Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo–MXene/Mo–Metal Sulfides for Electromagnetic Response
Highlights Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed. Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching. Density functional theory calculations...
Saved in:
| Published in: | Nano-micro letters Vol. 16; no. 1; pp. 213 - 21 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Singapore
Springer Nature Singapore
01.12.2024
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 2311-6706, 2150-5551, 2150-5551 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Highlights
Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed.
Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching.
Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures.
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS
2
, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities. |
|---|---|
| AbstractList | The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor-semiconductor-metal heterostructure system, Mo-MXene/Mo-metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott-Schottky junctions. By skillfully combining these distinct functional components (Mo-MXene, MoS2, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces. The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide, which achieved remarkable reflection loss values of - 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor-semiconductor-metal heterostructure system, Mo-MXene/Mo-metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott-Schottky junctions. By skillfully combining these distinct functional components (Mo-MXene, MoS2, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces. The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide, which achieved remarkable reflection loss values of - 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities. The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS 2 , metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities. Highlights Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed. Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching. Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures. The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS 2 , metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities. HighlightsMo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed.Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching.Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures.The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS2, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities. Highlights Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed. Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching. Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures. The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor-semiconductor-metal heterostructure system, Mo-MXene/Mo-metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott-Schottky junctions. By skillfully combining these distinct functional components (Mo-MXene, MoS , metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces. The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide, which achieved remarkable reflection loss values of - 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities. Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed.Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching.Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures. The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS2, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities. |
| ArticleNumber | 213 |
| Author | Zeng, Xiaojun Jiang, Xiao Gao, Yanfeng Che, Renchao Ning, Ya |
| Author_xml | – sequence: 1 givenname: Xiaojun surname: Zeng fullname: Zeng, Xiaojun email: zengxiaojun@jcu.edu.cn organization: School of Materials Science and Engineering, Jingdezhen Ceramic University – sequence: 2 givenname: Xiao surname: Jiang fullname: Jiang, Xiao organization: School of Materials Science and Engineering, Jingdezhen Ceramic University – sequence: 3 givenname: Ya surname: Ning fullname: Ning, Ya organization: School of Materials Science and Engineering, Jingdezhen Ceramic University – sequence: 4 givenname: Yanfeng surname: Gao fullname: Gao, Yanfeng organization: School of Materials Science and Engineering, Jingdezhen Ceramic University, School of Materials Science and Engineering, Shanghai University – sequence: 5 givenname: Renchao surname: Che fullname: Che, Renchao email: rcche@fudan.edu.cn organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Zhejiang Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38861114$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks9uFCEcxyemxtbaF_BgJvHiZSx_ZoA5GbtpdU0bE1cTb4SB3-xSZ2ELjKY338G7D-eTSHdabXvoCQLf74cv8H1a7DjvoCieY_QaI8QPY40EQRUidYVwXbcVf1TsEdygqmkavJPnFOOKccR2i4MYbYcaUnPCm_pJsUuFYBjjeq_4PfMupjDqZN2yPBrtkKq5K48H0ClYXZ5YGEwsf9i0Khewtto7k8U-lB9Gl03ZXSpnyoVe-ZS-Xd5aPlIRTOldeeb__Px19hUcHE5TSGooF-PQWwOx7DNsOs-v1dJBysd-grjJDHhWPO7VEOHgetwvvpwcf569r04_vpvP3p5WmmGSKiY0IUK1LRO96SkoAMaNNo1oId8bNRiysK8xgaYzRvV936lOG6q71hDc0_1iPnGNV-dyE-xahUvplZXbBR-WUoUcbADZGSrqnracalVjhVowDEMHXPHMIlesNxNrM3ZrMBpcCmq4A7274-xKLv13mX-EMUaaTHh1TQj-YoSY5NpGDcOgHPgxSooY40IIirL05T3puR-Dy2-1VTHEG06z6sXtSP-y3PQgC8Qk0MHHGKCX2iZ19Y85oR0kRvKqdXJqncytk9vWSZ6t5J71hv6giU6mmMVuCeF_7AdcfwH-DO_d |
| CitedBy_id | crossref_primary_10_1007_s12598_025_03548_9 crossref_primary_10_1016_j_jmst_2025_03_038 crossref_primary_10_1002_cnl2_169 crossref_primary_10_1016_j_diamond_2024_111350 crossref_primary_10_1039_D5NR01800E crossref_primary_10_1002_adfm_202502671 crossref_primary_10_1016_j_jmst_2025_03_033 crossref_primary_10_1002_adfm_202513762 crossref_primary_10_1016_j_jmst_2025_04_041 crossref_primary_10_1155_nax2_7361645 crossref_primary_10_26599_NR_2025_94907783 crossref_primary_10_1016_j_colsurfa_2025_136683 crossref_primary_10_1016_j_mtnano_2025_100620 crossref_primary_10_1016_j_mtnano_2025_100584 crossref_primary_10_1088_2516_1075_ad85ba crossref_primary_10_1016_j_cej_2025_163011 crossref_primary_10_1002_adfm_202502480 crossref_primary_10_1002_adma_202412845 crossref_primary_10_1002_adfm_202510047 crossref_primary_10_1016_j_apmate_2025_100344 crossref_primary_10_1016_j_jallcom_2025_180347 crossref_primary_10_1016_j_carbon_2024_119973 crossref_primary_10_1016_j_carbon_2024_119737 crossref_primary_10_1016_j_cej_2024_157121 crossref_primary_10_1002_smll_202500918 crossref_primary_10_1016_j_ceramint_2024_09_264 