochim. Biophys. Acta2005171565701:CAS:528:DC%2BD2MXosVCksrs%3D16109383 NoterdaemeOAndersonMGleesonFBradySMIntensity correction with a pair of spoiled gradient recalled echo imagesPhys. Med. Biol.2009543473348919436101 BarralJKA robust methodology for in vivo T1 mappingMagn. Reson. Med.20106410571067205645972962940 FischlBDaleAMMeasuring the thickness of the human cerebral cortex from magnetic resonance imagesProc. Natl. Acad. Sci. USA20009711050110551:CAS:528:DC%2BD3cXnt1ahtrg%3D1098451727146 BasserPJPajevicSPierpaoliCDudaJAldroubiAIn vivo fiber tractography using DT-MRI dataMagn. Reson. Med.2000446256321:STN:280:DC%2BD3cvnvFCitA%3D%3D11025519 AshburnerJFristonKJVoxel-based morphometry–the methodsNeuroimage2000118058211:STN:280:DC%2BD3cvgt1Chug%3D%3D10860804 AlexanderALLeeJELazarMFieldASDiffusion tensor imaging of the brainNeurotherapeutics20074316329175996992041910 DoesMDGoreJCCompartmental study of T(1) and T(2) in rat brain and trigeminal nerve in vivoMagn. Reson. Med.20024727428311810670 DeoniSCMagnetic resonance relaxation and quantitative measurement in the brainMethods Mol. Biol.2011711651081:CAS:528:DC%2BC2cXhvFWms73N21279598 StikovNBound pool fractions complement diffusion measures to describe white matter micro and macrostructureNeuroimage2011541112112120828622 MacKayALMR relaxation in multiple sclerosisNeuroimaging Clin. N. Am.2009191261:STN:280:DC%2BD1M7jslCnsg%3D%3D19064196 YarnykhVLYuanCCross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brainNeuroimage20042340942415325389 Loosley-MillmanMERandRPParsegianVAEffects of monovalent ion binding and screening on measured electrostatic forces between charged phospholipid bilayersBiophys. J.1982402212321:CAS:528:DyaL3sXkvFSruw%3D%3D71833361328998 BarazanyDBasserPJAssafYIn vivo measurement of axon diameter distribution in the corpus callosum of rat brainBrain200913212101220194037882677796 GelmanNEwingJRGorellJMSpicklerEMSolomonEGInterregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contentsMagn. Reson. Med.20014571791:STN:280:DC%2BD3M7gtFShsQ%3D%3D11146488 PausTGrowth of white matter in the adolescent brain: myelin or axon?Brain Cogn.201072263519595493 WedeenVJDiffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibersNeuroimage200841126712771:STN:280:DC%2BD1czosVKmuw%3D%3D18495497 ChangLCKoayCGBasserPJPierpaoliCLinear least-squares method for unbiased estimation of T1 from SPGR signalsMagn. Reson. Med.200860496501186661084196213 DoughertyRFBen-ShacharMBammerRBrewerAAWandellBAFunctional organization of human occipital-callosal fiber tractsProc. Natl. Acad. Sci. USA2005102735073551:CAS:528:DC%2BD2MXks12nsbk%3D158833841129102 YeatmanJDDoughertyRFMyallNJWandellBAFeldmanHMTract profiles of white matter properties: automating fiber-tract quantificationPLoS ONE20127e497901:CAS:528:DC%2BC38XhslyisLjK231667713498174 ThomasCBakerCIRemodeling human cortex through training: comment on MayTrends Cogn. Sci.201216969722209598 NeebHZillesKShahNJA new method for fast quantitative mapping of absolute water content in vivoNeuroimage200631115611681:STN:280:DC%2BD28zmsVGjsQ%3D%3D16650780 KakedaSKorogiYThe efficacy of a voxel-based morphometry on the analysis of imaging in schizophrenia, temporal lobe epilepsy, and Alzheimer's disease/mild cognitive impairment: a reviewNeuroradiology20105271172120495793 JF Nagle (BFnm3390_CR44) 1980; 31 JK Barral (BFnm3390_CR47) 2010; 64 C Thomas (BFnm3390_CR14) 2012; 16 BFnm3390_CR1 VJ Wedeen (BFnm3390_CR29) 2008; 41 SC Deoni (BFnm3390_CR3) 2011; 711 VL Yarnykh (BFnm3390_CR52) 2004; 23 PA Bottomley (BFnm3390_CR16) 1984; 11 KO Lövblad (BFnm3390_CR33) 2010; 31 T Paus (BFnm3390_CR27) 2010; 72 MF Glasser (BFnm3390_CR38) 2011; 31 A May (BFnm3390_CR13) 2011; 15 BFnm3390_CR17 N Gelman (BFnm3390_CR30) 2001; 45 PJ Basser (BFnm3390_CR53) 2000; 44 C Laule (BFnm3390_CR2) 2007; 4 H Neeb (BFnm3390_CR7) 2006; 31 WD Rooney (BFnm3390_CR18) 2007; 57 C Laule (BFnm3390_CR6) 2004; 251 AS Ulrich (BFnm3390_CR43) 1994; 66 S Volz (BFnm3390_CR40) 2012; 68 M Filippi (BFnm3390_CR32) 2011; 259 S Wakana (BFnm3390_CR56) 2004; 230 AL Alexander (BFnm3390_CR25) 2007; 4 B Fischl (BFnm3390_CR9) 2000; 97 I Corouge (BFnm3390_CR57) 2004; 3217 F Aboitiz (BFnm3390_CR22) 1992; 598 D Le Bihan (BFnm3390_CR37) 2001; 13 AM Dale (BFnm3390_CR49) 1999; 9 JD Yeatman (BFnm3390_CR28) 2012; 7 AL Hopkins (BFnm3390_CR50) 1986; 3 IS Sigalovsky (BFnm3390_CR51) 2006; 32 PP Fatouros (BFnm3390_CR5) 1999; 90 CH Polman (BFnm3390_CR45) 2005; 58 N Gogtay (BFnm3390_CR10) 2004; 101 J Ashburner (BFnm3390_CR8) 2000; 11 WT Norton (BFnm3390_CR15) 1966; 13 D Barazany (BFnm3390_CR23) 2009; 132 JF Kurtzke (BFnm3390_CR46) 1983; 33 N Stikov (BFnm3390_CR24) 2011; 54 G Poloni (BFnm3390_CR34) 2011; 17 BW Koenig (BFnm3390_CR41) 2005; 1715 LC Chang (BFnm3390_CR48) 2008; 60 O Noterdaeme (BFnm3390_CR39) 2009; 54 RF Dougherty (BFnm3390_CR55) 2005; 102 SH Koenig (BFnm3390_CR20) 1991; 20 EK Fram (BFnm3390_CR19) 1987; 5 W Kucharczyk (BFnm3390_CR21) 1994; 192 S Mori (BFnm3390_CR54) 1999; 45 C Beaulieu (BFnm3390_CR26) 2002; 15 MD Does (BFnm3390_CR31) 2002; 47 R Kanai (BFnm3390_CR12) 2011; 12 AL MacKay (BFnm3390_CR35) 2009; 19 BF Popescu (BFnm3390_CR36) 2012; 7 AL Alexander (BFnm3390_CR4) 2011; 1 S Kakeda (BFnm3390_CR11) 2010; 52 ME Loosley-Millman (BFnm3390_CR42) 1982; 40 20495793 - Neuroradiology. 2010 Aug;52(8):711-21 20019103 - AJNR Am J Neuroradiol. 2010 Jun;31(6):983-9 5937889 - J Neurochem. 1966 Apr;13(4):213-22 9989633 - Ann Neurol. 1999 Feb;45(2):265-9 20828622 - Neuroimage. 2011 Jan 15;54(2):1112-21 17599712 - Neurotherapeutics. 2007 Jul;4(3):460-84 22313379 - Annu Rev Pathol. 2012;7:185-217 16283615 - Ann Neurol. 2005 Dec;58(6):840-6 8029426 - Radiology. 1994 Aug;192(2):521-9 11146488 - Magn Reson Med. 2001 Jan;45(1):71-9 19436101 - Phys Med Biol. 2009 Jun 7;54(11):3473-89 9931268 - Neuroimage. 1999 Feb;9(2):179-94 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 17599699 - Neurotherapeutics. 2007 Jul;4(3):316-29 1775053 - Magn Reson Med. 1991 Aug;20(2):285-91 21602503 - Radiology. 2011 Jun;259(3):659-81 10984517 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5 15015007 - J Neurol. 2004 Mar;251(3):284-93 15883384 - Proc Natl Acad Sci U S A. 2005 May 17;102(20):7350-5 21407245 - Nat Rev Neurosci. 2011 Apr;12(4):231-42 18495497 - Neuroimage. 2008 Jul 15;41(4):1267-77 21712664 - Neurologist. 2011 Jul;17(4):185-204 15325389 - Neuroimage. 2004 Sep;23(1):409-24 16806989 - Neuroimage. 2006 Oct 1;32(4):1524-37 3626789 - Magn Reson Imaging. 1987;5(3):201-8 21906988 - Trends Cogn Sci. 2011 Oct;15(10):475-82 11276097 - J Magn Reson Imaging. 2001 Apr;13(4):534-46 19403788 - Brain. 2009 May;132(Pt 5):1210-20 22209598 - Trends Cogn Sci. 2012 Feb;16(2):96-7; author reply 97-8 16109383 - Biochim Biophys Acta. 2005 Aug 30;1715(1):65-70 15148381 - Proc Natl Acad Sci U S A. 2004 May 25;101(21):8174-9 12489094 - NMR Biomed. 2002 Nov-Dec;15(7-8):435-55 19595493 - Brain Cogn. 2010 Feb;72(1):26-35 11810670 - Magn Reson Med. 2002 Feb;47(2):274-83 11025519 - Magn Reson Med. 2000 Oct;44(4):625-32 8061193 - Biophys J. 1994 May;66(5):1441-9 7183336 - Biophys J. 1982 Dec;40(3):221-32 6482839 - Med Phys. 1984 Jul-Aug;11(4):425-48 19064196 - Neuroimaging Clin N Am. 2009 Feb;19(1):1-26 21279598 - Methods Mol Biol. 2011;711:65-108 16650780 - Neuroimage. 2006 Jul 1;31(3):1156-68 22432902 - Brain Connect. 2011;1(6):423-46 23166771 - PLoS One. 2012;7(11):e49790 18666108 - Magn Reson Med. 2008 Aug;60(2):496-501 22144171 - Magn Reson Med. 2012 Jul;68(1):74-85 6685237 - Neurology. 1983 Nov;33(11):1444-52 1486477 - Brain Res. 1992 Dec 11;598(1-2):143-53 17260370 - Magn Reson Med. 2007 Feb;57(2):308-18 21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616 3713494 - Magn Reson Med. 1986 Apr;3(2):303-11 14645885 - Radiology. 2004 Jan;230(1):77-87 20564597 - Magn Reson Med. 2010 Oct;64(4):1057-67 10413163 - J Neurosurg. 1999 Jan;90(1):109-15 |
| References_xml | – reference: GelmanNEwingJRGorellJMSpicklerEMSolomonEGInterregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contentsMagn. Reson. Med.20014571791:STN:280:DC%2BD3M7gtFShsQ%3D%3D11146488 – reference: BarazanyDBasserPJAssafYIn vivo measurement of axon diameter distribution in the corpus callosum of rat brainBrain200913212101220194037882677796 – reference: DoesMDGoreJCCompartmental study of T(1) and T(2) in rat brain and trigeminal nerve in vivoMagn. Reson. Med.20024727428311810670 – reference: DaleAMFischlBSerenoMICortical surface-based analysis. I. Segmentation and surface reconstructionNeuroimage199991791941:STN:280:DyaK1M7jt1Gisg%3D%3D9931268 – reference: AshburnerJFristonKJVoxel-based morphometry–the methodsNeuroimage2000118058211:STN:280:DC%2BD3cvgt1Chug%3D%3D10860804 – reference: Loosley-MillmanMERandRPParsegianVAEffects of monovalent ion binding and screening on measured electrostatic forces between charged phospholipid bilayersBiophys. J.1982402212321:CAS:528:DyaL3sXkvFSruw%3D%3D71833361328998 – reference: ThomasCBakerCIRemodeling human cortex through training: comment on MayTrends Cogn. Sci.201216969722209598 – reference: PausTGrowth of white matter in the adolescent brain: myelin or axon?Brain Cogn.201072263519595493 – reference: BarralJKA robust methodology for in vivo T1 mappingMagn. Reson. Med.20106410571067205645972962940 – reference: AlexanderALCharacterization of cerebral white matter properties using quantitative magnetic resonance imaging atainsBrain Connect.20111423426224329023360545 – reference: UlrichASWattsAMolecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMRBiophys. J.199466144114491:CAS:528:DyaK2cXkslKlsbg%3D80611931275864 – reference: FischlBDaleAMMeasuring the thickness of the human cerebral cortex from magnetic resonance imagesProc. Natl. Acad. Sci. USA20009711050110551:CAS:528:DC%2BD3cXnt1ahtrg%3D1098451727146 – reference: BottomleyPAFosterTHArgersingerREPfeiferLMA review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and ageMed. Phys.1984114254481:CAS:528:DyaL2cXlsVOjs70%3D6482839 – reference: NortonWTAutilioLAThe lipid composition of purified bovine brain myelinJ. Neurochem.1966132132221:CAS:528:DyaF28XhtVOnu7k%3D5937889 – reference: BeaulieuCThe basis of anisotropic water diffusion in the nervous system–a technical reviewNMR Biomed.20021543545512489094 – reference: MacKayALMR relaxation in multiple sclerosisNeuroimaging Clin. N. Am.2009191261:STN:280:DC%2BD1M7jslCnsg%3D%3D19064196 – reference: MoriSCrainBJChackoVPvan ZijlPCThree-dimensional tracking of axonal projections in the brain by magnetic resonance imagingAnn. Neurol.1999452652691:STN:280:DyaK1M7kt1Oguw%3D%3D9989633 – reference: PoloniGMinagarAHaackeEMZivadinovRRecent developments in imaging of multiple sclerosisNeurologist20111718520421712664 – reference: YarnykhVLYuanCCross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brainNeuroimage20042340942415325389 – reference: Tofts, P. Quantitative MRI of the Brain Measuring Changes Caused by Disease (John Wiley & Sons, Chichester, West Sussex; Hoboken, NJ, 2003). – reference: MayAExperience-dependent structural plasticity in the adult human brainTrends Cogn. Sci.20111547548221906988 – reference: StikovNBound pool fractions complement diffusion measures to describe white matter micro and macrostructureNeuroimage2011541112112120828622 – reference: NagleJFTheory of the main lipid bilayer phase transitionAnnu. Rev. Phys. Chem.1980311571961:CAS:528:DyaL3cXmtlartLk%3D – reference: AboitizFScheibelABFisherRSZaidelEFiber composition of the human corpus callosumBrain Res.19925981431531:STN:280:DyaK3s7jslSjsQ%3D%3D1486477 – reference: KurtzkeJFRating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS)Neurology198333144414521:STN:280:DyaL2c%2FktValsQ%3D%3D6685237 – reference: KucharczykWMacdonaldPMStaniszGJHenkelmanRMRelaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pHRadiology19941925215291:CAS:528:DyaK2cXmsV2lu7c%3D8029426 – reference: DoughertyRFBen-ShacharMBammerRBrewerAAWandellBAFunctional organization of human occipital-callosal fiber