Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo–MXene/Mo–Metal Sulfides for Electromagnetic Response

Highlights Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed. Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching. Density functional theory calculations...

Full description

Saved in:
Bibliographic Details
Published in:Nano-micro letters Vol. 16; no. 1; pp. 213 - 21
Main Authors: Zeng, Xiaojun, Jiang, Xiao, Ning, Ya, Gao, Yanfeng, Che, Renchao
Format: Journal Article
Language:English
Published: Singapore Springer Nature Singapore 01.12.2024
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:2311-6706, 2150-5551, 2150-5551
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Highlights Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed. Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching. Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures. The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS 2 , metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
AbstractList The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor-semiconductor-metal heterostructure system, Mo-MXene/Mo-metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott-Schottky junctions. By skillfully combining these distinct functional components (Mo-MXene, MoS2, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces. The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide, which achieved remarkable reflection loss values of - 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor-semiconductor-metal heterostructure system, Mo-MXene/Mo-metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott-Schottky junctions. By skillfully combining these distinct functional components (Mo-MXene, MoS2, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces. The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide, which achieved remarkable reflection loss values of - 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS 2 , metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
Highlights Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed. Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching. Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures. The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS 2 , metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
HighlightsMo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed.Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching.Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures.The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS2, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
Highlights Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed. Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching. Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures.
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor-semiconductor-metal heterostructure system, Mo-MXene/Mo-metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott-Schottky junctions. By skillfully combining these distinct functional components (Mo-MXene, MoS , metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces. The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide, which achieved remarkable reflection loss values of - 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed.Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching.Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures. The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS2, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
ArticleNumber 213
Author Zeng, Xiaojun
Jiang, Xiao
Gao, Yanfeng
Che, Renchao
Ning, Ya
Author_xml – sequence: 1
  givenname: Xiaojun
  surname: Zeng
  fullname: Zeng, Xiaojun
  email: zengxiaojun@jcu.edu.cn
  organization: School of Materials Science and Engineering, Jingdezhen Ceramic University
– sequence: 2
  givenname: Xiao
  surname: Jiang
  fullname: Jiang, Xiao
  organization: School of Materials Science and Engineering, Jingdezhen Ceramic University
– sequence: 3
  givenname: Ya
  surname: Ning
  fullname: Ning, Ya
  organization: School of Materials Science and Engineering, Jingdezhen Ceramic University
– sequence: 4
  givenname: Yanfeng
  surname: Gao
  fullname: Gao, Yanfeng
  organization: School of Materials Science and Engineering, Jingdezhen Ceramic University, School of Materials Science and Engineering, Shanghai University
– sequence: 5
  givenname: Renchao
  surname: Che
  fullname: Che, Renchao
  email: rcche@fudan.edu.cn
  organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Zhejiang Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38861114$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9uFCEcxyemxtbaF_BgJvHiZSx_ZoA5GbtpdU0bE1cTb4SB3-xSZ2ELjKY338G7D-eTSHdabXvoCQLf74cv8H1a7DjvoCieY_QaI8QPY40EQRUidYVwXbcVf1TsEdygqmkavJPnFOOKccR2i4MYbYcaUnPCm_pJsUuFYBjjeq_4PfMupjDqZN2yPBrtkKq5K48H0ClYXZ5YGEwsf9i0Khewtto7k8U-lB9Gl03ZXSpnyoVe-ZS-Xd5aPlIRTOldeeb__Px19hUcHE5TSGooF-PQWwOx7DNsOs-v1dJBysd-grjJDHhWPO7VEOHgetwvvpwcf569r04_vpvP3p5WmmGSKiY0IUK1LRO96SkoAMaNNo1oId8bNRiysK8xgaYzRvV936lOG6q71hDc0_1iPnGNV-dyE-xahUvplZXbBR-WUoUcbADZGSrqnracalVjhVowDEMHXPHMIlesNxNrM3ZrMBpcCmq4A7274-xKLv13mX-EMUaaTHh1TQj-YoSY5NpGDcOgHPgxSooY40IIirL05T3puR-Dy2-1VTHEG06z6sXtSP-y3PQgC8Qk0MHHGKCX2iZ19Y85oR0kRvKqdXJqncytk9vWSZ6t5J71hv6giU6mmMVuCeF_7AdcfwH-DO_d
CitedBy_id crossref_primary_10_1007_s12598_025_03548_9
crossref_primary_10_1016_j_jmst_2025_03_038
crossref_primary_10_1002_cnl2_169
crossref_primary_10_1016_j_diamond_2024_111350
crossref_primary_10_1039_D5NR01800E
crossref_primary_10_1002_adfm_202502671
crossref_primary_10_1016_j_jmst_2025_03_033
crossref_primary_10_1002_adfm_202513762
crossref_primary_10_1016_j_jmst_2025_04_041
crossref_primary_10_1155_nax2_7361645
crossref_primary_10_26599_NR_2025_94907783
crossref_primary_10_1016_j_colsurfa_2025_136683
crossref_primary_10_1016_j_mtnano_2025_100620
crossref_primary_10_1016_j_mtnano_2025_100584
crossref_primary_10_1088_2516_1075_ad85ba
crossref_primary_10_1016_j_cej_2025_163011
crossref_primary_10_1002_adfm_202502480
crossref_primary_10_1002_adma_202412845
crossref_primary_10_1002_adfm_202510047
crossref_primary_10_1016_j_apmate_2025_100344
crossref_primary_10_1016_j_jallcom_2025_180347
crossref_primary_10_1016_j_carbon_2024_119973
crossref_primary_10_1016_j_carbon_2024_119737
crossref_primary_10_1016_j_cej_2024_157121
crossref_primary_10_1002_smll_202500918
crossref_primary_10_1016_j_ceramint_2024_09_264
crossref_primary_10_1016_j_cej_2024_157444
crossref_primary_10_1016_j_mtnano_2025_100653
crossref_primary_10_1002_adma_202506386
crossref_primary_10_1002_adfm_202414838
crossref_primary_10_1016_j_jallcom_2024_176300
crossref_primary_10_1039_D5TC01018G
crossref_primary_10_1007_s42765_024_00501_w
crossref_primary_10_1002_smll_202504484
crossref_primary_10_1016_j_mtnano_2025_100614
crossref_primary_10_26599_JAC_2024_9220944
crossref_primary_10_1016_j_carbon_2024_119422
crossref_primary_10_1016_j_carbon_2024_119741
crossref_primary_10_1016_j_jmst_2024_06_026
crossref_primary_10_1021_acssuschemeng_5c07668
crossref_primary_10_1016_j_cej_2024_158520
crossref_primary_10_1016_j_jmat_2024_100927
crossref_primary_10_1039_D5TA01988E
crossref_primary_10_1016_j_carbon_2025_120690
crossref_primary_10_1039_D5TA01547B
crossref_primary_10_1002_smll_202411743
crossref_primary_10_1039_D5MH00667H
crossref_primary_10_1016_j_jelechem_2025_119430
crossref_primary_10_1016_j_jmst_2024_09_049
crossref_primary_10_1016_j_mtnano_2024_100560
crossref_primary_10_1007_s40820_025_01687_3
crossref_primary_10_1016_j_carbon_2024_119792
crossref_primary_10_1016_j_mtnano_2024_100529
crossref_primary_10_1016_j_jmst_2025_09_001
crossref_primary_10_1016_j_mtnano_2025_100603
crossref_primary_10_1016_j_pnsc_2024_09_001
crossref_primary_10_26599_JAC_2024_9220977
crossref_primary_10_1016_j_jmst_2024_08_004
crossref_primary_10_1016_j_nantod_2025_102770
crossref_primary_10_1016_j_jallcom_2025_181893
crossref_primary_10_1016_j_mtnano_2025_100591
crossref_primary_10_1016_j_cej_2024_158873
crossref_primary_10_1007_s40820_024_01494_2
crossref_primary_10_1007_s40820_024_01527_w
crossref_primary_10_1002_adfm_202516772
crossref_primary_10_1007_s40820_024_01540_z
crossref_primary_10_1016_j_jmst_2024_12_043
crossref_primary_10_1021_acssuschemeng_5c05919
crossref_primary_10_1002_adfm_202413884
crossref_primary_10_1039_D4MH00793J
crossref_primary_10_1016_j_mtnano_2024_100538
crossref_primary_10_1016_j_mtnano_2024_100539
crossref_primary_10_1016_j_mtener_2025_101835
crossref_primary_10_26599_NR_2025_94907512
crossref_primary_10_1007_s10853_024_10482_1
crossref_primary_10_1016_j_carbon_2025_120723
Cites_doi 10.1039/D3TA01993D
10.1016/j.jcis.2023.07.169
10.1002/adma.202007129
10.1002/adfm.202200544
10.26599/JAC.2023.9220772
10.1016/j.apmate.2024.100180
10.1002/adfm.202201129
10.1016/j.jmst.2023.05.004
10.1002/adfm.202316691
10.1007/s12274-023-5594-1
10.1002/cssc.202100615
10.1002/smsc.202200041
10.1002/adfm.202002595
10.1002/smll.202206462
10.1002/adfm.202011229
10.1021/acsnano.2c09888
10.1007/s40820-024-01369-6
10.1002/adma.202311411
10.1002/cey2.502
10.1016/j.cej.2021.132253
10.1002/advs.202301599
10.1038/s41467-022-28906-4
10.1002/adfm.202306815
10.1016/j.jmst.2023.08.020
10.1002/smll.202300717
10.1063/1.1750906
10.1002/adfm.202204499
10.1038/s41467-023-41697-6
10.1002/smll.202305120
10.1002/smtd.202301600
10.1007/s40145-022-0624-0
10.1002/adma.201707334
10.1016/j.cej.2021.131272
10.1002/smll.202303393
10.1021/ja308463r
10.1039/C5CS00064E
10.1002/adfm.202213357
10.1002/adfm.202003998
10.1002/aenm.201800734
10.1021/acsnano.0c09982
10.1007/s40820-023-01247-7
10.1002/adma.202300015
10.1016/j.scib.2020.05.007
10.1002/adfm.202200141
10.1016/j.carbon.2022.03.029
10.1073/pnas.2209807120
10.1002/adpr.202300224
10.1002/adfm.202211352
10.1002/advs.202307649
10.1002/adfm.202204370
10.1016/j.jmst.2023.08.016
10.1002/adfm.202300374
10.1002/adfm.202314653
10.1021/acsnano.5b03591
10.1021/acsami.9b23489
10.1002/adfm.202306599
10.1007/s40820-023-01280-6
10.1016/j.mtphys.2023.101058
10.1002/adfm.202105018
10.1002/adfm.202204591
10.1002/adfm.202112294
10.1021/nl5023767
10.1021/acsnano.3c00338
10.1002/sstr.202200379
10.1016/j.cej.2019.122241
10.1002/adma.202211642
10.1016/j.carbon.2024.118901
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-024-01449-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 21
ExternalDocumentID oai_doaj_org_article_bd384f3973ca41a09ed61ebe7a79d22f
PMC11166625
38861114
10_1007_s40820_024_01449_7
Genre Journal Article
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c612t-68c228a9968fdf3eaee67dcd589e052051ec61f412e5bddafffbabcd3cb9d21f3
IEDL.DBID M7S
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001244000400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2311-6706
2150-5551
IngestDate Fri Oct 03 12:43:45 EDT 2025
Tue Nov 04 02:05:38 EST 2025
Tue Oct 21 12:58:15 EDT 2025
Sat Oct 18 23:08:17 EDT 2025
Mon Jul 21 05:58:44 EDT 2025
Sat Nov 29 02:07:30 EST 2025
Tue Nov 18 22:32:06 EST 2025
Fri Feb 21 02:37:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Semiconductor–semiconductor–metal heterostructure
Electromagnetic wave absorption
Built-in electric field
Mott–Schottky junctions
Semiconductor junctions
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-68c228a9968fdf3eaee67dcd589e052051ec61f412e5bddafffbabcd3cb9d21f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3066607573?pq-origsite=%requestingapplication%
PMID 38861114
PQID 3066607573
PQPubID 2044332
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_bd384f3973ca41a09ed61ebe7a79d22f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11166625
proquest_miscellaneous_3066788830
proquest_journals_3066607573
pubmed_primary_38861114
crossref_citationtrail_10_1007_s40820_024_01449_7
crossref_primary_10_1007_s40820_024_01449_7
springer_journals_10_1007_s40820_024_01449_7
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Liu, Wei, He, Yao, Tan (CR63) 2023; 33
Liu, Liang, Wei, Yun, Zhang (CR39) 2023; 4
Xie, Guo, Wu, Dong (CR60) 2023; 651
Cheng, Jin, Zhao, Jing, Gu (CR14) 2024; 16
Li, Zhang, Wu (CR61) 2024; 20
Xing, Li, Wu, Yu, Liu (CR21) 2020; 379
Li, Sun, Feng, Ruan, Liu (CR25) 2023; 16
Liang, Hui, Chen, Shen, Yun (CR66) 2024
Xia, Gao, Gao (CR1) 2022; 32
Liu, Zhou, Jia, Wu, Wu (CR8) 2022; 32
Choi, Kim, Cho, Park, Kang (CR28) 2020; 30
Dong, Zhu, Pan, Xiang, Zhang (CR19) 2021; 426
Liang, Li, Yan, Feng, Wang (CR23) 2021; 15
Hou, Sheng, Fu, Kong, Zhang (CR6) 2022; 13
Wu, Xie, Zhang, Zhang, Sels (CR18) 2021; 33
Sun, Liu, Hong, Chen, Kim (CR36) 2014; 14
Liu, Zhang, Zang, Wu (CR50) 2021; 31
Tang, Zhou, Shen (CR52) 2012; 134
Zhang, Ruan, Zhou, Gu (CR22) 2023; 35
Hui, Zhou, Zhang, Wu (CR67) 2024; 11
Gao, Iqbal, Hassan, Hui, Wu (CR59) 2024
Zeng, Chen, Peng, Feng, Wang (CR49) 2021; 14
Xie, Sheng, Liu, Chen, Cheng (CR54) 2023; 163
Zhang, Ruan, Guo, Gu (CR26) 2023; 4
Wei, Shi, Li, He, Li (CR62) 2024; 175
Liu, Jia, Zhou, Liu, Zhang (CR46) 2022; 429
Liu, Zhang, Wu (CR40) 2022; 32
Liu, Zhang, Sun, Anasori, Zhu (CR42) 2018; 30
Anasori, Xie, Beidaghi, Lu, Hosler (CR34) 2015; 9
Zeng, Zhao, Jiang, Yu, Che (CR51) 2023; 19
Chen, Zhang, Ni, Sheng, Gao (CR53) 2024; 221
Jiao, Dai, Feng, Luo, Xu (CR55) 2023; 33
Song, Mao, Wang, Hui, Zhang (CR4) 2023; 120
Jiang, Cai, Pan, Shi, Cheng (CR5) 2023; 10
Huang, Zhao, Zhang, Chen, Zhang (CR38) 2018; 8
Zeng, Zhao, Yin, Nie, Xie (CR41) 2022; 193
Li, Tian, Li, Liu, Liu (CR9) 2024
Yan, Zheng, Wang, Tian, Gong (CR2) 2023; 35
Wang, Liu, Jiao, Ma, Lv (CR17) 2020; 30
Liu, Ma, Qiu, Yang, Wang (CR64) 2023; 17
Tang, Xu, Xie, Guo, Zhang (CR20) 2023; 14
Saraf, Chacon, Ippolito, Lord, Anayee (CR33) 2023; 34
Gai, Wang, Wan, Yu, Chen (CR10) 2024; 16
Xi, Xie, Liu, Zhang, Wang (CR44) 2023; 19
Wen, Chen, Hui, Li, Yun (CR65) 2024; 3
Zhang, Liu, Liu, Yan, Ma (CR13) 2024; 16
Liang, Ye, Cao, Mo, Cheng (CR16) 2022; 32
Zhao, Liu, Wang, Xiong, Yang (CR29) 2022; 16
Ning, Jiang, Ding, Zhu, Tan (CR15) 2021; 31
Eshete, Li, Yang, Wang, Zhang (CR31) 2023; 3
Wang, Zhu, Chang, Lu, Mi (CR37) 2020; 12
Li, Wu, Yang, Pan, Wang (CR24) 2023; 33
Cheng, Zhang, Wang, Huang, Raza (CR7) 2022; 32
Pan, Pei, Chen, Guo, Jiang (CR3) 2023; 33
Bai, Jiang, Zhang, Xiong (CR30) 2015; 44
Dong, Liu, Hu, Ma, Jiang (CR32) 2020; 65
Zeng, Jiang, Ning, Hu, Fan (CR35) 2023; 12
Zeng, Zhang, Yu, Stucky, Qiu (CR47) 2023; 11
Cole, Cole (CR58) 1941; 9
Pan, Ning, Li, Batalu, Guo (CR11) 2023; 33
He, Hu, Yan, Zhong, Zhang (CR12) 2024
Gao, Zhao, Li, Zhu, Hu (CR56) 2022; 32
Chen, Yue, Wang, Wu, Wang (CR27) 2023; 19
Jiang, Wang, Song, Lu, Xu (CR43) 2024
Hu, Zhang, Wang, Li, Wang (CR45) 2022; 11
Gao, Ma, Lan, Zhao, Zhang (CR48) 2022; 32
Xie, Ma, Xiong, Li, Jiang (CR57) 2024; 175
Y Dong (1449_CR19) 2021; 426
Y Hou (1449_CR6) 2022; 13
K Cole (1449_CR58) 1941; 9
X Jiang (1449_CR43) 2024
J Cheng (1449_CR7) 2022; 32
R Song (1449_CR4) 2023; 120
M Li (1449_CR25) 2023; 16
Z Gao (1449_CR59) 2024
X Wu (1449_CR18) 2021; 33
Q Xi (1449_CR44) 2023; 19
L Gai (1449_CR10) 2024; 16
J Liu (1449_CR50) 2021; 31
L Liang (1449_CR23) 2021; 15
B Li (1449_CR9) 2024
J Liang (1449_CR16) 2022; 32
Y Zhang (1449_CR22) 2023; 35
Z Tang (1449_CR20) 2023; 14
M He (1449_CR12) 2024
B Li (1449_CR24) 2023; 33
Y Jiao (1449_CR55) 2023; 33
M Saraf (1449_CR33) 2023; 34
T Zeng (1449_CR49) 2021; 14
X Zeng (1449_CR41) 2022; 193
F Hu (1449_CR45) 2022; 11
X Zeng (1449_CR47) 2023; 11
J Yan (1449_CR2) 2023; 35
J Cheng (1449_CR14) 2024; 16
Y Xia (1449_CR1) 2022; 32
J Liu (1449_CR46) 2022; 429
X Liu (1449_CR64) 2023; 17
Z Chen (1449_CR53) 2024; 221
F Pan (1449_CR11) 2023; 33
H Jiang (1449_CR5) 2023; 10
H Liang (1449_CR66) 2024
S Bai (1449_CR30) 2015; 44
B Anasori (1449_CR34) 2015; 9
J Liu (1449_CR40) 2022; 32
L Chen (1449_CR27) 2023; 19
A Xie (1449_CR57) 2024; 175
C Wei (1449_CR62) 2024; 175
M Eshete (1449_CR31) 2023; 3
J Choi (1449_CR28) 2020; 30
Y Dong (1449_CR32) 2020; 65
J Wen (1449_CR65) 2024; 3
S Hui (1449_CR67) 2024; 11
L Huang (1449_CR38) 2018; 8
A Xie (1449_CR54) 2023; 163
K Zhang (1449_CR13) 2024; 16
J Wang (1449_CR17) 2020; 30
Y Liu (1449_CR63) 2023; 33
M Ning (1449_CR15) 2021; 31
L Xing (1449_CR21) 2020; 379
Y Zhang (1449_CR26) 2023; 4
X Zeng (1449_CR51) 2023; 19
A Xie (1449_CR60) 2023; 651
F Pan (1449_CR3) 2023; 33
Y Liu (1449_CR8) 2022; 32
X Zhao (1449_CR29) 2022; 16
Z Li (1449_CR61) 2024; 20
T Gao (1449_CR56) 2022; 32
Y Sun (1449_CR36) 2014; 14
X Zeng (1449_CR35) 2023; 12
Y Liu (1449_CR42) 2018; 30
J Liu (1449_CR39) 2023; 4
Z Gao (1449_CR48) 2022; 32
X Wang (1449_CR37) 2020; 12
Q Tang (1449_CR52) 2012; 134
References_xml – volume: 11
  start-page: 14272
  issue: 26
  year: 2023
  end-page: 14283
  ident: CR47
  article-title: A phase and interface co-engineered MoP S @NiFeP S @NPS-C hierarchical heterostructure for sustainable oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA01993D
– volume: 651
  start-page: 1
  year: 2023
  end-page: 8
  ident: CR60
  article-title: Anion-substitution interfacial engineering to construct C@MoS hierarchical nanocomposites for broadband electromagnetic wave absorption
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2023.07.169
– volume: 33
  start-page: 2007129
  issue: 50
  year: 2021
  ident: CR18
  article-title: Metal sulfide photocatalysts for lignocellulose valorization
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007129
– volume: 32
  start-page: 2200544
  issue: 26
  year: 2022
  ident: CR40
  article-title: Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200544
– volume: 12
  start-page: 1562
  issue: 8
  year: 2023
  end-page: 1576
  ident: CR35
  article-title: Construction of dual heterogeneous interface between zigzag-like Mo–MXene nanofibers and small CoNi@NC nanoparticles for electromagnetic wave absorption
  publication-title: J. Adv. Ceram.
  doi: 10.26599/JAC.2023.9220772
– volume: 3
  issue: 3
  year: 2024
  ident: CR65
  article-title: Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers
  publication-title: Adv. Powder Mater.
  doi: 10.1016/j.apmate.2024.100180
– volume: 32
  start-page: 2201129
  issue: 24
  year: 2022
  ident: CR7
  article-title: Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202201129
– volume: 163
  start-page: 92
  year: 2023
  end-page: 100
  ident: CR54
  article-title: Enhancing electromagnetic absorption performance of Molybdate@Carbon by metal ion substitution
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2023.05.004
– year: 2024
  ident: CR12
  article-title: Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202316691
– volume: 16
  start-page: 7820
  issue: 5
  year: 2023
  end-page: 7828
  ident: CR25
  article-title: Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-5594-1
– volume: 14
  start-page: 2383
  issue: 11
  year: 2021
  end-page: 2392
  ident: CR49
  article-title: Nano Sn S embedded in nitrogenous-carbon compounds for long-life and high-rate cycling sodium-ion batteries
  publication-title: Chemsuschem
  doi: 10.1002/cssc.202100615
– volume: 3
  start-page: 2200041
  issue: 3
  year: 2023
  ident: CR31
  article-title: Charge steering in heterojunction photocatalysis: general principles, design, construction, and challenges
  publication-title: Small Sci.
  doi: 10.1002/smsc.202200041
– volume: 30
  start-page: 2002595
  issue: 45
  year: 2020
  ident: CR17
  article-title: Hierarchical carbon fiber@MXene@MoS core-sheath synergistic microstructure for tunable and efficient microwave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002595
– volume: 19
  start-page: 2206462
  issue: 15
  year: 2023
  ident: CR27
  article-title: Synergistically accelerating adsorption-electrocataysis of sulfur species via interfacial built-in electric field of SnS –MXene Mott–Schottky heterojunction in Li–S batteries
  publication-title: Small
  doi: 10.1002/smll.202206462
– volume: 31
  start-page: 2011229
  issue: 19
  year: 2021
  ident: CR15
  article-title: Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202011229
– volume: 16
  start-page: 19959
  issue: 12
  year: 2022
  end-page: 19979
  ident: CR29
  article-title: Designing a built-in electric field for efficient energy electrocatalysis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c09888
– volume: 16
  start-page: 167
  year: 2024
  ident: CR10
  article-title: Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-024-01369-6
– year: 2024
  ident: CR59
  article-title: Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202311411
– year: 2024
  ident: CR43
  article-title: Enhancing electromagnetic wave absorption with core-shell structured SiO @MXene@MoS nanospheres
  publication-title: Carbon Energy
  doi: 10.1002/cey2.502
– volume: 429
  year: 2022
  ident: CR46
  article-title: Self-assembled MoS /magnetic ferrite CuFe O nanocomposite for high-efficiency microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132253
– volume: 10
  start-page: 2301599
  issue: 21
  year: 2023
  ident: CR5
  article-title: Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202301599
– volume: 13
  start-page: 1227
  year: 2022
  ident: CR6
  article-title: Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28906-4
– volume: 34
  start-page: 2306815
  issue: 1
  year: 2023
  ident: CR33
  article-title: Enhancing charge storage of Mo Ti C MXene by partial oxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306815
– volume: 175
  start-page: 194
  year: 2024
  end-page: 203
  ident: CR62
  article-title: Hollow engineering of sandwich NC@Co/NC@MnO composites toward strong wideband electromagnetic wave attenuation
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2023.08.020
– volume: 19
  start-page: 2300717
  issue: 24
  year: 2023
  ident: CR44
  article-title: In situ formation ZnIn S /Mo TiC Schottky junction for accelerating photocatalytic hydrogen evolution kinetics: manipulation of local coordination and electronic structure
  publication-title: Small
  doi: 10.1002/smll.202300717
– volume: 9
  start-page: 341
  year: 1941
  end-page: 351
  ident: CR58
  article-title: Dispersion and absorption in dielectrics I. Alternating current characteristics
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750906
– volume: 32
  start-page: 2204499
  year: 2022
  ident: CR8
  article-title: Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204499
– volume: 14
  start-page: 5951
  year: 2023
  ident: CR20
  article-title: Synthesis of CuCo S @expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41697-6
– volume: 20
  start-page: 2305120
  issue: 11
  year: 2024
  ident: CR61
  article-title: A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption
  publication-title: Small
  doi: 10.1002/smll.202305120
– year: 2024
  ident: CR66
  article-title: Discovery of deactivation phenomenon in NiCo S /NiS electromagnetic wave absorbent and its reactivation mechanism
  publication-title: Small Methods
  doi: 10.1002/smtd.202301600
– volume: 11
  start-page: 1466
  issue: 9
  year: 2022
  end-page: 1478
  ident: CR45
  article-title: Ultrabroad band microwave absorption from hierarchical MoO /TiO /Mo TiC T hybrids via annealing treatment
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-022-0624-0
– volume: 30
  start-page: 1707334
  issue: 23
  year: 2018
  ident: CR42
  article-title: Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707334
– volume: 426
  year: 2021
  ident: CR19
  article-title: Fire-retardant and thermal insulating honeycomb-like NiS /SnS nanosheets@3D porous carbon hybrids for high-efficiency electromagnetic wave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131272
– volume: 19
  start-page: 2303393
  issue: 41
  year: 2023
  ident: CR51
  article-title: Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption
  publication-title: Small
  doi: 10.1002/smll.202303393
– volume: 134
  start-page: 16909
  issue: 40
  year: 2012
  end-page: 16916
  ident: CR52
  article-title: Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti C and Ti C X (X= F, OH) monolayer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308463r
– volume: 44
  start-page: 2893
  issue: 10
  year: 2015
  end-page: 2939
  ident: CR30
  article-title: Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00064E
– volume: 33
  start-page: 2213357
  issue: 11
  year: 2023
  ident: CR24
  article-title: Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213357
– volume: 30
  start-page: 2003998
  issue: 40
  year: 2020
  ident: CR28
  article-title: In situ formation of multiple schottky barriers in a Ti C MXene film and its application in highly sensitive gas sensors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003998
– volume: 8
  start-page: 1800734
  issue: 21
  year: 2018
  ident: CR38
  article-title: Self-limited on-site conversion of MoO nanodots into vertically aligned ultrasmall monolayer MoS for efficient hydrogen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800734
– volume: 15
  start-page: 6622
  issue: 4
  year: 2021
  end-page: 6632
  ident: CR23
  article-title: Multifunctional magnetic Ti C T MXene/graphene aerogel with superior electromagnetic wave absorption performance
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09982
– volume: 16
  start-page: 29
  year: 2024
  ident: CR14
  article-title: From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01247-7
– volume: 35
  start-page: 2300015
  year: 2023
  ident: CR2
  article-title: Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300015
– volume: 65
  start-page: 1470
  issue: 17
  year: 2020
  end-page: 1478
  ident: CR32
  article-title: Boosting reaction kinetics and reversibility in Mott–Schottky VS /MoS heterojunctions for enhanced lithium storage
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.05.007
– volume: 32
  start-page: 2200141
  year: 2022
  ident: CR16
  article-title: Defect-engineered graphene/Si N multilayer alternating core-shell nanowire membrane: a plainified hybrid for broadband electromagnetic wave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200141
– volume: 193
  start-page: 26
  year: 2022
  end-page: 34
  ident: CR41
  article-title: Construction of NiCo O nanosheets-covered Ti C T MXene heterostructure for remarkable electromagnetic microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.03.029
– volume: 120
  year: 2023
  ident: CR4
  article-title: Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2209807120
– volume: 4
  start-page: 2300224
  issue: 12
  year: 2023
  ident: CR26
  article-title: Recent advances of MXenes-based optical functional materials
  publication-title: Adv. Photonics Res.
  doi: 10.1002/adpr.202300224
– volume: 33
  start-page: 2211352
  issue: 5
  year: 2023
  ident: CR63
  article-title: Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211352
– volume: 11
  start-page: 2307649
  issue: 6
  year: 2024
  ident: CR67
  article-title: Constructing multiphase-induced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202307649
– volume: 32
  start-page: 2204370
  issue: 31
  year: 2022
  ident: CR56
  article-title: Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204370
– volume: 175
  start-page: 125
  year: 2024
  end-page: 131
  ident: CR57
  article-title: Conjugate ferrocene polymer derived magnetic Fe/C nanocomposites for electromagnetic absorption application
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2023.08.016
– volume: 33
  start-page: 2300374
  year: 2023
  ident: CR11
  article-title: Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202300374
– year: 2024
  ident: CR9
  article-title: Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202314653
– volume: 9
  start-page: 9507
  issue: 10
  year: 2015
  end-page: 9516
  ident: CR34
  article-title: Two-dimensional, ordered, double transition metals carbides (MXenes)
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03591
– volume: 12
  start-page: 11252
  issue: 9
  year: 2020
  end-page: 11264
  ident: CR37
  article-title: 3D nest-like architecture of core-shell CoFe O @1T/2H-MoS composites with tunable microwave absorption performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b23489
– volume: 33
  start-page: 2306599
  issue: 49
  year: 2023
  ident: CR3
  article-title: Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306599
– volume: 16
  start-page: 66
  year: 2024
  ident: CR13
  article-title: Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01280-6
– volume: 33
  year: 2023
  ident: CR55
  article-title: Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe-alloy/C 0D/2D nanocomposites
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2023.101058
– volume: 31
  start-page: 2105018
  issue: 45
  year: 2021
  ident: CR50
  article-title: A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105018
– volume: 32
  start-page: 2204591
  year: 2022
  ident: CR1
  article-title: A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204591
– volume: 32
  start-page: 2112294
  year: 2022
  ident: CR48
  article-title: Synergistic polarization loss of MoS -based multiphase solid solution for electromagnetic wave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202112294
– volume: 14
  start-page: 5329
  issue: 9
  year: 2014
  end-page: 5334
  ident: CR36
  article-title: Probing local strain at MX -metal boundaries with surface plasmon-enhanced Raman scattering
  publication-title: Nano Lett.
  doi: 10.1021/nl5023767
– volume: 17
  start-page: 8420
  issue: 9
  year: 2023
  end-page: 8432
  ident: CR64
  article-title: Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene based aerogels for consecutive multiband tunable electromagnetic wave absorption
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c00338
– volume: 4
  start-page: 2200379
  issue: 7
  year: 2023
  ident: CR39
  article-title: “Matryoshka Doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption
  publication-title: Small Struct.
  doi: 10.1002/sstr.202200379
– volume: 379
  year: 2020
  ident: CR21
  article-title: 3D hierarchical local heterojunction of MoS /FeS for enhanced microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122241
– volume: 35
  start-page: 2211642
  issue: 16
  year: 2023
  ident: CR22
  article-title: Controlled distributed Ti C T hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211642
– volume: 221
  year: 2024
  ident: CR53
  article-title: Improving electromagnetic wave absorption property of metal borides/carbon nanocomposites by magnetic-electric balance and ion substitution tuning strategy
  publication-title: Carbon
  doi: 10.1016/j.carbon.2024.118901
– volume: 8
  start-page: 1800734
  issue: 21
  year: 2018
  ident: 1449_CR38
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800734
– volume: 32
  start-page: 2201129
  issue: 24
  year: 2022
  ident: 1449_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202201129
– volume: 163
  start-page: 92
  year: 2023
  ident: 1449_CR54
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2023.05.004
– volume: 20
  start-page: 2305120
  issue: 11
  year: 2024
  ident: 1449_CR61
  publication-title: Small
  doi: 10.1002/smll.202305120
– volume: 33
  start-page: 2007129
  issue: 50
  year: 2021
  ident: 1449_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007129
– volume: 4
  start-page: 2200379
  issue: 7
  year: 2023
  ident: 1449_CR39
  publication-title: Small Struct.
  doi: 10.1002/sstr.202200379
– volume: 120
  year: 2023
  ident: 1449_CR4
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2209807120
– volume: 30
  start-page: 1707334
  issue: 23
  year: 2018
  ident: 1449_CR42
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707334
– volume: 14
  start-page: 2383
  issue: 11
  year: 2021
  ident: 1449_CR49
  publication-title: Chemsuschem
  doi: 10.1002/cssc.202100615
– volume: 11
  start-page: 1466
  issue: 9
  year: 2022
  ident: 1449_CR45
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-022-0624-0
– volume: 13
  start-page: 1227
  year: 2022
  ident: 1449_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28906-4
– volume: 16
  start-page: 167
  year: 2024
  ident: 1449_CR10
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-024-01369-6
– volume: 32
  start-page: 2200544
  issue: 26
  year: 2022
  ident: 1449_CR40
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200544
– volume: 12
  start-page: 1562
  issue: 8
  year: 2023
  ident: 1449_CR35
  publication-title: J. Adv. Ceram.
  doi: 10.26599/JAC.2023.9220772
– year: 2024
  ident: 1449_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202314653
– volume: 31
  start-page: 2105018
  issue: 45
  year: 2021
  ident: 1449_CR50
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105018
– volume: 175
  start-page: 125
  year: 2024
  ident: 1449_CR57
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2023.08.016
– volume: 34
  start-page: 2306815
  issue: 1
  year: 2023
  ident: 1449_CR33
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306815
– year: 2024
  ident: 1449_CR12
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202316691
– volume: 9
  start-page: 9507
  issue: 10
  year: 2015
  ident: 1449_CR34
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03591
– volume: 379
  year: 2020
  ident: 1449_CR21
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122241
– volume: 33
  start-page: 2213357
  issue: 11
  year: 2023
  ident: 1449_CR24
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213357
– volume: 33
  start-page: 2211352
  issue: 5
  year: 2023
  ident: 1449_CR63
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211352
– volume: 32
  start-page: 2204499
  year: 2022
  ident: 1449_CR8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204499
– year: 2024
  ident: 1449_CR66
  publication-title: Small Methods
  doi: 10.1002/smtd.202301600
– volume: 32
  start-page: 2204591
  year: 2022
  ident: 1449_CR1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204591
– volume: 19
  start-page: 2206462
  issue: 15
  year: 2023
  ident: 1449_CR27
  publication-title: Small
  doi: 10.1002/smll.202206462
– volume: 14
  start-page: 5329
  issue: 9
  year: 2014
  ident: 1449_CR36
  publication-title: Nano Lett.
  doi: 10.1021/nl5023767
– volume: 32
  start-page: 2204370
  issue: 31
  year: 2022
  ident: 1449_CR56
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204370
– volume: 15
  start-page: 6622
  issue: 4
  year: 2021
  ident: 1449_CR23
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09982
– volume: 175
  start-page: 194
  year: 2024
  ident: 1449_CR62
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2023.08.020
– volume: 35
  start-page: 2211642
  issue: 16
  year: 2023
  ident: 1449_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211642
– volume: 3
  start-page: 2200041
  issue: 3
  year: 2023
  ident: 1449_CR31
  publication-title: Small Sci.
  doi: 10.1002/smsc.202200041
– volume: 134
  start-page: 16909
  issue: 40
  year: 2012
  ident: 1449_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308463r
– volume: 429
  year: 2022
  ident: 1449_CR46
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132253
– volume: 32
  start-page: 2112294
  year: 2022
  ident: 1449_CR48
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202112294
– volume: 44
  start-page: 2893
  issue: 10
  year: 2015
  ident: 1449_CR30
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00064E
– volume: 31
  start-page: 2011229
  issue: 19
  year: 2021
  ident: 1449_CR15
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202011229
– volume: 30
  start-page: 2002595
  issue: 45
  year: 2020
  ident: 1449_CR17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002595
– volume: 65
  start-page: 1470
  issue: 17
  year: 2020
  ident: 1449_CR32
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.05.007
– volume: 12
  start-page: 11252
  issue: 9
  year: 2020
  ident: 1449_CR37
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b23489
– volume: 19
  start-page: 2303393
  issue: 41
  year: 2023
  ident: 1449_CR51
  publication-title: Small
  doi: 10.1002/smll.202303393
– volume: 651
  start-page: 1
  year: 2023
  ident: 1449_CR60
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2023.07.169
– volume: 30
  start-page: 2003998
  issue: 40
  year: 2020
  ident: 1449_CR28
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003998
– volume: 221
  year: 2024
  ident: 1449_CR53
  publication-title: Carbon
  doi: 10.1016/j.carbon.2024.118901
– volume: 11
  start-page: 2307649
  issue: 6
  year: 2024
  ident: 1449_CR67
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202307649
– volume: 33
  start-page: 2306599
  issue: 49
  year: 2023
  ident: 1449_CR3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306599
– volume: 32
  start-page: 2200141
  year: 2022
  ident: 1449_CR16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200141
– year: 2024
  ident: 1449_CR59
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202311411
– volume: 11
  start-page: 14272
  issue: 26
  year: 2023
  ident: 1449_CR47
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA01993D
– volume: 16
  start-page: 7820
  issue: 5
  year: 2023
  ident: 1449_CR25
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-5594-1
– volume: 19
  start-page: 2300717
  issue: 24
  year: 2023
  ident: 1449_CR44
  publication-title: Small
  doi: 10.1002/smll.202300717
– volume: 10
  start-page: 2301599
  issue: 21
  year: 2023
  ident: 1449_CR5
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202301599
– volume: 16
  start-page: 66
  year: 2024
  ident: 1449_CR13
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01280-6
– volume: 3
  issue: 3
  year: 2024
  ident: 1449_CR65
  publication-title: Adv. Powder Mater.
  doi: 10.1016/j.apmate.2024.100180
– year: 2024
  ident: 1449_CR43
  publication-title: Carbon Energy
  doi: 10.1002/cey2.502
– volume: 33
  start-page: 2300374
  year: 2023
  ident: 1449_CR11
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202300374
– volume: 35
  start-page: 2300015
  year: 2023
  ident: 1449_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300015
– volume: 17
  start-page: 8420
  issue: 9
  year: 2023
  ident: 1449_CR64
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c00338
– volume: 193
  start-page: 26
  year: 2022
  ident: 1449_CR41
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.03.029
– volume: 9
  start-page: 341
  year: 1941
  ident: 1449_CR58
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750906
– volume: 4
  start-page: 2300224
  issue: 12
  year: 2023
  ident: 1449_CR26
  publication-title: Adv. Photonics Res.
  doi: 10.1002/adpr.202300224
– volume: 16
  start-page: 29
  year: 2024
  ident: 1449_CR14
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01247-7
– volume: 16
  start-page: 19959
  issue: 12
  year: 2022
  ident: 1449_CR29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c09888
– volume: 33
  year: 2023
  ident: 1449_CR55
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2023.101058
– volume: 426
  year: 2021
  ident: 1449_CR19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131272
– volume: 14
  start-page: 5951
  year: 2023
  ident: 1449_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41697-6
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.6014144
Snippet Highlights Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed. Built-in electric field are constructed in...
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption...
HighlightsMo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed.Built-in electric field are constructed in...
Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed.Built-in electric field are constructed in...
Highlights Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed. Built-in electric field are constructed in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 213
SubjectTerms Absorption
Built-in electric field
Density functional theory
Dielectric polarization
Electric fields
Electrical junctions
Electromagnetic radiation
Electromagnetic wave absorption
Electron transfer
Engineering
Heterostructures
Impedance matching
Iron
Metal sulfides
Military technology
Mott–Schottky junctions
MXenes
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Radar cross sections
Semiconductor junctions
Semiconductor–semiconductor–metal heterostructure
Stealth technology
Thickness
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQigMc0PIOLMhI3MDaxo5j50jRVoC0K8SC1Fvk-LFEFAdt25W48R-48-P4Jcw46YvnhVubOLLl-eKZicffR8hjnwdpgsuZ5oazQlpYB0tdsUYZ7-Cf1r5IYhPq5ERPp9XrLakvrAnr6YH7iTtsnNBFAK8prClyM6q8K3PoWRlVOc4Drr4jVW0lU4AkrlCRabM_iLLKxRZLTYGcLmJDZCaRuExt-DElL8CvD462D6QVbmElpbo8Z6UalcMJnHQOD1WbRwzcHcMEpWJqx8slMYDfRbC_FmL-tBubnNxkn1wbolP6rJ-V6-SSjzfI1S3OwpvkG0p89qSz8YyOl-1swV5GepTkdFpLJ1gSN6f4fZeeYuV9F5FStjunr8CFJpRTEx1F-s_F4sPnrctj8KiOdpEed9-_fD2ewjJ82P_0kCLQ0-UstM7PKcTZQ3_dR3MW8RgmfdPX-vpb5N3k6O3zF2wQeWAWgqsFK7XlXBtIu3RwQXjjfamcdVJXHmt0ZO6hYShy7mXjnAkhNKaxTtgG7J8HcZvsxS76u4T6wttQSWEgyQTIcFPJpqykKyFK9F7yjOQro9R2YEBHIY5ZveZuToaswZB1MmStMvJk_cynnv_jr63HaOt1S-TuThcA0fWA6PpfiM7IwQop9bCgzGuBeSaEd0pk5NH6NiwFuL9jou-WfRv8oiFGGbnTA2s9EqF1CW6tyIjegdzOUHfvxPZ9ohuHx6BvLjPydIXOzbj-PBf3_sdc3CdXOL5WqX7ogOwBvP0DctleLNr5-cP0zv8A-eRVNw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZg4cAe-GcJLMhI3MCisePYOdLVVoC0K8SC1FvkxHapKA7qDxI33oE7D8eTMOOkaQsLEtzaZKJMp5OZcWb8fYQ8dqmXxtuUaW44y2QNcTDXBauUcRa-ae2ySDahTk_1eFy87jaFLdbT7uuWZIzU_WY3pEYeMMgpDFcBBVMXySWZ6gIH-Y42mONcIRvTpjeIlMrZFkJNhnguYgNiJhG0TG2wMSXPIKd3SbYtohW2ryJLXZqyXA3ybvfN-WrtZLhIBHBe9fr7EOYvndiY4EbX_s8018nVrqClz1sPvEEuuHCT7G_BHN4i35EVtMWpDRM6XE1nS_Yy0OPIwDOt6Qin6BYUXwnTMxzWbwKi0DZz-gqybnwwqAmWImLocvnhy9bhISRhS5tAT5ofX7-djCFyP2s_OlhV0LPVzE-tW1Aozbv7NR_NJODOTfqmHQ92t8m70fHboxes44VgNdRjS5brmnNtYKWmvfXCGedyZWsrdeFwrEemDgR9lnInK2uN974yVW1FXRWWp17cIXuhCe4uoS5ztS-kMLAuzbzgppBVXkibQ2HpnOQJSdf_ZVl3oOnI3TEre7jnaPsSbF9G25cqIU_6az61kCF_lR6ii_SSCPcdDzTzSdlFj7KyQoN64Ni1yVIzKJzNU3j8lFHwi7hPyOHawcouBi1KgUtTqAiVSMij_jRED2wJmeCaVSuDL0HEICEHrT_2mgitc8iEWUL0jqfuqLp7JkzfR4RyuAzuzWVCnq4ddqPXn21x79_E75MrHH0-Dhcdkj1wZPeAXK4_L6eL-cMYFH4C6gdXxw
  priority: 102
  providerName: Springer Nature
Title Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo–MXene/Mo–Metal Sulfides for Electromagnetic Response
URI https://link.springer.com/article/10.1007/s40820-024-01449-7
https://www.ncbi.nlm.nih.gov/pubmed/38861114
https://www.proquest.com/docview/3066607573
https://www.proquest.com/docview/3066788830
https://pubmed.ncbi.nlm.nih.gov/PMC11166625
https://doaj.org/article/bd384f3973ca41a09ed61ebe7a79d22f
Volume 16
WOSCitedRecordID wos001244000400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: C24
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLWYGRaw4P0IDJWR2EGYxoljZ4XoqBUD6qiaglTYRI4fpaIkQx9IbBD_wJ6P40u410nbKY_ZsLGaxFGc9Pjea_v6HEIe2chx5UwUSqZYmHANdjCVWVgIZQ0cSWkTLzYhjo_laJQNmgm3eZNWubKJ3lCbSuMc-UGMgTb4NxE_O_0UomoUrq42Eho7ZA9ZEiKfujdc4YkJ1GXarBKiuHJyhqsmQWaXeENnxpG-TGxYMjlLwLs37rYOpwUuZHm9uigKU9FOm304fjceaje3Q3B6IQ5TslBs-TovCfC3OPbPdMzf1mS9q-td_d-PdI1caYJc-rxG5XVywZY3yOUz1Ic3yQ9UCq25a8sx7Swn00V4VNKuV-WZaNrDzLo5xWliOsQE_qpEZtpqRl-CJ_adharSUGQRXSw-fDlzugOO2dCqpP3q57fv_RFY84P6p4WRBh0up25i7JxCuN48r_qoxiXu5qQndcqwvUXe9LqvD1-EjVZEqCFGW4Sp1IxJBaM36YyLrbI2FUYbLjOLqT48slDRJRGzvDBGOecKVWgT6yIzLHLxbbJbVqW9S6hNrHYZjxWMVRMXM5XxIs24SSHYtJazgESrfzXXDZE66nlM8zUFtEdCDkjIPRJyEZDH63tOaxqRc2t3ECzrmkgB7k9Us3HeWJS8MLGE5gHEtUoi1c6sSSPokkIJeCPmArK_wkje2KV5vgFIQB6uL4NFwWUiVdpqWdfBiZG4HZA7NTLXLYmlTME7JgGRW5jdaur2lXLy3rOWw23wbMYD8mQF7027_v0t7p3_GvfJJYY9zicY7ZNdAK59QC7qz4vJfNYiO2IkW2Sv0z0enMDRIUtaftYFyledpy1vLrD82oVywN9B3cFRf_D2F9vaa28
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtNAGB6VFAk4sC-GAoMEJ7Aaj7fxASECjRraRBEtUjiZ8SwhItglC6g33oE7j8BD8ST8_9jOwtJbD9xiexyP7e9fxvPP9xHyUHsmFEZ5LmeCuUEowQ9GPHGzWGgFW5zrwIpNxL0eHwyS_gb5Ua-FwbLK2idaR60Kid_It31MtCG-xf6zo08uqkbh7GotoVHCYk8ff4Eh2_Rp5yW830eMtXcOX-y6laqAKyGaz9yIS8a4gDyfG2V8LbSOYiVVyBONRSGhp6GhCTymw0wpYYzJRCaVL7NEMc_48L9nyGaAYG-QzX6n239bI5jFqAS1nJdEOedghR0nQC4Zf0mgFiJhWrzk5QxZAPlEFeDLBD7GqTOrkOd5bhQ3o2rlj13_h2rRTRfCrIsDo8SN16KrFSH4W-b8ZwHob7PANri2L_1vr-UyuVil8fR5aXdXyIbOr5ILK-SO18h31EIt2XnzIW3NR-OZ28npjtUdGknaxtrBKcUP4fQAlygUOXLvFhP6CnIN6w6oyBVFntTZ7MPxyu4WpB6KFjntFj-_fusOIF5tlz81jKXowXxsRkpPKQxIqusVH8Uwx_Wq9HVZFK2vkzen8oBukEZe5PoWoTrQ0iShL2A0HhifiSTMoiRUEaTTWofMIV6NolRWVPGoWDJOFyTXFnkpIC-1yEtjhzxenHNUEqWc2LqF4Fy0RJJzu6OYDNPKZ6aZ8jl0D0xKisATzUSryAOnE4sY7ogZh2zVmEwrzztNl4B0yIPFYfCZOBEmcl3Myzb46cdvOuRmaQmLnvicRxD_A4fwNRtZ6-r6kXz03vKyw2lwbRY65EltTst-_ftZ3D75Nu6Tc7uH3f10v9Pbu0POM7R2W061RRoAYn2XnJWfZ6Pp5F7ljCh5d9qG9gsHHsWq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZgQQgO_C4QWMBI3CBq48Sxc6TLViyw1YoFqbfIie1SUZxVmyJx4x2483A8CTNOmrawICFubTJRptPJ_GRmviHkiYksV1ZHoWSKhQkvwQ6mMgsLoYyGb1KaxC-bEKORHI-z440pft_tvipJNjMNiNLk6t6ptr1u8A3XJPdD8C8hZgRZKM6TC1iRQh3fX-OPM4GbmdZ1QlyvnGyg1SSI7RKvAc04ApiJNU4mZwn499bhNgG1wFKW31gXRWEq-mk7iXM2W1vezi8FOCuS_b0h85eqrHd2w2v_L6br5Gob6NLnjWbeIOeMu0mubMAf3iLfcVtog1_rJnSwnM7q8NDRA7-ZZ1rSIXbXLSi-KqYn2MRfOUSnreb0FXhj_8BQ5TRFJNG6_vhl4_AAnLOmlaNH1Y-v347GYNF7zUcD2QY9Wc7sVJsFhZC9vV_1SU0cTnTSt03bsNkl74cH7_Zfhu2-iLCEOK0OU1kyJhVkcNJqGxtlTCp0qbnMDLb78MgAoU0iZnihtbLWFqoodVwWmWaRjW-THVc5c5dQk5jSZjxWkK8mNmYq40WacZ1CwGkMZwGJVv9rXrZg6rjTY5Z3MNBe9jnIPveyz0VAnnbXnDZQIn-lHqC6dJQIA-4PVPNJ3lqVvNCxBPZAyUuVRKqfGZ1G8FgKJeAXMRuQvZWy5a1tWuQxpqwQKYo4II-702BVsFSknKmWDQ2-HIn7AbnT6GbHSSxlCh4yCYjc0totVrfPuOkHj1wOl8G9GQ_Is5Xyrvn6syzu_Rv5I3Lp-MUwf3M4en2fXGao_r7_aI_sgE6bB-Ri-bmeLuYPva34CenpY5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Built-In+Electric+Fields+with+Semiconductor+Junctions+and+Schottky+Junctions+Based+on+Mo%E2%80%93MXene%2FMo%E2%80%93Metal+Sulfides+for+Electromagnetic+Response&rft.jtitle=Nano-micro+letters&rft.au=Zeng%2C+Xiaojun&rft.au=Jiang%2C+Xiao&rft.au=Ning%2C+Ya&rft.au=Gao%2C+Yanfeng&rft.date=2024-12-01&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-024-01449-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40820_024_01449_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon