Transcriptome reveals the landscape of alveolar macrophages exposed to combined hypoxia with cigarette smoke extract

Background Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous chronic inflammatory disease that is one of the leading causes of age-standardised deaths globally. While studies have investigated altitude's effects on COPD, none have explored alveolar macrophage homeostat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Respiratory research Ročník 26; číslo 1; s. 241 - 14
Hlavní autoři: Liu, Qing, Zhang, Yushi, Duan, Ruirui, Li, Wanheng, Hou, Xuan, Chen, Yiling, Li, Baicun, Yang, Ting
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 10.07.2025
BioMed Central Ltd
Nature Publishing Group
BMC
Témata:
ISSN:1465-993X, 1465-9921, 1465-993X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Background Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous chronic inflammatory disease that is one of the leading causes of age-standardised deaths globally. While studies have investigated altitude's effects on COPD, none have explored alveolar macrophage homeostatic alterations during its pathogenesis at high altitudes. Methods We constructed a high-altitude COPD model through exposure of mouse alveolar macrophages (MH-S) to hypoxia and cigarette smoke extract (CSE). Hypoxia-inducible factor (HIF) expression was quantified in MH-S cells exposed to hypoxia combined with CSE and in the control group. HIF-1α short hairpin RNA (shRNA) was added to the MH-S cells. Transcriptome was used to characterise downstream signalling pathways of HIF-1α in MH-S cells treated with hypoxia and CSE exposure. Standard molecular techniques were used to validate the RNA sequencing results. Results HIF-1α but not HIF-2α was significantly up-regulated in MH-S cells after exposure to hypoxia and CSE. RNA-sequencing analysis of MH-S cells showed the relevant pathways downstream of HIF-1α are mainly inflammation, glycolysis, M1 polarization, extracellular matrix remodelling and angiogenesis. Validation of RNA-sequencing analysis confirmed that the above signalling pathways were abnormally up-regulated after CSE exposure, and that combined hypoxic exposure further exacerbated the induced aberrant up-regulation, which was inhibited after treatment with HIF-1α shRNA. Conclusion Downstream HIF-1α signalling pathways drive inflammation, M1 macrophage polarization, glycolysis, extracellular matrix remodelling, and angiogenesis, potentially disrupting alveolar macrophages homeostasis during high-altitude COPD pathogenesis. This disruption may be one reason underlying the high prevalence of COPD in high-altitude regions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1465-993X
1465-9921
1465-993X
DOI:10.1186/s12931-025-03303-9