tractsProc. Natl. Acad. Sci. USA2005102735073551:CAS:528:DC%2BD2MXks12nsbk%3D158833841129102 – reference: DeoniSCMagnetic resonance relaxation and quantitative measurement in the brainMethods Mol. Biol.2011711651081:CAS:528:DC%2BC2cXhvFWms73N21279598 – reference: KoenigSHCholesterol of myelin is the determinant of gray-white contrast in MRI of brainMagn. Reson. Med.1991202852911:STN:280:DyaK387jtVOltw%3D%3D1775053 – reference: NoterdaemeOAndersonMGleesonFBradySMIntensity correction with a pair of spoiled gradient recalled echo imagesPhys. Med. Biol.2009543473348919436101 – reference: BasserPJPajevicSPierpaoliCDudaJAldroubiAIn vivo fiber tractography using DT-MRI dataMagn. Reson. Med.2000446256321:STN:280:DC%2BD3cvnvFCitA%3D%3D11025519 – reference: KoenigBWGawrischKSpecific volumes of unsaturated phosphatidylcholines in the liquid crystalline lamellar phaseBiochim. Biophys. Acta2005171565701:CAS:528:DC%2BD2MXosVCksrs%3D16109383 – reference: VolzSNothUDeichmannRCorrection of systematic errors in quantitative proton density mappingMagn. Reson. Med.201268748522144171 – reference: WedeenVJDiffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibersNeuroimage200841126712771:STN:280:DC%2BD1czosVKmuw%3D%3D18495497 – reference: KakedaSKorogiYThe efficacy of a voxel-based morphometry on the analysis of imaging in schizophrenia, temporal lobe epilepsy, and Alzheimer's disease/mild cognitive impairment: a reviewNeuroradiology20105271172120495793 – reference: GlasserMFVan EssenDCMapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRIJ. Neurosci.20113111597116161:CAS:528:DC%2BC3MXhtVOru7jJ218321903167149 – reference: GogtayNDynamic mapping of human cortical development during childhood through early adulthoodProc. Natl. Acad. Sci. USA2004101817481791:CAS:528:DC%2BD2cXkslCit7c%3D15148381419576 – reference: RooneyWDMagnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivoMagn. Reson. Med.2007573083181:CAS:528:DC%2BD2sXisVOjtr4%3D17260370 – reference: FatourosPPMarmarouAUse of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal valuesJ. Neurosurg.1999901091151:STN:280:DyaK1MzjvFGjug%3D%3D10413163 – reference: WakanaSJiangHNagae-PoetscherLMvan ZijlPCMoriSFiber tract-based atlas of human white matter anatomyRadiology2004230778714645885 – reference: PolmanCHDiagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”Ann. Neurol.20055884084616283615 – reference: CorougeIGouttardSGerigGA statistical shape model of individual fiber tracts extracted from diffusion tensor MRILect. Notes Comput. Sci.20043217671679 – reference: Mansfield, P. & Morris, P.G. NMR Imaging in Biomedicine (Academic Press, London, 1982). – reference: AlexanderALLeeJELazarMFieldASDiffusion tensor imaging of the brainNeurotherapeutics20074316329175996992041910 – reference: FilippiMRoccaMAMR imaging of multiple sclerosisRadiology201125965968121602503 – reference: LövbladKOMR imaging in multiple sclerosis: review and recommendations for current practiceAJNR Am. J. Neuroradiol.201031983989200191037963928 – reference: KanaiRReesGThe structural basis of inter-individual differences in human behaviour and cognitionNat. Rev. Neurosci.2011122312421:CAS:528:DC%2BC3MXjt1Wnsrw%3D21407245 – reference: YeatmanJDDoughertyRFMyallNJWandellBAFeldmanHMTract profiles of white matter properties: automating fiber-tract quantificationPLoS ONE20127e497901:CAS:528:DC%2BC38XhslyisLjK231667713498174 – reference: HopkinsALYeungHNBrattonCBMultiple field strength in vivo T1 and T2 for cerebrospinal fluid protonsMagn. Reson. Med.198633033111:CAS:528:DyaL28XktlymtLs%3D3713494 – reference: Le BihanDDiffusion tensor imaging: concepts and applicationsJ. Magn. Reson. Imaging2001135345461:STN:280:DC%2BD3M7os1eqsA%3D%3D11276097 – reference: NeebHZillesKShahNJA new method for fast quantitative mapping of absolute water content in vivoNeuroimage200631115611681:STN:280:DC%2BD28zmsVGjsQ%3D%3D16650780 – reference: ChangLCKoayCGBasserPJPierpaoliCLinear least-squares method for unbiased estimation of T1 from SPGR signalsMagn. Reson. Med.200860496501186661084196213 – reference: SigalovskyISFischlBMelcherJRMapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differencesNeuroimage2006321524153716806989 – reference: LauleCWater content and myelin water fraction in multiple sclerosis. A T2 relaxation studyJ. Neurol.20042512842931:STN:280:DC%2BD2c7itlSnsQ%3D%3D15015007 – reference: FramEKRapid calculation of T1 using variable flip angle gradient refocused imagingMagn. Reson. Imaging198752012081:STN:280:DyaL2szhsVaktw%3D%3D3626789 – reference: PopescuBFLucchinettiCFPathology of demyelinating diseasesAnnu. Rev. Pathol.201271852171:CAS:528:DC%2BC38Xjs1Kqsb0%3D22313379 – reference: LauleCMagnetic resonance imaging of myelinNeurotherapeutics200744604841:CAS:528:DC%2BD2sXps1SgsL4%3D175997127479725 – volume: 101 start-page: 8174 year: 2004 ident: BFnm3390_CR10 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0402680101 – volume: 711 start-page: 65 year: 2011 ident: BFnm3390_CR3 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61737-992-5_4 – volume: 58 start-page: 840 year: 2005 ident: BFnm3390_CR45 publication-title: Ann. Neurol. doi: 10.1002/ana.20703 – volume: 68 start-page: 74 year: 2012 ident: BFnm3390_CR40 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23206 – volume: 7 start-page: e49790 year: 2012 ident: BFnm3390_CR28 publication-title: PLoS ONE doi: 10.1371/journal.pone.0049790 – volume: 31 start-page: 11597 year: 2011 ident: BFnm3390_CR38 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2180-11.2011 – volume: 230 start-page: 77 year: 2004 ident: BFnm3390_CR56 publication-title: Radiology doi: 10.1148/radiol.2301021640 – volume: 598 start-page: 143 year: 1992 ident: BFnm3390_CR22 publication-title: Brain Res. doi: 10.1016/0006-8993(92)90178-C – volume: 16 start-page: 96 year: 2012 ident: BFnm3390_CR14 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2011.12.005 – volume: 57 start-page: 308 year: 2007 ident: BFnm3390_CR18 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21122 – volume: 41 start-page: 1267 year: 2008 ident: BFnm3390_CR29 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.036 – volume: 45 start-page: 71 year: 2001 ident: BFnm3390_CR30 publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200101)45:1<71::AID-MRM1011>3.0.CO;2-2 – volume: 31 start-page: 157 year: 1980 ident: BFnm3390_CR44 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.31.100180.001105 – volume: 47 start-page: 274 year: 2002 ident: BFnm3390_CR31 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10060 – volume: 44 start-page: 625 year: 2000 ident: BFnm3390_CR53 publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – volume: 20 start-page: 285 year: 1991 ident: BFnm3390_CR20 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910200210 – volume: 192 start-page: 521 year: 1994 ident: BFnm3390_CR21 publication-title: Radiology doi: 10.1148/radiology.192.2.8029426 – volume: 23 start-page: 409 year: 2004 ident: BFnm3390_CR52 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.04.029 – volume: 66 start-page: 1441 year: 1994 ident: BFnm3390_CR43 publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80934-8 – volume: 64 start-page: 1057 year: 2010 ident: BFnm3390_CR47 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22497 – volume: 72 start-page: 26 year: 2010 ident: BFnm3390_CR27 publication-title: Brain Cogn. doi: 10.1016/j.bandc.2009.06.002 – volume: 33 start-page: 1444 year: 1983 ident: BFnm3390_CR46 publication-title: Neurology doi: 10.1212/WNL.33.11.1444 – volume: 45 start-page: 265 year: 1999 ident: BFnm3390_CR54 publication-title: Ann. Neurol. doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – volume: 259 start-page: 659 year: 2011 ident: BFnm3390_CR32 publication-title: Radiology doi: 10.1148/radiol.11101362 – ident: BFnm3390_CR1 doi: 10.1002/0470869526 – volume: 54 start-page: 3473 year: 2009 ident: BFnm3390_CR39 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/11/013 – volume: 31 start-page: 1156 year: 2006 ident: BFnm3390_CR7 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.063 – volume: 102 start-page: 7350 year: 2005 ident: BFnm3390_CR55 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0500003102 – volume: 31 start-page: 983 year: 2010 ident: BFnm3390_CR33 publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A1906 – volume: 5 start-page: 201 year: 1987 ident: BFnm3390_CR19 publication-title: Magn. Reson. Imaging doi: 10.1016/0730-725X(87)90021-X – volume: 40 start-page: 221 year: 1982 ident: BFnm3390_CR42 publication-title: Biophys. J. doi: 10.1016/S0006-3495(82)84477-9 – volume: 9 start-page: 179 year: 1999 ident: BFnm3390_CR49 publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 13 start-page: 213 year: 1966 ident: BFnm3390_CR15 publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1966.tb06794.x – volume: 7 start-page: 185 year: 2012 ident: BFnm3390_CR36 publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-011811-132443 – volume: 4 start-page: 460 year: 2007 ident: BFnm3390_CR2 publication-title: Neurotherapeutics doi: 10.1016/j.nurt.2007.05.004 – ident: BFnm3390_CR17 – volume: 17 start-page: 185 year: 2011 ident: BFnm3390_CR34 publication-title: Neurologist doi: 10.1097/NRL.0b013e31821a2643 – volume: 13 start-page: 534 year: 2001 ident: BFnm3390_CR37 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1076 – volume: 132 start-page: 1210 year: 2009 ident: BFnm3390_CR23 publication-title: Brain doi: 10.1093/brain/awp042 – volume: 12 start-page: 231 year: 2011 ident: BFnm3390_CR12 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3000 – volume: 11 start-page: 425 year: 1984 ident: BFnm3390_CR16 publication-title: Med. Phys. doi: 10.1118/1.595535 – volume: 97 start-page: 11050 year: 2000 ident: BFnm3390_CR9 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.200033797 – volume: 90 start-page: 109 year: 1999 ident: BFnm3390_CR5 publication-title: J. Neurosurg. doi: 10.3171/jns.1999.90.1.0109 – volume: 15 start-page: 475 year: 2011 ident: BFnm3390_CR13 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2011.08.002 – volume: 3 start-page: 303 year: 1986 ident: BFnm3390_CR50 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910030214 – volume: 251 start-page: 284 year: 2004 ident: BFnm3390_CR6 publication-title: J. Neurol. doi: 10.1007/s00415-004-0306-6 – volume: 11 start-page: 805 year: 2000 ident: BFnm3390_CR8 publication-title: Neuroimage doi: 10.1006/nimg.2000.0582 – volume: 15 start-page: 435 year: 2002 ident: BFnm3390_CR26 publication-title: NMR Biomed. doi: 10.1002/nbm.782 – volume: 1715 start-page: 65 year: 2005 ident: BFnm3390_CR41 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2005.07.006 – volume: 3217 start-page: 671 year: 2004 ident: BFnm3390_CR57 publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-30136-3_82 – volume: 54 start-page: 1112 year: 2011 ident: BFnm3390_CR24 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.068 – volume: 19 start-page: 1 year: 2009 ident: BFnm3390_CR35 publication-title: Neuroimaging Clin. N. Am. doi: 10.1016/j.nic.2008.09.007 – volume: 60 start-page: 496 year: 2008 ident: BFnm3390_CR48 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21669 – volume: 52 start-page: 711 year: 2010 ident: BFnm3390_CR11 publication-title: Neuroradiology doi: 10.1007/s00234-010-0717-2 – volume: 32 start-page: 1524 year: 2006 ident: BFnm3390_CR51 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.05.023 – volume: 1 start-page: 423 year: 2011 ident: BFnm3390_CR4 publication-title: Brain Connect. doi: 10.1089/brain.2011.0071 – volume: 4 start-page: 316 year: 2007 ident: BFnm3390_CR25 publication-title: Neurotherapeutics doi: 10.1016/j.nurt.2007.05.011 – reference: 5937889 - J Neurochem. 1966 Apr;13(4):213-22 – reference: 6482839 - Med Phys. 1984 Jul-Aug;11(4):425-48 – reference: 18666108 - Magn Reson Med. 2008 Aug;60(2):496-501 – reference: 20019103 - AJNR Am J Neuroradiol. 2010 Jun;31(6):983-9 – reference: 8061193 - Biophys J. 1994 May;66(5):1441-9 – reference: 8029426 - Radiology. 1994 Aug;192(2):521-9 – reference: 22432902 - Brain Connect. 2011;1(6):423-46 – reference: 19595493 - Brain Cogn. 2010 Feb;72(1):26-35 – reference: 22209598 - Trends Cogn Sci. 2012 Feb;16(2):96-7; author reply 97-8 – reference: 21279598 - Methods Mol Biol. 2011;711:65-108 – reference: 19064196 - Neuroimaging Clin N Am. 2009 Feb;19(1):1-26 – reference: 21712664 - Neurologist. 2011 Jul;17(4):185-204 – reference: 11025519 - Magn Reson Med. 2000 Oct;44(4):625-32 – reference: 18495497 - Neuroimage. 2008 Jul 15;41(4):1267-77 – reference: 11276097 - J Magn Reson Imaging. 2001 Apr;13(4):534-46 – reference: 21602503 - Radiology. 2011 Jun;259(3):659-81 – reference: 20828622 - Neuroimage. 2011 Jan 15;54(2):1112-21 – reference: 17599699 - Neurotherapeutics. 2007 Jul;4(3):316-29 – reference: 3713494 - Magn Reson Med. 1986 Apr;3(2):303-11 – reference: 21407245 - Nat Rev Neurosci. 2011 Apr;12(4):231-42 – reference: 10413163 - J Neurosurg. 1999 Jan;90(1):109-15 – reference: 1486477 - Brain Res. 1992 Dec 11;598(1-2):143-53 – reference: 12489094 - NMR Biomed. 2002 Nov-Dec;15(7-8):435-55 – reference: 15015007 - J Neurol. 2004 Mar;251(3):284-93 – reference: 20564597 - Magn Reson Med. 2010 Oct;64(4):1057-67 – reference: 11810670 - Magn Reson Med. 2002 Feb;47(2):274-83 – reference: 22144171 - Magn Reson Med. 2012 Jul;68(1):74-85 – reference: 20495793 - Neuroradiology. 2010 Aug;52(8):711-21 – reference: 16283615 - Ann Neurol. 2005 Dec;58(6):840-6 – reference: 3626789 - Magn Reson Imaging. 1987;5(3):201-8 – reference: 21906988 - Trends Cogn Sci. 2011 Oct;15(10):475-82 – reference: 6685237 - Neurology. 1983 Nov;33(11):1444-52 – reference: 11146488 - Magn Reson Med. 2001 Jan;45(1):71-9 – reference: 15325389 - Neuroimage. 2004 Sep;23(1):409-24 – reference: 10984517 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5 – reference: 21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616 – reference: 14645885 - Radiology. 2004 Jan;230(1):77-87 – reference: 16806989 - Neuroimage. 2006 Oct 1;32(4):1524-37 – reference: 16650780 - Neuroimage. 2006 Jul 1;31(3):1156-68 – reference: 7183336 - Biophys J. 1982 Dec;40(3):221-32 – reference: 15148381 - Proc Natl Acad Sci U S A. 2004 May 25;101(21):8174-9 – reference: 9989633 - Ann Neurol. 1999 Feb;45(2):265-9 – reference: 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 – reference: 16109383 - Biochim Biophys Acta. 2005 Aug 30;1715(1):65-70 – reference: 15883384 - Proc Natl Acad Sci U S A. 2005 May 17;102(20):7350-5 – reference: 17599712 - Neurotherapeutics. 2007 Jul;4(3):460-84 – reference: 22313379 - Annu Rev Pathol. 2012;7:185-217 – reference: 9931268 - Neuroimage. 1999 Feb;9(2):179-94 – reference: 19436101 - Phys Med Biol. 2009 Jun 7;54(11):3473-89 – reference: 1775053 - Magn Reson Med. 1991 Aug;20(2):285-91 – reference: 19403788 - Brain. 2009 May;132(Pt 5):1210-20 – reference: 17260370 - Magn Reson Med. 2007 Feb;57(2):308-18 – reference: 23166771 - PLoS One. 2012;7(11):e49790 |
| SSID | ssj0003059 |
| Score | 2.5527894 |
| Snippet | There is an urgent need for quantitative magnetic resonance approaches for assessing brain development, as well as for studying the effects of drugs on neural... Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1667 |
| SubjectTerms | 631/1647/245/1628 631/378/2606/1666 692/53/2421 692/698/1688/64 Adult Anatomy Autoimmune diseases Biomedicine Brain Brain - diagnostic imaging Brain - pathology Brain Mapping - methods Cancer Research Case-Control Studies Cognition & reasoning Female Humans Image Processing, Computer-Assisted - methods Infectious Diseases Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical examination Metabolic Diseases Methods Molecular Medicine Multiple Sclerosis - diagnostic imaging Multiple Sclerosis - pathology Neuroimaging Neurosciences NMR Nuclear magnetic resonance Organ Size Physiological aspects Radiography Reproducibility of Results Studies technical-report Tissues Validation Studies as Topic |
| Title | Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging |
| URI | https://link.springer.com/article/10.1038/nm.3390 https://www.ncbi.nlm.nih.gov/pubmed/24185694 https://www.proquest.com/docview/1465229308 https://www.proquest.com/docview/1465862835 https://www.proquest.com/docview/1694980712 |
| Volume | 19 |
| WOSCitedRecordID | wos000328181400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1546-170X dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M7P dateStart: 19950101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1546-170X dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: 7X7 dateStart: 19950101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-170X dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: BENPR dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1546-170X dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M2O dateStart: 19950101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1546-170X dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M2P dateStart: 19950101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFhAXHuUVKItBqJxCE2eTOCdUUCs4dLuUh_YWObazVGKT0t1F4t8zYzvLpqAKCSnyxV8kJ_Pw2PMCeFGpVEYmNaFOTBYOK5S5IlZZaLRIhzXPkriObLOJfDQSk0kx9hducx9W2elEq6h1q-iOfA8lGk2FIonE67PvIXWNIu-qb6GxAVto2cQU0nXExytNjLxcuJhDEQo8CLikWSoJvtfMXiUJKeK13eiiTl7blC54Se3mc3jrf5d9G256s5PtOz65A1dMsw3XXCPKn9tw_ci72O_C1w9LSQFElP7E0DpkdrdjC0sg5pQZk41mFIzuI77YKT1dZherqO3EnNEVL5vJaUN5kgyP9S0V9zDsdGY7I92Dz4cHn96-C307hlChGbQIZcJVmkukp-S8rmTN6XiJxK5VlcaZyDKN-iKWUW2Q8DquKmViLTKdmVjyIkruw2bTNuYhsCHPFZkuQttc16pKTK55lKaa1_WQxwHsdmQpla9VTi0zvpXWZ56IspmVRL8A2Ap45spz_Al5SnQtXV7pSqDL_QQtXU4qLYDnFkHlMBqKt5nK5Xxevj_-8g-gjyc90EsPqltcr5I-xwG_msps9ZC7PeTUFRn_G3CnB0TpV_3pju9Kr33m5W-mC-DZaprepIi6xrRLh8HTLBrgl2CyYlgINEJ5AA-cKKz-MqeqRziPb3eysbaAPgkeXb7Ix3CDU5MRGyS0A5uL86V5AlfVD2Tt8wFs5JPcjmIAW28ORuOTAYn5sR3HNObjX49DWN0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8rzwKC9DoQuC9mRqrx-xDwhVQNWobShQUG_uencdKhGnxAmof4rfyMyubeKCKi49IOXmz9HYnqf9zQzAs1xGwtORdlWgYzfM0eZSX8auVkkUFjwO_MIzyyZ6g0FycJDuLcDPpheGaJWNTzSOWo0lvSNfR4vGVCENvOTV8TeXtkbR19VmhYZVi2198gNLtupl_w0-3-ecb77df73l1lsFXInRfOqKgMuoJ1AswXmRi4JTlYQyFzKP_DiJY4Vq7wuv0Ci_8vNcal8lsYq1L3jqBfi_F-BiSJPFiCrI91rPj7aTWo5j4iZYeNgmXRpBvl6OXgQBOf656Hc6BswFwVNfZU2w27zxv92mm3C9TqvZhrWDW7CgyyW4bBdtnizBld2aQnAbvryfCSJIUXsXw-yXmWjOpkYBmXXWTJSKEdm-ZrSxI_o1nWssp7UaFaNX2GwkhiX1gbKJpqIGTYgdjczmpzvw6Vyu-C4sluNS3wcW8p6k1CxRppc3zwPdU9yLIsWLIuS-A6uNGmSynsVOK0G-ZoYTECRZOcpIXxxgLfDYjh_5E7JCepTZvtnWYWUbAWbynFy2A08NgsZ9lMQnGopZVWX9d5__AfTxQwe0VoOKMcorRd3DgVdNY8Q6yNUOcmiHqP8NuNwBoneT3cONnme1d62y30ruwJP2MJ1JjMFSj2cWg9U6FhhnYOI0TBNMsrkD96zptXeZ01QnPI5nN7Y4J0D3ETw4W8gVuLq1v7uT7fQH2w_hGqeFKoYQtQyL08lMP4JL8juq-eSxcScMDs_bMH8BmS6yeQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKVRcWMpmKHRAUE4m9ng_IFRoI6JCCC2g3sx4ZhwqEadkAfWv8et4z2ObuKCKSw9Iuc3naMZ-31vstwA8zmQgHB1oW3k6tP0MOZe4MrS1igM_56Hn5k45bCIaDOLDw2S4Aj_rWhhKq6x1Yqmo1UTSO_IuMhpdhcRz4m5epUUMd3ovjr_ZNEGKvrTW4zSMiOzpkx8Yvs2e93fwWT_hvLf74dVru5owYEu07HNbeFwGkcAtCs7zTOScIibcfy6zwA3jMFRIAVc4ucazKDfLpHZVHKpQu4Injof_ewFWI3Qy_A6svtwdDPcbO4BMSkzGY2zHGIaYkl1qSN4txs88j8zAki08bRGWTOKpb7Sl6etd_Z9v2jW4UjncbNsw5Dqs6GIdLpkRnCfrsPa2Si64AV_eLwSlTlHhF0O_mJV2ns1L0WRGjTNRKEZp-FWuGzuiX13TxjIauDFj9HKbjcWooApRNtUU7iC52NG4nAl1Ez6ey4lvQaeYFPoOMJ9Hkpy2WJVVvlnm6UhxJwgUz3OfuxZs1SKRyqpLOw0L-ZqW2QJenBbjlGTHAtYAj01jkj8hmyRTqamobVRZuu2hj89JmVvwqERQI5CCpGMkFrNZ2n_36R9AB_st0NMKlE9wv1JU1R14amow1kJutZAj0179b8CNFhD1nmwv1zKfVnp3lv4WeAseNst0JeUSFnqyMBiM4zH0OAMTJn4So_vNLbhtaNjcZU79nnAdr655ubSB9iO4e_YmN2EN-Zi-6Q_27sFlTpNWykypDejMpwt9Hy7K7yjl0weVbmHw-byZ-QvAY7yT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+local+tissue+volume+and+composition+in+individual+brains+with+magnetic+resonance+imaging&rft.jtitle=Nature+medicine&rft.au=Mezer%2C+Aviv&rft.au=Yeatman%2C+Jason+D&rft.au=Stikov%2C+Nikola&rft.au=Kay%2C+Kendrick+N&rft.date=2013-12-01&rft.issn=1546-170X&rft.eissn=1546-170X&rft.volume=19&rft.issue=12&rft.spage=1667&rft_id=info:doi/10.1038%2Fnm.3390&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |