7 Tesla magnetic resonance spectroscopic imaging predicting IDH status and glioma grading

Introduction With the application of high-resolution 3D 7 Tesla Magnetic Resonance Spectroscopy Imaging (MRSI) in high-grade gliomas, we previously identified intratumoral metabolic heterogeneities. In this study, we evaluated the potential of 3D 7 T-MRSI for the preoperative noninvasive classificat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cancer imaging Ročník 24; číslo 1; s. 67 - 11
Hlavní autoři: Cadrien, Cornelius, Sharma, Sukrit, Lazen, Philipp, Licandro, Roxane, Furtner, Julia, Lipka, Alexandra, Niess, Eva, Hingerl, Lukas, Motyka, Stanislav, Gruber, Stephan, Strasser, Bernhard, Kiesel, Barbara, Mischkulnig, Mario, Preusser, Matthias, Roetzer-Pejrimovsky, Thomas, Wöhrer, Adelheid, Weber, Michael, Dorfer, Christian, Trattnig, Siegfried, Rössler, Karl, Bogner, Wolfgang, Widhalm, Georg, Hangel, Gilbert
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 27.05.2024
BioMed Central Ltd
BMC
Témata:
ISSN:1470-7330, 1740-5025, 1470-7330
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Introduction With the application of high-resolution 3D 7 Tesla Magnetic Resonance Spectroscopy Imaging (MRSI) in high-grade gliomas, we previously identified intratumoral metabolic heterogeneities. In this study, we evaluated the potential of 3D 7 T-MRSI for the preoperative noninvasive classification of glioma grade and isocitrate dehydrogenase (IDH) status. We demonstrated that IDH mutation and glioma grade are detectable by ultra-high field (UHF) MRI. This technique might potentially optimize the perioperative management of glioma patients. Methods We prospectively included 36 patients with WHO 2021 grade 2–4 gliomas (20 IDH mutated, 16 IDH wildtype). Our 7 T 3D MRSI sequence provided high-resolution metabolic maps (e.g., choline, creatine, glutamine, and glycine) of these patients’ brains. We employed multivariate random forest and support vector machine models to voxels within a tumor segmentation, for classification of glioma grade and IDH mutation status. Results Random forest analysis yielded an area under the curve (AUC) of 0.86 for multivariate IDH classification based on metabolic ratios. We distinguished high- and low-grade tumors by total choline (tCho) / total N-acetyl-aspartate (tNAA) ratio difference, yielding an AUC of 0.99. Tumor categorization based on other measured metabolic ratios provided comparable accuracy. Conclusions We successfully classified IDH mutation status and high- versus low-grade gliomas preoperatively based on 7 T MRSI and clinical tumor segmentation. With this approach, we demonstrated imaging based tumor marker predictions at least as accurate as comparable studies, highlighting the potential application of MRSI for pre-operative tumor classifications.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1470-7330
1740-5025
1470-7330
DOI:10.1186/s40644-024-00704-9