crossref_primary_10_1016_j_cej_2024_157444 crossref_primary_10_1016_j_mtnano_2025_100653 crossref_primary_10_1002_adma_202506386 crossref_primary_10_1002_adfm_202414838 crossref_primary_10_1016_j_jallcom_2024_176300 crossref_primary_10_1039_D5TC01018G crossref_primary_10_1007_s42765_024_00501_w crossref_primary_10_1002_smll_202504484 crossref_primary_10_1016_j_mtnano_2025_100614 crossref_primary_10_26599_JAC_2024_9220944 crossref_primary_10_1016_j_carbon_2024_119422 crossref_primary_10_1016_j_carbon_2024_119741 crossref_primary_10_1016_j_jmst_2024_06_026 crossref_primary_10_1021_acssuschemeng_5c07668 crossref_primary_10_1016_j_cej_2024_158520 crossref_primary_10_1016_j_jmat_2024_100927 crossref_primary_10_1039_D5TA01988E crossref_primary_10_1016_j_carbon_2025_120690 crossref_primary_10_1039_D5TA01547B crossref_primary_10_1002_smll_202411743 crossref_primary_10_1039_D5MH00667H crossref_primary_10_1016_j_jelechem_2025_119430 crossref_primary_10_1016_j_jmst_2024_09_049 crossref_primary_10_1016_j_mtnano_2024_100560 crossref_primary_10_1007_s40820_025_01687_3 crossref_primary_10_1016_j_carbon_2024_119792 crossref_primary_10_1016_j_mtnano_2024_100529 crossref_primary_10_1016_j_jmst_2025_09_001 crossref_primary_10_1016_j_mtnano_2025_100603 crossref_primary_10_1016_j_pnsc_2024_09_001 crossref_primary_10_26599_JAC_2024_9220977 crossref_primary_10_1016_j_jmst_2024_08_004 crossref_primary_10_1016_j_nantod_2025_102770 crossref_primary_10_1016_j_jallcom_2025_181893 crossref_primary_10_1016_j_mtnano_2025_100591 crossref_primary_10_1016_j_cej_2024_158873 crossref_primary_10_1007_s40820_024_01494_2 crossref_primary_10_1007_s40820_024_01527_w crossref_primary_10_1002_adfm_202516772 crossref_primary_10_1007_s40820_024_01540_z crossref_primary_10_1016_j_jmst_2024_12_043 crossref_primary_10_1021_acssuschemeng_5c05919 crossref_primary_10_1002_adfm_202413884 crossref_primary_10_1039_D4MH00793J crossref_primary_10_1016_j_mtnano_2024_100538 crossref_primary_10_1016_j_mtnano_2024_100539 crossref_primary_10_1016_j_mtener_2025_101835 crossref_primary_10_26599_NR_2025_94907512 crossref_primary_10_1007_s10853_024_10482_1 crossref_primary_10_1016_j_carbon_2025_120723 |
| Cites_doi | 10.1039/D3TA01993D 10.1016/j.jcis.2023.07.169 10.1002/adma.202007129 10.1002/adfm.202200544 10.26599/JAC.2023.9220772 10.1016/j.apmate.2024.100180 10.1002/adfm.202201129 10.1016/j.jmst.2023.05.004 10.1002/adfm.202316691 10.1007/s12274-023-5594-1 10.1002/cssc.202100615 10.1002/smsc.202200041 10.1002/adfm.202002595 10.1002/smll.202206462 10.1002/adfm.202011229 10.1021/acsnano.2c09888 10.1007/s40820-024-01369-6 10.1002/adma.202311411 10.1002/cey2.502 10.1016/j.cej.2021.132253 10.1002/advs.202301599 10.1038/s41467-022-28906-4 10.1002/adfm.202306815 10.1016/j.jmst.2023.08.020 10.1002/smll.202300717 10.1063/1.1750906 10.1002/adfm.202204499 10.1038/s41467-023-41697-6 10.1002/smll.202305120 10.1002/smtd.202301600 10.1007/s40145-022-0624-0 10.1002/adma.201707334 10.1016/j.cej.2021.131272 10.1002/smll.202303393 10.1021/ja308463r 10.1039/C5CS00064E 10.1002/adfm.202213357 10.1002/adfm.202003998 10.1002/aenm.201800734 10.1021/acsnano.0c09982 10.1007/s40820-023-01247-7 10.1002/adma.202300015 10.1016/j.scib.2020.05.007 10.1002/adfm.202200141 10.1016/j.carbon.2022.03.029 10.1073/pnas.2209807120 10.1002/adpr.202300224 10.1002/adfm.202211352 10.1002/advs.202307649 10.1002/adfm.202204370 10.1016/j.jmst.2023.08.016 10.1002/adfm.202300374 10.1002/adfm.202314653 10.1021/acsnano.5b03591 10.1021/acsami.9b23489 10.1002/adfm.202306599 10.1007/s40820-023-01280-6 10.1016/j.mtphys.2023.101058 10.1002/adfm.202105018 10.1002/adfm.202204591 10.1002/adfm.202112294 10.1021/nl5023767 10.1021/acsnano.3c00338 10.1002/sstr.202200379 10.1016/j.cej.2019.122241 10.1002/adma.202211642 10.1016/j.carbon.2024.118901 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.1007/s40820-024-01449-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2150-5551 |
| EndPage | 21 |
| ExternalDocumentID | oai_doaj_org_article_bd384f3973ca41a09ed61ebe7a79d22f PMC11166625 38861114 10_1007_s40820_024_01449_7 |
| Genre | Journal Article |
| GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c612t-68c228a9968fdf3eaee67dcd589e052051ec61f412e5bddafffbabcd3cb9d21f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001244000400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2311-6706 2150-5551 |
| IngestDate | Fri Oct 03 12:43:45 EDT 2025 Tue Nov 04 02:05:38 EST 2025 Tue Oct 21 12:58:15 EDT 2025 Sat Oct 18 23:08:17 EDT 2025 Mon Jul 21 05:58:44 EDT 2025 Sat Nov 29 02:07:30 EST 2025 Tue Nov 18 22:32:06 EST 2025 Fri Feb 21 02:37:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Semiconductor–semiconductor–metal heterostructure Electromagnetic wave absorption Built-in electric field Mott–Schottky junctions Semiconductor junctions |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c612t-68c228a9968fdf3eaee67dcd589e052051ec61f412e5bddafffbabcd3cb9d21f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/bd384f3973ca41a09ed61ebe7a79d22f |
| PMID | 38861114 |
| PQID | 3066607573 |
| PQPubID | 2044332 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bd384f3973ca41a09ed61ebe7a79d22f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11166625 proquest_miscellaneous_3066788830 proquest_journals_3066607573 pubmed_primary_38861114 crossref_citationtrail_10_1007_s40820_024_01449_7 crossref_primary_10_1007_s40820_024_01449_7 springer_journals_10_1007_s40820_024_01449_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
| PublicationTitle | Nano-micro letters |
| PublicationTitleAbbrev | Nano-Micro Lett |
| PublicationTitleAlternate | Nanomicro Lett |
| PublicationYear | 2024 |
| Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
| References | Liu, Wei, He, Yao, Tan (CR63) 2023; 33 Liu, Liang, Wei, Yun, Zhang (CR39) 2023; 4 Xie, Guo, Wu, Dong (CR60) 2023; 651 Cheng, Jin, Zhao, Jing, Gu (CR14) 2024; 16 Li, Zhang, Wu (CR61) 2024; 20 Xing, Li, Wu, Yu, Liu (CR21) 2020; 379 Li, Sun, Feng, Ruan, Liu (CR25) 2023; 16 Liang, Hui, Chen, Shen, Yun (CR66) 2024 Xia, Gao, Gao (CR1) 2022; 32 Liu, Zhou, Jia, Wu, Wu (CR8) 2022; 32 Choi, Kim, Cho, Park, Kang (CR28) 2020; 30 Dong, Zhu, Pan, Xiang, Zhang (CR19) 2021; 426 Liang, Li, Yan, Feng, Wang (CR23) 2021; 15 Hou, Sheng, Fu, Kong, Zhang (CR6) 2022; 13 Wu, Xie, Zhang, Zhang, Sels (CR18) 2021; 33 Sun, Liu, Hong, Chen, Kim (CR36) 2014; 14 Liu, Zhang, Zang, Wu (CR50) 2021; 31 Tang, Zhou, Shen (CR52) 2012; 134 Zhang, Ruan, Zhou, Gu (CR22) 2023; 35 Hui, Zhou, Zhang, Wu (CR67) 2024; 11 Gao, Iqbal, Hassan, Hui, Wu (CR59) 2024 Zeng, Chen, Peng, Feng, Wang (CR49) 2021; 14 Xie, Sheng, Liu, Chen, Cheng (CR54) 2023; 163 Zhang, Ruan, Guo, Gu (CR26) 2023; 4 Wei, Shi, Li, He, Li (CR62) 2024; 175 Liu, Jia, Zhou, Liu, Zhang (CR46) 2022; 429 Liu, Zhang, Wu (CR40) 2022; 32 Liu, Zhang, Sun, Anasori, Zhu (CR42) 2018; 30 Anasori, Xie, Beidaghi, Lu, Hosler (CR34) 2015; 9 Zeng, Zhao, Jiang, Yu, Che (CR51) 2023; 19 Chen, Zhang, Ni, Sheng, Gao (CR53) 2024; 221 Jiao, Dai, Feng, Luo, Xu (CR55) 2023; 33 Song, Mao, Wang, Hui, Zhang (CR4) 2023; 120 Jiang, Cai, Pan, Shi, Cheng (CR5) 2023; 10 Huang, Zhao, Zhang, Chen, Zhang (CR38) 2018; 8 Zeng, Zhao, Yin, Nie, Xie (CR41) 2022; 193 Li, Tian, Li, Liu, Liu (CR9) 2024 Yan, Zheng, Wang, Tian, Gong (CR2) 2023; 35 Wang, Liu, Jiao, Ma, Lv (CR17) 2020; 30 Liu, Ma, Qiu, Yang, Wang (CR64) 2023; 17 Tang, Xu, Xie, Guo, Zhang (CR20) 2023; 14 Saraf, Chacon, Ippolito, Lord, Anayee (CR33) 2023; 34 Gai, Wang, Wan, Yu, Chen (CR10) 2024; 16 Xi, Xie, Liu, Zhang, Wang (CR44) 2023; 19 Wen, Chen, Hui, Li, Yun (CR65) 2024; 3 Zhang, Liu, Liu, Yan, Ma (CR13) 2024; 16 Liang, Ye, Cao, Mo, Cheng (CR16) 2022; 32 Zhao, Liu, Wang, Xiong, Yang (CR29) 2022; 16 Ning, Jiang, Ding, Zhu, Tan (CR15) 2021; 31 Eshete, Li, Yang, Wang, Zhang (CR31) 2023; 3 Wang, Zhu, Chang, Lu, Mi (CR37) 2020; 12 Li, Wu, Yang, Pan, Wang (CR24) 2023; 33 Cheng, Zhang, Wang, Huang, Raza (CR7) 2022; 32 Pan, Pei, Chen, Guo, Jiang (CR3) 2023; 33 Bai, Jiang, Zhang, Xiong (CR30) 2015; 44 Dong, Liu, Hu, Ma, Jiang (CR32) 2020; 65 Zeng, Jiang, Ning, Hu, Fan (CR35) 2023; 12 Zeng, Zhang, Yu, Stucky, Qiu (CR47) 2023; 11 Cole, Cole (CR58) 1941; 9 Pan, Ning, Li, Batalu, Guo (CR11) 2023; 33 He, Hu, Yan, Zhong, Zhang (CR12) 2024 Gao, Zhao, Li, Zhu, Hu (CR56) 2022; 32 Chen, Yue, Wang, Wu, Wang (CR27) 2023; 19 Jiang, Wang, Song, Lu, Xu (CR43) 2024 Hu, Zhang, Wang, Li, Wang (CR45) 2022; 11 Gao, Ma, Lan, Zhao, Zhang (CR48) 2022; 32 Xie, Ma, Xiong, Li, Jiang (CR57) 2024; 175 Y Dong (1449_CR19) 2021; 426 Y Hou (1449_CR6) 2022; 13 K Cole (1449_CR58) 1941; 9 X Jiang (1449_CR43) 2024 J Cheng (1449_CR7) 2022; 32 R Song (1449_CR4) 2023; 120 M Li (1449_CR25) 2023; 16 Z Gao (1449_CR59) 2024 X Wu (1449_CR18) 2021; 33 Q Xi (1449_CR44) 2023; 19 L Gai (1449_CR10) 2024; 16 J Liu (1449_CR50) 2021; 31 L Liang (1449_CR23) 2021; 15 B Li (1449_CR9) 2024 J Liang (1449_CR16) 2022; 32 Y Zhang (1449_CR22) 2023; 35 Z Tang (1449_CR20) 2023; 14 M He (1449_CR12) 2024 B Li (1449_CR24) 2023; 33 Y Jiao (1449_CR55) 2023; 33 M Saraf (1449_CR33) 2023; 34 T Zeng (1449_CR49) 2021; 14 X Zeng (1449_CR41) 2022; 193 F Hu (1449_CR45) 2022; 11 X Zeng (1449_CR47) 2023; 11 J Yan (1449_CR2) 2023; 35 J Cheng (1449_CR14) 2024; 16 Y Xia (1449_CR1) 2022; 32 J Liu (1449_CR46) 2022; 429 X Liu (1449_CR64) 2023; 17 Z Chen (1449_CR53) 2024; 221 F Pan (1449_CR11) 2023; 33 H Jiang (1449_CR5) 2023; 10 H Liang (1449_CR66) 2024 S Bai (1449_CR30) 2015; 44 B Anasori (1449_CR34) 2015; 9 J Liu (1449_CR40) 2022; 32 L Chen (1449_CR27) 2023; 19 A Xie (1449_CR57) 2024; 175 C Wei (1449_CR62) 2024; 175 M Eshete (1449_CR31) 2023; 3 J Choi (1449_CR28) 2020; 30 Y Dong (1449_CR32) 2020; 65 J Wen (1449_CR65) 2024; 3 S Hui (1449_CR67) 2024; 11 L Huang (1449_CR38) 2018; 8 A Xie (1449_CR54) 2023; 163 K Zhang (1449_CR13) 2024; 16 J Wang (1449_CR17) 2020; 30 Y Liu (1449_CR63) 2023; 33 M Ning (1449_CR15) 2021; 31 L Xing (1449_CR21) 2020; 379 Y Zhang (1449_CR26) 2023; 4 X Zeng (1449_CR51) 2023; 19 A Xie (1449_CR60) 2023; 651 F Pan (1449_CR3) 2023; 33 Y Liu (1449_CR8) 2022; 32 X Zhao (1449_CR29) 2022; 16 Z Li (1449_CR61) 2024; 20 T Gao (1449_CR56) 2022; 32 Y Sun (1449_CR36) 2014; 14 X Zeng (1449_CR35) 2023; 12 Y Liu (1449_CR42) 2018; 30 J Liu (1449_CR39) 2023; 4 Z Gao (1449_CR48) 2022; 32 X Wang (1449_CR37) 2020; 12 Q Tang (1449_CR52) 2012; 134 |
| References_xml | – volume: 11 start-page: 14272 issue: 26 year: 2023 end-page: 14283 ident: CR47 article-title: A phase and interface co-engineered MoP S @NiFeP S @NPS-C hierarchical heterostructure for sustainable oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/D3TA01993D – volume: 651 start-page: 1 year: 2023 end-page: 8 ident: CR60 article-title: Anion-substitution interfacial engineering to construct C@MoS hierarchical nanocomposites for broadband electromagnetic wave absorption publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2023.07.169 – volume: 33 start-page: 2007129 issue: 50 year: 2021 ident: CR18 article-title: Metal sulfide photocatalysts for lignocellulose valorization publication-title: Adv. Mater. doi: 10.1002/adma.202007129 – volume: 32 start-page: 2200544 issue: 26 year: 2022 ident: CR40 article-title: Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200544 – volume: 12 start-page: 1562 issue: 8 year: 2023 end-page: 1576 ident: CR35 article-title: Construction of dual heterogeneous interface between zigzag-like Mo–MXene nanofibers and small CoNi@NC nanoparticles for electromagnetic wave absorption publication-title: J. Adv. Ceram. doi: 10.26599/JAC.2023.9220772 – volume: 3 issue: 3 year: 2024 ident: CR65 article-title: Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers publication-title: Adv. Powder Mater. doi: 10.1016/j.apmate.2024.100180 – volume: 32 start-page: 2201129 issue: 24 year: 2022 ident: CR7 article-title: Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202201129 – volume: 163 start-page: 92 year: 2023 end-page: 100 ident: CR54 article-title: Enhancing electromagnetic absorption performance of Molybdate@Carbon by metal ion substitution publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2023.05.004 – year: 2024 ident: CR12 article-title: Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202316691 – volume: 16 start-page: 7820 issue: 5 year: 2023 end-page: 7828 ident: CR25 article-title: Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers publication-title: Nano Res. doi: 10.1007/s12274-023-5594-1 – volume: 14 start-page: 2383 issue: 11 year: 2021 end-page: 2392 ident: CR49 article-title: Nano Sn S embedded in nitrogenous-carbon compounds for long-life and high-rate cycling sodium-ion batteries publication-title: Chemsuschem doi: 10.1002/cssc.202100615 – volume: 3 start-page: 2200041 issue: 3 year: 2023 ident: CR31 article-title: Charge steering in heterojunction photocatalysis: general principles, design, construction, and challenges publication-title: Small Sci. doi: 10.1002/smsc.202200041 – volume: 30 start-page: 2002595 issue: 45 year: 2020 ident: CR17 article-title: Hierarchical carbon fiber@MXene@MoS core-sheath synergistic microstructure for tunable and efficient microwave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002595 – volume: 19 start-page: 2206462 issue: 15 year: 2023 ident: CR27 article-title: Synergistically accelerating adsorption-electrocataysis of sulfur species via interfacial built-in electric field of SnS –MXene Mott–Schottky heterojunction in Li–S batteries publication-title: Small doi: 10.1002/smll.202206462 – volume: 31 start-page: 2011229 issue: 19 year: 2021 ident: CR15 article-title: Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202011229 – volume: 16 start-page: 19959 issue: 12 year: 2022 end-page: 19979 ident: CR29 article-title: Designing a built-in electric field for efficient energy electrocatalysis publication-title: ACS Nano doi: 10.1021/acsnano.2c09888 – volume: 16 start-page: 167 year: 2024 ident: CR10 article-title: Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance publication-title: Nano-Micro Lett. doi: 10.1007/s40820-024-01369-6 – year: 2024 ident: CR59 article-title: Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption publication-title: Adv. Mater. doi: 10.1002/adma.202311411 – year: 2024 ident: CR43 article-title: Enhancing electromagnetic wave absorption with core-shell structured SiO @MXene@MoS nanospheres publication-title: Carbon Energy doi: 10.1002/cey2.502 – volume: 429 year: 2022 ident: CR46 article-title: Self-assembled MoS /magnetic ferrite CuFe O nanocomposite for high-efficiency microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132253 – volume: 10 start-page: 2301599 issue: 21 year: 2023 ident: CR5 article-title: Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement publication-title: Adv. Sci. doi: 10.1002/advs.202301599 – volume: 13 start-page: 1227 year: 2022 ident: CR6 article-title: Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption publication-title: Nat. Commun. doi: 10.1038/s41467-022-28906-4 – volume: 34 start-page: 2306815 issue: 1 year: 2023 ident: CR33 article-title: Enhancing charge storage of Mo Ti C MXene by partial oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306815 – volume: 175 start-page: 194 year: 2024 end-page: 203 ident: CR62 article-title: Hollow engineering of sandwich NC@Co/NC@MnO composites toward strong wideband electromagnetic wave attenuation publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2023.08.020 – volume: 19 start-page: 2300717 issue: 24 year: 2023 ident: CR44 article-title: In situ formation ZnIn S /Mo TiC Schottky junction for accelerating photocatalytic hydrogen evolution kinetics: manipulation of local coordination and electronic structure publication-title: Small doi: 10.1002/smll.202300717 – volume: 9 start-page: 341 year: 1941 end-page: 351 ident: CR58 article-title: Dispersion and absorption in dielectrics I. Alternating current characteristics publication-title: J. Chem. Phys. doi: 10.1063/1.1750906 – volume: 32 start-page: 2204499 year: 2022 ident: CR8 article-title: Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204499 – volume: 14 start-page: 5951 year: 2023 ident: CR20 article-title: Synthesis of CuCo S @expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption publication-title: Nat. Commun. doi: 10.1038/s41467-023-41697-6 – volume: 20 start-page: 2305120 issue: 11 year: 2024 ident: CR61 article-title: A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption publication-title: Small doi: 10.1002/smll.202305120 – year: 2024 ident: CR66 article-title: Discovery of deactivation phenomenon in NiCo S /NiS electromagnetic wave absorbent and its reactivation mechanism publication-title: Small Methods doi: 10.1002/smtd.202301600 – volume: 11 start-page: 1466 issue: 9 year: 2022 end-page: 1478 ident: CR45 article-title: Ultrabroad band microwave absorption from hierarchical MoO /TiO /Mo TiC T hybrids via annealing treatment publication-title: J. Adv. Ceram. doi: 10.1007/s40145-022-0624-0 – volume: 30 start-page: 1707334 issue: 23 year: 2018 ident: CR42 article-title: Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage publication-title: Adv. Mater. doi: 10.1002/adma.201707334 – volume: 426 year: 2021 ident: CR19 article-title: Fire-retardant and thermal insulating honeycomb-like NiS /SnS nanosheets@3D porous carbon hybrids for high-efficiency electromagnetic wave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131272 – volume: 19 start-page: 2303393 issue: 41 year: 2023 ident: CR51 article-title: Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption publication-title: Small doi: 10.1002/smll.202303393 – volume: 134 start-page: 16909 issue: 40 year: 2012 end-page: 16916 ident: CR52 article-title: Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti C and Ti C X (X= F, OH) monolayer publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308463r – volume: 44 start-page: 2893 issue: 10 year: 2015 end-page: 2939 ident: CR30 article-title: Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00064E – volume: 33 start-page: 2213357 issue: 11 year: 2023 ident: CR24 article-title: Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202213357 – volume: 30 start-page: 2003998 issue: 40 year: 2020 ident: CR28 article-title: In situ formation of multiple schottky barriers in a Ti C MXene film and its application in highly sensitive gas sensors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003998 – volume: 8 start-page: 1800734 issue: 21 year: 2018 ident: CR38 article-title: Self-limited on-site conversion of MoO nanodots into vertically aligned ultrasmall monolayer MoS for efficient hydrogen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800734 – volume: 15 start-page: 6622 issue: 4 year: 2021 end-page: 6632 ident: CR23 article-title: Multifunctional magnetic Ti C T MXene/graphene aerogel with superior electromagnetic wave absorption performance publication-title: ACS Nano doi: 10.1021/acsnano.0c09982 – volume: 16 start-page: 29 year: 2024 ident: CR14 article-title: From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01247-7 – volume: 35 start-page: 2300015 year: 2023 ident: CR2 article-title: Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices publication-title: Adv. Mater. doi: 10.1002/adma.202300015 – volume: 65 start-page: 1470 issue: 17 year: 2020 end-page: 1478 ident: CR32 article-title: Boosting reaction kinetics and reversibility in Mott–Schottky VS /MoS heterojunctions for enhanced lithium storage publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.05.007 – volume: 32 start-page: 2200141 year: 2022 ident: CR16 article-title: Defect-engineered graphene/Si N multilayer alternating core-shell nanowire membrane: a plainified hybrid for broadband electromagnetic wave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200141 – volume: 193 start-page: 26 year: 2022 end-page: 34 ident: CR41 article-title: Construction of NiCo O nanosheets-covered Ti C T MXene heterostructure for remarkable electromagnetic microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2022.03.029 – volume: 120 year: 2023 ident: CR4 article-title: Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2209807120 – volume: 4 start-page: 2300224 issue: 12 year: 2023 ident: CR26 article-title: Recent advances of MXenes-based optical functional materials publication-title: Adv. Photonics Res. doi: 10.1002/adpr.202300224 – volume: 33 start-page: 2211352 issue: 5 year: 2023 ident: CR63 article-title: Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211352 – volume: 11 start-page: 2307649 issue: 6 year: 2024 ident: CR67 article-title: Constructing multiphase-induced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers publication-title: Adv. Sci. doi: 10.1002/advs.202307649 – volume: 32 start-page: 2204370 issue: 31 year: 2022 ident: CR56 article-title: Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204370 – volume: 175 start-page: 125 year: 2024 end-page: 131 ident: CR57 article-title: Conjugate ferrocene polymer derived magnetic Fe/C nanocomposites for electromagnetic absorption application publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2023.08.016 – volume: 33 start-page: 2300374 year: 2023 ident: CR11 article-title: Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202300374 – year: 2024 ident: CR9 article-title: Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202314653 – volume: 9 start-page: 9507 issue: 10 year: 2015 end-page: 9516 ident: CR34 article-title: Two-dimensional, ordered, double transition metals carbides (MXenes) publication-title: ACS Nano doi: 10.1021/acsnano.5b03591 – volume: 12 start-page: 11252 issue: 9 year: 2020 end-page: 11264 ident: CR37 article-title: 3D nest-like architecture of core-shell CoFe O @1T/2H-MoS composites with tunable microwave absorption performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b23489 – volume: 33 start-page: 2306599 issue: 49 year: 2023 ident: CR3 article-title: Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306599 – volume: 16 start-page: 66 year: 2024 ident: CR13 article-title: Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01280-6 – volume: 33 year: 2023 ident: CR55 article-title: Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe-alloy/C 0D/2D nanocomposites publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2023.101058 – volume: 31 start-page: 2105018 issue: 45 year: 2021 ident: CR50 article-title: A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105018 – volume: 32 start-page: 2204591 year: 2022 ident: CR1 article-title: A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204591 – volume: 32 start-page: 2112294 year: 2022 ident: CR48 article-title: Synergistic polarization loss of MoS -based multiphase solid solution for electromagnetic wave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202112294 – volume: 14 start-page: 5329 issue: 9 year: 2014 end-page: 5334 ident: CR36 article-title: Probing local strain at MX -metal boundaries with surface plasmon-enhanced Raman scattering publication-title: Nano Lett. doi: 10.1021/nl5023767 – volume: 17 start-page: 8420 issue: 9 year: 2023 end-page: 8432 ident: CR64 article-title: Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene based aerogels for consecutive multiband tunable electromagnetic wave absorption publication-title: ACS Nano doi: 10.1021/acsnano.3c00338 – volume: 4 start-page: 2200379 issue: 7 year: 2023 ident: CR39 article-title: “Matryoshka Doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption publication-title: Small Struct. doi: 10.1002/sstr.202200379 – volume: 379 year: 2020 ident: CR21 article-title: 3D hierarchical local heterojunction of MoS /FeS for enhanced microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122241 – volume: 35 start-page: 2211642 issue: 16 year: 2023 ident: CR22 article-title: Controlled distributed Ti C T hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding publication-title: Adv. Mater. doi: 10.1002/adma.202211642 – volume: 221 year: 2024 ident: CR53 article-title: Improving electromagnetic wave absorption property of metal borides/carbon nanocomposites by magnetic-electric balance and ion substitution tuning strategy publication-title: Carbon doi: 10.1016/j.carbon.2024.118901 – volume: 8 start-page: 1800734 issue: 21 year: 2018 ident: 1449_CR38 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800734 – volume: 32 start-page: 2201129 issue: 24 year: 2022 ident: 1449_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202201129 – volume: 163 start-page: 92 year: 2023 ident: 1449_CR54 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2023.05.004 – volume: 20 start-page: 2305120 issue: 11 year: 2024 ident: 1449_CR61 publication-title: Small doi: 10.1002/smll.202305120 – volume: 33 start-page: 2007129 issue: 50 year: 2021 ident: 1449_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.202007129 – volume: 4 start-page: 2200379 issue: 7 year: 2023 ident: 1449_CR39 publication-title: Small Struct. doi: 10.1002/sstr.202200379 – volume: 120 year: 2023 ident: 1449_CR4 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2209807120 – volume: 30 start-page: 1707334 issue: 23 year: 2018 ident: 1449_CR42 publication-title: Adv. Mater. doi: 10.1002/adma.201707334 – volume: 14 start-page: 2383 issue: 11 year: 2021 ident: 1449_CR49 publication-title: Chemsuschem doi: 10.1002/cssc.202100615 – volume: 11 start-page: 1466 issue: 9 year: 2022 ident: 1449_CR45 publication-title: J. Adv. Ceram. doi: 10.1007/s40145-022-0624-0 – volume: 13 start-page: 1227 year: 2022 ident: 1449_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28906-4 – volume: 16 start-page: 167 year: 2024 ident: 1449_CR10 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-024-01369-6 – volume: 32 start-page: 2200544 issue: 26 year: 2022 ident: 1449_CR40 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200544 – volume: 12 start-page: 1562 issue: 8 year: 2023 ident: 1449_CR35 publication-title: J. Adv. Ceram. doi: 10.26599/JAC.2023.9220772 – year: 2024 ident: 1449_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202314653 – volume: 31 start-page: 2105018 issue: 45 year: 2021 ident: 1449_CR50 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105018 – volume: 175 start-page: 125 year: 2024 ident: 1449_CR57 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2023.08.016 – volume: 34 start-page: 2306815 issue: 1 year: 2023 ident: 1449_CR33 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306815 – year: 2024 ident: 1449_CR12 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202316691 – volume: 9 start-page: 9507 issue: 10 year: 2015 ident: 1449_CR34 publication-title: ACS Nano doi: 10.1021/acsnano.5b03591 – volume: 379 year: 2020 ident: 1449_CR21 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122241 – volume: 33 start-page: 2213357 issue: 11 year: 2023 ident: 1449_CR24 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202213357 – volume: 33 start-page: 2211352 issue: 5 year: 2023 ident: 1449_CR63 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211352 – volume: 32 start-page: 2204499 year: 2022 ident: 1449_CR8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204499 – year: 2024 ident: 1449_CR66 publication-title: Small Methods doi: 10.1002/smtd.202301600 – volume: 32 start-page: 2204591 year: 2022 ident: 1449_CR1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204591 – volume: 19 start-page: 2206462 issue: 15 year: 2023 ident: 1449_CR27 publication-title: Small doi: 10.1002/smll.202206462 – volume: 14 start-page: 5329 issue: 9 year: 2014 ident: 1449_CR36 publication-title: Nano Lett. doi: 10.1021/nl5023767 – volume: 32 start-page: 2204370 issue: 31 year: 2022 ident: 1449_CR56 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204370 – volume: 15 start-page: 6622 issue: 4 year: 2021 ident: 1449_CR23 publication-title: ACS Nano doi: 10.1021/acsnano.0c09982 – volume: 175 start-page: 194 year: 2024 ident: 1449_CR62 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2023.08.020 – volume: 35 start-page: 2211642 issue: 16 year: 2023 ident: 1449_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.202211642 – volume: 3 start-page: 2200041 issue: 3 year: 2023 ident: 1449_CR31 publication-title: Small Sci. doi: 10.1002/smsc.202200041 – volume: 134 start-page: 16909 issue: 40 year: 2012 ident: 1449_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308463r – volume: 429 year: 2022 ident: 1449_CR46 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132253 – volume: 32 start-page: 2112294 year: 2022 ident: 1449_CR48 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202112294 – volume: 44 start-page: 2893 issue: 10 year: 2015 ident: 1449_CR30 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00064E – volume: 31 start-page: 2011229 issue: 19 year: 2021 ident: 1449_CR15 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202011229 – volume: 30 start-page: 2002595 issue: 45 year: 2020 ident: 1449_CR17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002595 – volume: 65 start-page: 1470 issue: 17 year: 2020 ident: 1449_CR32 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.05.007 – volume: 12 start-page: 11252 issue: 9 year: 2020 ident: 1449_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b23489 – volume: 19 start-page: 2303393 issue: 41 year: 2023 ident: 1449_CR51 publication-title: Small doi: 10.1002/smll.202303393 – volume: 651 start-page: 1 year: 2023 ident: 1449_CR60 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2023.07.169 – volume: 30 start-page: 2003998 issue: 40 year: 2020 ident: 1449_CR28 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003998 – volume: 221 year: 2024 ident: 1449_CR53 publication-title: Carbon doi: 10.1016/j.carbon.2024.118901 – volume: 11 start-page: 2307649 issue: 6 year: 2024 ident: 1449_CR67 publication-title: Adv. Sci. doi: 10.1002/advs.202307649 – volume: 33 start-page: 2306599 issue: 49 year: 2023 ident: 1449_CR3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306599 – volume: 32 start-page: 2200141 year: 2022 ident: 1449_CR16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200141 – year: 2024 ident: 1449_CR59 publication-title: Adv. Mater. doi: 10.1002/adma.202311411 – volume: 11 start-page: 14272 issue: 26 year: 2023 ident: 1449_CR47 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA01993D – volume: 16 start-page: 7820 issue: 5 year: 2023 ident: 1449_CR25 publication-title: Nano Res. doi: 10.1007/s12274-023-5594-1 – volume: 19 start-page: 2300717 issue: 24 year: 2023 ident: 1449_CR44 publication-title: Small doi: 10.1002/smll.202300717 – volume: 10 start-page: 2301599 issue: 21 year: 2023 ident: 1449_CR5 publication-title: Adv. Sci. doi: 10.1002/advs.202301599 – volume: 16 start-page: 66 year: 2024 ident: 1449_CR13 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01280-6 – volume: 3 issue: 3 year: 2024 ident: 1449_CR65 publication-title: Adv. Powder Mater. doi: 10.1016/j.apmate.2024.100180 – year: 2024 ident: 1449_CR43 publication-title: Carbon Energy doi: 10.1002/cey2.502 – volume: 33 start-page: 2300374 year: 2023 ident: 1449_CR11 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202300374 – volume: 35 start-page: 2300015 year: 2023 ident: 1449_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.202300015 – volume: 17 start-page: 8420 issue: 9 year: 2023 ident: 1449_CR64 publication-title: ACS Nano doi: 10.1021/acsnano.3c00338 – volume: 193 start-page: 26 year: 2022 ident: 1449_CR41 publication-title: Carbon doi: 10.1016/j.carbon.2022.03.029 – volume: 9 start-page: 341 year: 1941 ident: 1449_CR58 publication-title: J. Chem. Phys. doi: 10.1063/1.1750906 – volume: 4 start-page: 2300224 issue: 12 year: 2023 ident: 1449_CR26 publication-title: Adv. Photonics Res. doi: 10.1002/adpr.202300224 – volume: 16 start-page: 29 year: 2024 ident: 1449_CR14 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01247-7 – volume: 16 start-page: 19959 issue: 12 year: 2022 ident: 1449_CR29 publication-title: ACS Nano doi: 10.1021/acsnano.2c09888 – volume: 33 year: 2023 ident: 1449_CR55 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2023.101058 – volume: 426 year: 2021 ident: 1449_CR19 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131272 – volume: 14 start-page: 5951 year: 2023 ident: 1449_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-023-41697-6 |
| SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
| Score | 2.6014144 |
| Snippet | Highlights
Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed.
Built-in electric field are constructed in... The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption... HighlightsMo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed.Built-in electric field are constructed in... Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed.Built-in electric field are constructed in... Highlights Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed. Built-in electric field are constructed in... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 213 |
| SubjectTerms | Absorption Built-in electric field Density functional theory Dielectric polarization Electric fields Electrical junctions Electromagnetic radiation Electromagnetic wave absorption Electron transfer Engineering Heterostructures Impedance matching Iron Metal sulfides Military technology Mott–Schottky junctions MXenes Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Radar cross sections Semiconductor junctions Semiconductor–semiconductor–metal heterostructure Stealth technology Thickness |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JjtQwELVg4AAH9iUwICNxA2uS2I6TE6LRtABpRogGaW6R46Vp0ThDL0jc-AfufBxfQpWT3ljmwq3lOIqTfq4qu8rvEfI4F76R2ldM-tQz4U3KGvAkTCouY4BaqCaKTajj4_LkpHrTb7jN-7LKlU2Mhtq2BvfIDzgG2uDfFH92-pmhahRmV3sJjfPkArIkZLF0b7TCU65Ql2mTJURxZbHFVSOQ2YVv6Mwk0pepDUumzAV4997dduG0wkRW1KvLMlaotOjP4cTTeKjdnDJwegyXKRVTO74uSgL8LY79sxzzt5xsdHXDq__7ka6RK32QS593qLxOzrlwg1zeoj68SX6gUmjHXRvGdLCcTBfsVaCHUZVnYugQK-vmFLeJ6QgL-NuAzLTtjL4GTxwnC9XBUmQRXSw-ft1qHoBjtrQN9Kj9-e370QlY84Pup4OVBh0tp35i3ZxCuN4_r_2kxwFPc9K3Xcmwu0XeDw_fvXjJeq0IZiBGW7CiNHleali9ld567rRzhbLGyrJyWOojMwcdvchyJxtrtfe-0Y2x3DSVzTPPb5O90AZ3l1AprW-gWYvKClOVYPMaCFMN91oKk_GEZKt_tTY9kTrqeUzrNQV0REINSKgjEmqVkCfre047GpEzew8QLOueSAEeG9rZuO4tSt1YXgoP4SQ3WmQ6rZwtMpiSSit4o9wnZH-Fkbq3S_N6A5CEPFpfBouCaSIdXLvs-uDGCE8TcqdD5nokvCwL8I4iIeUOZneGunslTD5E1nK4DZ6dy4Q8XcF7M65_f4t7Z7_GfXIpxxkXC4z2yR4A1z0gF82XxWQ-exjNwS_k8WIq priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZg4QAH3o_AgozEDSyS2I6TI11tBUi7QixIe4scP0pFcVAfSNz4D9z5cfwSZpw0bWFBglvkTBRnMpkZZ8bfR8jjXPhGal8x6VPPhDcpayCSMKm4jAlqoZpINqGOj8vT0-p1vylsse52X5cko6ceNrshNXLKIKYwXAVUTJ0nF2RWVtjId7DBHM8VsjFtaoNIqSy2EGoE4rnwDYiZRNAytcHGlLmAmN4H2S6JVli-iix1WcYKlRb97puzp7UT4SIRwFnZ6-9NmL9UYmOAG1_9P9VcI1f6hJY-7yzwOjnnwg1yeQvm8Cb5jqygHU5tmNDRajpbspeBHkYGnqmhY-yiW1D8JUxPsFm_DYhC287pK4i68cOgOliKiKHL5YcvW8MjCMKWtoEetT--fjs6Bc_9rDt0sKqgJ6uZn1q3oJCa9_drP-pJwJ2b9E3XHuxukXfjw7cHL1jPC8EM5GNLVpQmz0sNK7XSW8-ddq5Q1lhZVg7bemTmQNCLLHeysVZ77xvdGMtNU9k88_w22QttcHcJldL6Boa1qKwwVQn-rYGU1HCvpTAZT0i2fpe16UHTkbtjVg9wz1H3Nei-jrqvVUKeDNd86iBD_io9QhMZJBHuOw6080nde4-6sbwUHlJHbrTIdFo5W2Tw-Smt4Ilyn5D9tYHVvQ9a1ByXppARKniKR8Np8B5YEtLBtatOBn-C8DQhdzp7HGbCy7KASCgSUu5Y6s5Ud8-E6fuIUA6Xwb1zmZCna4PdzOvPurj3b-L3yaUcbT42F-2TPTBk94BcNJ-X08X8YXQKPwHWcVeC priority: 102 providerName: Springer Nature |
| Title | Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo–MXene/Mo–Metal Sulfides for Electromagnetic Response |
| URI | https://link.springer.com/article/10.1007/s40820-024-01449-7 https://www.ncbi.nlm.nih.gov/pubmed/38861114 https://www.proquest.com/docview/3066607573 https://www.proquest.com/docview/3066788830 https://pubmed.ncbi.nlm.nih.gov/PMC11166625 https://doaj.org/article/bd384f3973ca41a09ed61ebe7a79d22f |
| Volume | 16 |
| WOSCitedRecordID | wos001244000400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: C24 dateStart: 20091201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxJvCUhmJG5hNYjtOjnTVigV1VW1BKlwix4-loiRo2yJxQfwH7vw4fgkzTvrieeFiNY4ju57JzDgefx8hDxPhS6l9zqSPPBPeRKwET8Kk4jIEqKkqA9mEOj7OJpN8tEX1hTlhDTxwM3EHpeWZ8OA1udEi1lHubBpDz0qr3CaJR-sbqXxrMQWalChkZNrsDyKtsthCqRGI6cI3QGYSgcvUBh9TJgL8eutom0Ba4RZWYKqLY5aqKG1P4IRzeMjaHDFwdwwXKDlTO14ukAH8LoL9NRHzp93Y4OQGV8mVNjqlT5tZuUbOueo6ubyFWXiDfEOKzwZ0tjqlveV0tmBHFe0HOp2poQNMiZtT_L5Lx5h5X1cIKVuf0efgQoOWU11ZivCfi8W7T1vVPfColtYVHdbfv3wdTsAMHzQ_HSwR6Hg581Pr5hTi7La_-r0-rfAYJj1pcn3dTfJq0H95-Iy1JA_MQHC1YGlmkiTTsOzKvPXcaedSZY2VWe4wR0fGDhp6ESdOltZq732pS2O5KUH-see3yF5VV-4OoVJaX0K1FrkVJs_AWJUQXxrutRQm5h0Sr4RSmBYBHYk4ZsUauzkIsgBBFkGQheqQR-tnPjT4H39t3UNZr1sidneoAI0uWo0u_qXRHbK_0pSiNSjzguM6E8I7Bf_iwfo2mALc39GVq5dNG_yiwaMOud0o1nokPMtScGuiQ7IdldsZ6u6davo2wI3DY9B3Ijvk8Uo7N-P681zc_R9zcY9cSvC1CvlD-2QP1NvdJxfNx8V0ftYl59Uk65ILvf7x6ASuDhPRDXYAyhe9J11M5B1j-bkP5Ui-gbajo-Ho9Q8d_l31 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKiwQseD8CBYwEK4g6ie04WSDEQKsO7VQVLdKwCo4fZURJSmcG1B3_wJ5P4KP4Eu51kpkOj-66YDdKnImT3MexfX0OIQ9j7gqhXBYK13Ehd7oTFpBJQiGZ8AA1kYUXm5BbW-lgkG0vkB_tXhgsq2xjog_UptI4R77CEGhDfpPs2cGnEFWjcHW1ldCozWLDHn2BIdvoae8lfN9Hcby2uvtiPWxUBUIN2XwcJqmO41QBzk-dccwqaxNptBFpZrEoREQWGjoexVYUxijnXKEKbZguMhNHjsH_niFLHI19kSxt9_rbb1sLjiUqQc3WJVHOmR9jx-HIJcNmBGoCCdPkjJdTxBzwRJPgawAvcenMK-RFUZjITtLs_PH7_1AtuhNCmg1xYJSFci67ehGCvyHnPwtAf1sF9sl17dL_9lkuk4sNjKfPa7-7QhZseZVcOEbueI18Ry3Ump233KPdyXB_HPZKuup1h4aarmHt4IjiRDjdwS0KVYncu9UhfQVYw4cDqkpDkSd1PP5wdOxwF6CHoVVJ-9XPr9_6A8hXK_VPC2MpujPZd0NjRxQGJM39qo9qr8T9qvR1XRRtr5M3p_KCbpDFsirtLUKFMK6Aw4pnhusshaheABDXzCnBdcQCErVWlOuGKh4VS_bzKcm1t7wcLC_3lpfLgDyeXnNQE6Wc2LqLxjltiSTn_kB1uJc3MTMvDEu5A8DMtOKR6mTWJBEEHakkPFHsArLc2mTeRN5RPjPIgDyYnoaYiQthqrTVpG6DUz-sE5CbtSdMe8LSNIH8zwOSzvnIXFfnz5TD956XHS6De8ciIE9ad5r169_v4vbJj3GfnFvf7W_mm72tjTvkfIze7suplskiGLG9S87qz-Ph6PBeE4woeXfajvYLQ2zFZQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZgQQgO_C5QWMBI3CBqEsdxcqTLViyw1YoFqbfI8U-pKM6qTZG48Q7ceTiehBknTVtYkBC3yJkozmQyM86Mv4-QJ3FiSy5tHnAb2iCxKgxKiCQBF4z7BDUVpSebEKNRNh7nxxu7-H23-6ok2expQJQmV_dPte13G9-QJjkMIL4EuCLIA3GeXMCKFNr4_hp_PBbIzLSuEyK9crKBVpMgtgtbA5pxBDATa5xMHicQ39uA2yTUAktZnrEuioJUhGm7E-fsaW1FO08KcFYm-3tD5i9VWR_shtf-X03XydU20aXPG8u8Qc4Zd5Nc2YA_vEW-I1tog1_rJnSwnM7q4NDRA8_MM1V0iN11C4q_iukJNvFXDtFpqzl9BdHYfzBUOk0RSbSuP37ZGB5AcNa0cvSo-vH129EYPHq_OTSw2qAny5mdarOgkLK396s-yYnDHZ30bdM2bHbJ--HBu_2XQcsXESjI0-ogzVQcZxJWcJnVlhlpTCq00jzLDbb78MiAoE2i2PBSa2mtLWWpNFNlruPIsttkx1XO3CWUc21LGJZJrhOVZ-D3SkhVFbOSJypiPRKt3muhWjB15PSYFR0MtNd9AbovvO4L0SNPu2tOGyiRv0oP0Fw6SYQB9wPVfFK0XqUoNcsSCyklUzKJZJgbnUbwWQop4Ili2yN7K2MrWt-0KBguWSFTFPAUj7vT4FWwVCSdqZaNDP4cYWGP3Glss5sJy7IUImTSI9mW1W5NdfuMm37wyOVwGdw75j3ybGW863n9WRf3_k38Ebl0_GJYvDkcvb5PLsdo_r7_aI_sgE2bB-Si-lxPF_OH3lf8BMS8Y0s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Built-In+Electric+Fields+with+Semiconductor+Junctions+and+Schottky+Junctions+Based+on+Mo-MXene%2FMo-Metal+Sulfides+for+Electromagnetic+Response&rft.jtitle=Nano-micro+letters&rft.au=Zeng%2C+Xiaojun&rft.au=Jiang%2C+Xiao&rft.au=Ning%2C+Ya&rft.au=Gao%2C+Yanfeng&rft.date=2024-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=16&rft.issue=1&rft.spage=213&rft_id=info:doi/10.1007%2Fs40820-024-01449-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |