Machine learning-driven development of a stratified CES-D screening system: optimizing depression assessment through adaptive item selection

Objective To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while maintaining diagnostic accuracy, addressing the efficiency limitations in large-scale applications. Methods Data were derived from the Chine...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC psychiatry Ročník 25; číslo 1; s. 286 - 20
Hlavní autoři: Xu, Ruo-Fei, Liu, Zhen-Jing, Ouyang, Shunan, Dong, Qin, Yan, Wen-Jing, Xu, Dong-Wu
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 26.03.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-244X, 1471-244X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while maintaining diagnostic accuracy, addressing the efficiency limitations in large-scale applications. Methods Data were derived from the Chinese Psychological Health Guard Project (primary sample: n  = 179,877; age 9–18) and China Labor-force Dynamics Survey (validation samples across age spans). We employed a two-stage machine learning approach: first applying Recursive Feature Elimination with multiple linear regression to identify core predictive items for total depression scores, followed by logistic regression for optimizing depression classification (CES-D ≥ 16). Model performance was systematically evaluated through discrimination (ROC analysis), calibration (Brier score), and clinical utility analyses (decision curve analysis), with additional validation using random forest and support vector machine algorithms across independent samples. Results The resulting stratified screening system consists of an initial four-item rapid screening layer (encompassing emotional, cognitive, and interpersonal dimensions) for detecting probable depression (AUC = 0.982, sensitivity = 0.945, specificity = 0.926), followed by an enhanced assessment layer with five additional items. Together, these nine items enable accurate prediction of the full CES-D-20 total score (R 2  = 0.957). This stratified approach demonstrated robust generalizability across age groups (R 2  > 0.94, accuracy > 0.91) and time points. Calibration analyses and decision curve analyses confirmed optimal clinical utility, particularly in the critical risk threshold range (0.3–0.6). Conclusions This study contributes to the refinement of CES-D by developing a machine learning-derived stratified screening version, offering an efficient and reliable approach that optimizes assessment burden while maintaining excellent psychometric properties. The stratified design makes it particularly valuable for large-scale mental health screening programs, enabling efficient risk stratification and targeted assessment allocation.
AbstractList ObjectiveTo develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while maintaining diagnostic accuracy, addressing the efficiency limitations in large-scale applications.MethodsData were derived from the Chinese Psychological Health Guard Project (primary sample: n = 179,877; age 9–18) and China Labor-force Dynamics Survey (validation samples across age spans). We employed a two-stage machine learning approach: first applying Recursive Feature Elimination with multiple linear regression to identify core predictive items for total depression scores, followed by logistic regression for optimizing depression classification (CES-D ≥ 16). Model performance was systematically evaluated through discrimination (ROC analysis), calibration (Brier score), and clinical utility analyses (decision curve analysis), with additional validation using random forest and support vector machine algorithms across independent samples.ResultsThe resulting stratified screening system consists of an initial four-item rapid screening layer (encompassing emotional, cognitive, and interpersonal dimensions) for detecting probable depression (AUC = 0.982, sensitivity = 0.945, specificity = 0.926), followed by an enhanced assessment layer with five additional items. Together, these nine items enable accurate prediction of the full CES-D-20 total score (R2 = 0.957). This stratified approach demonstrated robust generalizability across age groups (R2 > 0.94, accuracy > 0.91) and time points. Calibration analyses and decision curve analyses confirmed optimal clinical utility, particularly in the critical risk threshold range (0.3–0.6).ConclusionsThis study contributes to the refinement of CES-D by developing a machine learning-derived stratified screening version, offering an efficient and reliable approach that optimizes assessment burden while maintaining excellent psychometric properties. The stratified design makes it particularly valuable for large-scale mental health screening programs, enabling efficient risk stratification and targeted assessment allocation.
Abstract Objective To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while maintaining diagnostic accuracy, addressing the efficiency limitations in large-scale applications. Methods Data were derived from the Chinese Psychological Health Guard Project (primary sample: n = 179,877; age 9–18) and China Labor-force Dynamics Survey (validation samples across age spans). We employed a two-stage machine learning approach: first applying Recursive Feature Elimination with multiple linear regression to identify core predictive items for total depression scores, followed by logistic regression for optimizing depression classification (CES-D ≥ 16). Model performance was systematically evaluated through discrimination (ROC analysis), calibration (Brier score), and clinical utility analyses (decision curve analysis), with additional validation using random forest and support vector machine algorithms across independent samples. Results The resulting stratified screening system consists of an initial four-item rapid screening layer (encompassing emotional, cognitive, and interpersonal dimensions) for detecting probable depression (AUC = 0.982, sensitivity = 0.945, specificity = 0.926), followed by an enhanced assessment layer with five additional items. Together, these nine items enable accurate prediction of the full CES-D-20 total score (R2 = 0.957). This stratified approach demonstrated robust generalizability across age groups (R2 > 0.94, accuracy > 0.91) and time points. Calibration analyses and decision curve analyses confirmed optimal clinical utility, particularly in the critical risk threshold range (0.3–0.6). Conclusions This study contributes to the refinement of CES-D by developing a machine learning-derived stratified screening version, offering an efficient and reliable approach that optimizes assessment burden while maintaining excellent psychometric properties. The stratified design makes it particularly valuable for large-scale mental health screening programs, enabling efficient risk stratification and targeted assessment allocation.
To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while maintaining diagnostic accuracy, addressing the efficiency limitations in large-scale applications.OBJECTIVETo develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while maintaining diagnostic accuracy, addressing the efficiency limitations in large-scale applications.Data were derived from the Chinese Psychological Health Guard Project (primary sample: n = 179,877; age 9-18) and China Labor-force Dynamics Survey (validation samples across age spans). We employed a two-stage machine learning approach: first applying Recursive Feature Elimination with multiple linear regression to identify core predictive items for total depression scores, followed by logistic regression for optimizing depression classification (CES-D ≥ 16). Model performance was systematically evaluated through discrimination (ROC analysis), calibration (Brier score), and clinical utility analyses (decision curve analysis), with additional validation using random forest and support vector machine algorithms across independent samples.METHODSData were derived from the Chinese Psychological Health Guard Project (primary sample: n = 179,877; age 9-18) and China Labor-force Dynamics Survey (validation samples across age spans). We employed a two-stage machine learning approach: first applying Recursive Feature Elimination with multiple linear regression to identify core predictive items for total depression scores, followed by logistic regression for optimizing depression classification (CES-D ≥ 16). Model performance was systematically evaluated through discrimination (ROC analysis), calibration (Brier score), and clinical utility analyses (decision curve analysis), with additional validation using random forest and support vector machine algorithms across independent samples.The resulting stratified screening system consists of an initial four-item rapid screening layer (encompassing emotional, cognitive, and interpersonal dimensions) for detecting probable depression (AUC = 0.982, sensitivity = 0.945, specificity = 0.926), followed by an enhanced assessment layer with five additional items. Together, these nine items enable accurate prediction of the full CES-D-20 total score (R2 = 0.957). This stratified approach demonstrated robust generalizability across age groups (R2 > 0.94, accuracy > 0.91) and time points. Calibration analyses and decision curve analyses confirmed optimal clinical utility, particularly in the critical risk threshold range (0.3-0.6).RESULTSThe resulting stratified screening system consists of an initial four-item rapid screening layer (encompassing emotional, cognitive, and interpersonal dimensions) for detecting probable depression (AUC = 0.982, sensitivity = 0.945, specificity = 0.926), followed by an enhanced assessment layer with five additional items. Together, these nine items enable accurate prediction of the full CES-D-20 total score (R2 = 0.957). This stratified approach demonstrated robust generalizability across age groups (R2 > 0.94, accuracy > 0.91) and time points. Calibration analyses and decision curve analyses confirmed optimal clinical utility, particularly in the critical risk threshold range (0.3-0.6).This study contributes to the refinement of CES-D by developing a machine learning-derived stratified screening version, offering an efficient and reliable approach that optimizes assessment burden while maintaining excellent psychometric properties. The stratified design makes it particularly valuable for large-scale mental health screening programs, enabling efficient risk stratification and targeted assessment allocation.CONCLUSIONSThis study contributes to the refinement of CES-D by developing a machine learning-derived stratified screening version, offering an efficient and reliable approach that optimizes assessment burden while maintaining excellent psychometric properties. The stratified design makes it particularly valuable for large-scale mental health screening programs, enabling efficient risk stratification and targeted assessment allocation.
To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while maintaining diagnostic accuracy, addressing the efficiency limitations in large-scale applications. Data were derived from the Chinese Psychological Health Guard Project (primary sample: n = 179,877; age 9-18) and China Labor-force Dynamics Survey (validation samples across age spans). We employed a two-stage machine learning approach: first applying Recursive Feature Elimination with multiple linear regression to identify core predictive items for total depression scores, followed by logistic regression for optimizing depression classification (CES-D ≥ 16). Model performance was systematically evaluated through discrimination (ROC analysis), calibration (Brier score), and clinical utility analyses (decision curve analysis), with additional validation using random forest and support vector machine algorithms across independent samples. The resulting stratified screening system consists of an initial four-item rapid screening layer (encompassing emotional, cognitive, and interpersonal dimensions) for detecting probable depression (AUC = 0.982, sensitivity = 0.945, specificity = 0.926), followed by an enhanced assessment layer with five additional items. Together, these nine items enable accurate prediction of the full CES-D-20 total score (R  = 0.957). This stratified approach demonstrated robust generalizability across age groups (R  > 0.94, accuracy > 0.91) and time points. Calibration analyses and decision curve analyses confirmed optimal clinical utility, particularly in the critical risk threshold range (0.3-0.6). This study contributes to the refinement of CES-D by developing a machine learning-derived stratified screening version, offering an efficient and reliable approach that optimizes assessment burden while maintaining excellent psychometric properties. The stratified design makes it particularly valuable for large-scale mental health screening programs, enabling efficient risk stratification and targeted assessment allocation.
Objective To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while maintaining diagnostic accuracy, addressing the efficiency limitations in large-scale applications. Methods Data were derived from the Chinese Psychological Health Guard Project (primary sample: n = 179,877; age 9-18) and China Labor-force Dynamics Survey (validation samples across age spans). We employed a two-stage machine learning approach: first applying Recursive Feature Elimination with multiple linear regression to identify core predictive items for total depression scores, followed by logistic regression for optimizing depression classification (CES-D [greater than or equal to] 16). Model performance was systematically evaluated through discrimination (ROC analysis), calibration (Brier score), and clinical utility analyses (decision curve analysis), with additional validation using random forest and support vector machine algorithms across independent samples. Results The resulting stratified screening system consists of an initial four-item rapid screening layer (encompassing emotional, cognitive, and interpersonal dimensions) for detecting probable depression (AUC = 0.982, sensitivity = 0.945, specificity = 0.926), followed by an enhanced assessment layer with five additional items. Together, these nine items enable accurate prediction of the full CES-D-20 total score (R.sup.2 = 0.957). This stratified approach demonstrated robust generalizability across age groups (R.sup.2 > 0.94, accuracy > 0.91) and time points. Calibration analyses and decision curve analyses confirmed optimal clinical utility, particularly in the critical risk threshold range (0.3-0.6). Conclusions This study contributes to the refinement of CES-D by developing a machine learning-derived stratified screening version, offering an efficient and reliable approach that optimizes assessment burden while maintaining excellent psychometric properties. The stratified design makes it particularly valuable for large-scale mental health screening programs, enabling efficient risk stratification and targeted assessment allocation. Keywords: Depression screening, Stratified screening, Machine learning, CES-D, Recursive Feature Elimination, Predictive modeling
To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while maintaining diagnostic accuracy, addressing the efficiency limitations in large-scale applications. Data were derived from the Chinese Psychological Health Guard Project (primary sample: n = 179,877; age 9-18) and China Labor-force Dynamics Survey (validation samples across age spans). We employed a two-stage machine learning approach: first applying Recursive Feature Elimination with multiple linear regression to identify core predictive items for total depression scores, followed by logistic regression for optimizing depression classification (CES-D [greater than or equal to] 16). Model performance was systematically evaluated through discrimination (ROC analysis), calibration (Brier score), and clinical utility analyses (decision curve analysis), with additional validation using random forest and support vector machine algorithms across independent samples. The resulting stratified screening system consists of an initial four-item rapid screening layer (encompassing emotional, cognitive, and interpersonal dimensions) for detecting probable depression (AUC = 0.982, sensitivity = 0.945, specificity = 0.926), followed by an enhanced assessment layer with five additional items. Together, these nine items enable accurate prediction of the full CES-D-20 total score (R.sup.2 = 0.957). This stratified approach demonstrated robust generalizability across age groups (R.sup.2 > 0.94, accuracy > 0.91) and time points. Calibration analyses and decision curve analyses confirmed optimal clinical utility, particularly in the critical risk threshold range (0.3-0.6). This study contributes to the refinement of CES-D by developing a machine learning-derived stratified screening version, offering an efficient and reliable approach that optimizes assessment burden while maintaining excellent psychometric properties. The stratified design makes it particularly valuable for large-scale mental health screening programs, enabling efficient risk stratification and targeted assessment allocation.
Objective To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while maintaining diagnostic accuracy, addressing the efficiency limitations in large-scale applications. Methods Data were derived from the Chinese Psychological Health Guard Project (primary sample: n  = 179,877; age 9–18) and China Labor-force Dynamics Survey (validation samples across age spans). We employed a two-stage machine learning approach: first applying Recursive Feature Elimination with multiple linear regression to identify core predictive items for total depression scores, followed by logistic regression for optimizing depression classification (CES-D ≥ 16). Model performance was systematically evaluated through discrimination (ROC analysis), calibration (Brier score), and clinical utility analyses (decision curve analysis), with additional validation using random forest and support vector machine algorithms across independent samples. Results The resulting stratified screening system consists of an initial four-item rapid screening layer (encompassing emotional, cognitive, and interpersonal dimensions) for detecting probable depression (AUC = 0.982, sensitivity = 0.945, specificity = 0.926), followed by an enhanced assessment layer with five additional items. Together, these nine items enable accurate prediction of the full CES-D-20 total score (R 2  = 0.957). This stratified approach demonstrated robust generalizability across age groups (R 2  > 0.94, accuracy > 0.91) and time points. Calibration analyses and decision curve analyses confirmed optimal clinical utility, particularly in the critical risk threshold range (0.3–0.6). Conclusions This study contributes to the refinement of CES-D by developing a machine learning-derived stratified screening version, offering an efficient and reliable approach that optimizes assessment burden while maintaining excellent psychometric properties. The stratified design makes it particularly valuable for large-scale mental health screening programs, enabling efficient risk stratification and targeted assessment allocation.
ArticleNumber 286
Audience Academic
Author Xu, Dong-Wu
Ouyang, Shunan
Dong, Qin
Yan, Wen-Jing
Xu, Ruo-Fei
Liu, Zhen-Jing
Author_xml – sequence: 1
  givenname: Ruo-Fei
  surname: Xu
  fullname: Xu, Ruo-Fei
  organization: School of Mental Health, Wenzhou Medical University
– sequence: 2
  givenname: Zhen-Jing
  surname: Liu
  fullname: Liu, Zhen-Jing
  organization: School of Mental Health, Wenzhou Medical University
– sequence: 3
  givenname: Shunan
  surname: Ouyang
  fullname: Ouyang, Shunan
  organization: School of Mental Health, Wenzhou Medical University
– sequence: 4
  givenname: Qin
  surname: Dong
  fullname: Dong, Qin
  organization: School of Mental Health, Wenzhou Medical University
– sequence: 5
  givenname: Wen-Jing
  surname: Yan
  fullname: Yan, Wen-Jing
  email: yanwj@wmu.edu.cn
  organization: School of Mental Health, Wenzhou Medical University, Zhejiang Provincial Clinical Research Centre for Mental Health, Affiliated Kangning Hospital, Wenzhou Medical University
– sequence: 6
  givenname: Dong-Wu
  surname: Xu
  fullname: Xu, Dong-Wu
  email: xdw@wmu.edu.cn
  organization: School of Mental Health, Wenzhou Medical University, Zhejiang Provincial Clinical Research Centre for Mental Health, Affiliated Kangning Hospital, Wenzhou Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40133848$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEUhUeoiP7AC7BAltiwmWKPf4cNqkKBSkUsAImd5XiuE1czdrAnkcoz8NB4ktI2Faq8sHX9nXN9rXNcHYQYoKpeEnxKiBJvM2mUUjVueI2FaGmtnlRHhElSN4z9PLh3PqyOc77CmEjFybPqkGFCqWLqqPrzxdilD4B6MCn4sKi75DcQUAcb6ONqgDCi6JBBeUxm9M5Dh2bn3-oPKNsEMElQvs4jDO9QXI1-8L-nUgerBDn7GJDJuZy2RuMyxfViiUxnCroB5IsOZejBjgV9Xj11ps_w4mY_qX58PP8--1xffv10MTu7rK0geKypElh2GHgDwkrqZMswJbahnKhGWikxA8saTKBhwCwWfA60c61pOLTGdfSkutj5dtFc6VXyg0nXOhqvt4WYFtqk0dsetKUgBbRMmtayzijjGsbnkjk8b7FTtHi933mt1vMBOlvGTKbfM92_CX6pF3GjCWmp4koWhzc3Din-WkMe9eCzhb43AeI6a0oUoUIyoQr6-gF6FdcplL-aKMk5U7y9oxamTOCDi6WxnUz1maINF1QwUajT_1BldTB4W5LmfKnvCV7dn_R2xH9hKkCzA2yKOSdwtwjBekqs3iVWl8TqbWL1JFIPRNaPZkpDeY7vH5fSnTSXPmEB6e43HlH9BWWkATQ
CitedBy_id crossref_primary_10_3390_toxics13070563
Cites_doi 10.1146/annurev-clinpsy-050212-185608
10.1186/s12889-024-20699-z
10.1186/s12916-015-0325-4
10.1371/journal.pone.0155431
10.1126/science.3287615
10.1146/annurev.clinpsy.032408.153553
10.1016/j.psychres.2010.08.018
10.3390/diagnostics13010002
10.1016/s0749-3797(18)30622-6
10.1177/1745691617693393
10.1002/9780470061572.eqr173
10.1002/wps.20375
10.1186/s13034-023-00574-2
10.1037/abn0000002
10.1177/1745691620902467
10.1007/s11136-009-9560-5
10.1016/j.socscimed.2010.03.035
10.1097/01.MLR.0000093487.78664.3C
10.1146/annurev-clinpsy-021815-093634
10.1002/wps.20569
10.1080/15374416.2018.1437735
10.1016/j.jad.2024.09.111
10.1177/014662167700100306
10.1016/j.genhosppsych.2024.01.010
10.1186/s12888-016-1178-x
10.1016/S0167-5877(00)00115-X
10.3389/fpsyt.2022.921781
10.1186/s40345-024-00365-4
10.18637/jss.v071.i05
10.1186/s40359-024-01702-z
10.1016/j.jad.2024.08.121
10.1007/s11336-010-9178-0
10.1080/00031305.1985.10479448
10.1037/1082-989x.5.2.155
10.1007/s00127-016-1319-z
10.1080/00223891.2010.496477
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
K9.
M0S
M1P
M2M
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOA
DOI 10.1186/s12888-025-06693-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-244X
EndPage 20
ExternalDocumentID oai_doaj_org_article_c3e76e947a9c4da8af245b74f0b90f83
PMC11938587
A832563646
40133848
10_1186_s12888_025_06693_8
Genre Journal Article
GeographicLocations China
Taiwan
GeographicLocations_xml – name: China
– name: Taiwan
GrantInformation_xml – fundername: National Social Science Fund of China
  grantid: 23BSH135; 23BSH135; 23BSH135; 23BSH135; 23BSH135; 23BSH135
  funderid: https://doi.org/10.13039/501100012456
– fundername: Major Humanities and Social Sciences Research Projects in Zhejiang higher education institutions
  grantid: 2024GH036; 2024GH036; 2024GH036; 2024GH036; 2024GH036; 2024GH036
– fundername: Major Humanities and Social Sciences Research Projects in Zhejiang higher education institutions
  grantid: 2024GH036
– fundername: National Social Science Fund of China
  grantid: 23BSH135
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
IPY
ITC
KQ8
M1P
M2M
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c610t-38607d0e52e6c73f794031c2351827c7704ec4201e24e4c065be3df9a25e9afd3
IEDL.DBID 7X7
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001452641600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-244X
IngestDate Fri Oct 03 12:53:55 EDT 2025
Tue Nov 04 02:02:58 EST 2025
Fri Sep 05 17:50:44 EDT 2025
Thu Oct 09 21:41:12 EDT 2025
Sat Nov 29 13:51:17 EST 2025
Sat Nov 29 10:34:16 EST 2025
Mon Jul 21 06:02:12 EDT 2025
Sat Nov 29 08:07:42 EST 2025
Tue Nov 18 22:53:31 EST 2025
Sat Sep 06 07:21:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CES-D
Predictive modeling
Recursive Feature Elimination
Depression screening
Machine learning
Stratified screening
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c610t-38607d0e52e6c73f794031c2351827c7704ec4201e24e4c065be3df9a25e9afd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3187554859?pq-origsite=%requestingapplication%
PMID 40133848
PQID 3187554859
PQPubID 44775
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_c3e76e947a9c4da8af245b74f0b90f83
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11938587
proquest_miscellaneous_3181367468
proquest_journals_3187554859
gale_infotracmisc_A832563646
gale_infotracacademiconefile_A832563646
pubmed_primary_40133848
crossref_primary_10_1186_s12888_025_06693_8
crossref_citationtrail_10_1186_s12888_025_06693_8
springer_journals_10_1186_s12888_025_06693_8
PublicationCentury 2000
PublicationDate 2025-03-26
PublicationDateYYYYMMDD 2025-03-26
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC psychiatry
PublicationTitleAbbrev BMC Psychiatry
PublicationTitleAlternate BMC Psychiatry
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References EI Fried (6693_CR22) 2017; 52
D Borsboom (6693_CR29) 2017; 16
M Zimmerman (6693_CR31) 2018; 17
MC Mullarkey (6693_CR25) 2018; 48
6693_CR14
DJ Robinaugh (6693_CR28) 2014; 123
6693_CR35
6693_CR34
F Ni (6693_CR36) 2024; 12
TO Kvålseth (6693_CR13) 1985; 39
H Ding (6693_CR12) 2024
NT Van Dam (6693_CR2) 2010; 186
G Vilagut (6693_CR3) 2016; 11
W Yan (6693_CR8) 2023; 13
SP Reise (6693_CR20) 2010; 92
SP Reise (6693_CR21) 2009; 5
LS Radloff (6693_CR1) 1977; 1
SW Choi (6693_CR32) 2009; 19
Z Yu (6693_CR10) 2024; 366
G Shen (6693_CR11) 2024; 12
RD Gibbons (6693_CR30) 2016; 12
K Kroenke (6693_CR7) 2003; 41
EC Baron (6693_CR6) 2017; 17
JR Edwards (6693_CR19) 2000; 5
Q Ruan (6693_CR27) 2023; 17
6693_CR26
EM Andresen (6693_CR4) 1994; 10
D Borsboom (6693_CR23) 2013; 9
T Yarkoni (6693_CR18) 2017; 12
R Jacobucci (6693_CR17) 2020; 15
S Van De Velde (6693_CR5) 2010; 71
EI Fried (6693_CR24) 2015; 13
M Greiner (6693_CR16) 2000; 45
JA Swets (6693_CR15) 1988; 240
F Wang (6693_CR9) 2024; 87
L Cai (6693_CR33) 2010; 75
References_xml – volume: 9
  start-page: 91
  issue: 1
  year: 2013
  ident: 6693_CR23
  publication-title: Annu Rev Clin Psychol
  doi: 10.1146/annurev-clinpsy-050212-185608
– ident: 6693_CR35
  doi: 10.1186/s12889-024-20699-z
– volume: 13
  start-page: 1
  year: 2015
  ident: 6693_CR24
  publication-title: BMC Med
  doi: 10.1186/s12916-015-0325-4
– volume: 11
  start-page: e0155431
  issue: 5
  year: 2016
  ident: 6693_CR3
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0155431
– volume: 240
  start-page: 1285
  issue: 4857
  year: 1988
  ident: 6693_CR15
  publication-title: Science
  doi: 10.1126/science.3287615
– volume: 5
  start-page: 27
  issue: 1
  year: 2009
  ident: 6693_CR21
  publication-title: Annu Rev Clin Psychol
  doi: 10.1146/annurev.clinpsy.032408.153553
– volume: 186
  start-page: 128
  issue: 1
  year: 2010
  ident: 6693_CR2
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2010.08.018
– volume: 13
  start-page: 2
  issue: 1
  year: 2023
  ident: 6693_CR8
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13010002
– volume: 10
  start-page: 77
  issue: 2
  year: 1994
  ident: 6693_CR4
  publication-title: Am J Prev Med
  doi: 10.1016/s0749-3797(18)30622-6
– volume: 12
  start-page: 1100
  issue: 6
  year: 2017
  ident: 6693_CR18
  publication-title: Perspectives on psychological science : a journal of the Association for Psychological Science
  doi: 10.1177/1745691617693393
– ident: 6693_CR14
  doi: 10.1002/9780470061572.eqr173
– volume: 16
  start-page: 5
  issue: 1
  year: 2017
  ident: 6693_CR29
  publication-title: World Psychiatry
  doi: 10.1002/wps.20375
– volume: 17
  start-page: 29
  issue: 1
  year: 2023
  ident: 6693_CR27
  publication-title: Child and Adolescent Psychiatry and Mental Health
  doi: 10.1186/s13034-023-00574-2
– volume: 123
  start-page: 510
  issue: 3
  year: 2014
  ident: 6693_CR28
  publication-title: J Abnorm Psychol
  doi: 10.1037/abn0000002
– volume: 15
  start-page: 809
  issue: 3
  year: 2020
  ident: 6693_CR17
  publication-title: Perspect Psychol Sci
  doi: 10.1177/1745691620902467
– volume: 19
  start-page: 125
  issue: 1
  year: 2009
  ident: 6693_CR32
  publication-title: Qual Life Res
  doi: 10.1007/s11136-009-9560-5
– volume: 71
  start-page: 305
  issue: 2
  year: 2010
  ident: 6693_CR5
  publication-title: Social Science and Medicine
  doi: 10.1016/j.socscimed.2010.03.035
– volume: 41
  start-page: 1284
  issue: 11
  year: 2003
  ident: 6693_CR7
  publication-title: Med Care
  doi: 10.1097/01.MLR.0000093487.78664.3C
– volume: 12
  start-page: 83
  issue: 1
  year: 2016
  ident: 6693_CR30
  publication-title: Annu Rev Clin Psychol
  doi: 10.1146/annurev-clinpsy-021815-093634
– volume: 17
  start-page: 258
  issue: 3
  year: 2018
  ident: 6693_CR31
  publication-title: World Psychiatry
  doi: 10.1002/wps.20569
– volume: 48
  start-page: 656
  issue: 4
  year: 2018
  ident: 6693_CR25
  publication-title: J Clin Child Adolesc Psychol
  doi: 10.1080/15374416.2018.1437735
– year: 2024
  ident: 6693_CR12
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2024.09.111
– volume: 1
  start-page: 385
  issue: 3
  year: 1977
  ident: 6693_CR1
  publication-title: Appl Psychol Meas
  doi: 10.1177/014662167700100306
– volume: 87
  start-page: 33
  year: 2024
  ident: 6693_CR9
  publication-title: Gen Hosp Psychiatry
  doi: 10.1016/j.genhosppsych.2024.01.010
– volume: 17
  start-page: 6
  issue: 1
  year: 2017
  ident: 6693_CR6
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-016-1178-x
– volume: 45
  start-page: 23
  issue: 1–2
  year: 2000
  ident: 6693_CR16
  publication-title: Prev Vet Med
  doi: 10.1016/S0167-5877(00)00115-X
– ident: 6693_CR26
  doi: 10.3389/fpsyt.2022.921781
– volume: 12
  start-page: 42
  issue: 1
  year: 2024
  ident: 6693_CR11
  publication-title: International Journal of Bipolar Disorders
  doi: 10.1186/s40345-024-00365-4
– ident: 6693_CR34
  doi: 10.18637/jss.v071.i05
– volume: 12
  start-page: 213
  issue: 1
  year: 2024
  ident: 6693_CR36
  publication-title: BMC Psychology
  doi: 10.1186/s40359-024-01702-z
– volume: 366
  start-page: 181
  year: 2024
  ident: 6693_CR10
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2024.08.121
– volume: 75
  start-page: 581
  issue: 4
  year: 2010
  ident: 6693_CR33
  publication-title: Psychometrika
  doi: 10.1007/s11336-010-9178-0
– volume: 39
  start-page: 279
  issue: 4
  year: 1985
  ident: 6693_CR13
  publication-title: Am Stat
  doi: 10.1080/00031305.1985.10479448
– volume: 5
  start-page: 155
  issue: 2
  year: 2000
  ident: 6693_CR19
  publication-title: Psychol Methods
  doi: 10.1037/1082-989x.5.2.155
– volume: 52
  start-page: 1
  year: 2017
  ident: 6693_CR22
  publication-title: Soc Psychiatry Psychiatr Epidemiol
  doi: 10.1007/s00127-016-1319-z
– volume: 92
  start-page: 544
  issue: 6
  year: 2010
  ident: 6693_CR20
  publication-title: J Pers Assess
  doi: 10.1080/00223891.2010.496477
SSID ssj0017851
Score 2.4163516
Snippet Objective To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while...
To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while...
Objective To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while...
ObjectiveTo develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while...
Abstract Objective To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 286
SubjectTerms Accuracy
Adolescent
Age
Algorithms
CES-D
Child
Children & youth
China
Computational psychiatry
Data collection
Depression - diagnosis
Depression screening
Depression, Mental
Depressive Disorder - diagnosis
Discriminant analysis
Epidemiology
Feature selection
Female
Humans
Learning algorithms
Machine Learning
Male
Mass Screening - methods
Medical screening
Medicine
Medicine & Public Health
Mental depression
Mental health
Methods
Predictive modeling
Psychiatric Status Rating Scales
Psychiatry
Psychological aspects
Psychometrics
Psychotherapy
Quantitative psychology
Recursive Feature Elimination
Stratified screening
Technology application
Teenagers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhRAXxJtAQUZC4gBWs7Fjj7mV0ooDrZB4qDfL60dZCbLV7pYDv4Efzdhx0qYIuHCNx5Ltecfjbwh5xpWy6FjmLDlHJlyMDLxQTPPWNZBam-fOc5_fqaMjOD7W7y-0-ko1YT08cH9wO44HJYMWymonvAUbG9HOlYj1XNcRMs5nrfSQTJX7g9RyfngiA3JnjVYYJSK1bkUXqzmDiRvKaP2_2-QLTulyweSlW9PsjA5ukhsliqS7_epvkSuhu02uHZZ78jvk52GukQy0NIU4YX6VzBr15zVCdBmppT1sbsRAlO7tf2BvKJoRTG1xCu1Bnl_RJVqVb4sf6dNYN9tRO0J60tLrh1pvT5P1pOmHMF3nDjtIepd8Otj_uPeWlb4LzGEwtWEcZK18HdomSKd4RJVF1XcNbzEZUU6pWgQnMHIIjQjCYRAzD9xHbZs2aBs9v0e2umUXHhBaxxn4medWykaAcBBBB-VxHrduXouKzAY2GFdAyVNvjK8mJycgTc86g6wzmXUGKvJinHPaQ3L8lfp14u5ImeC08wcUMlOEzPxLyCryPMmGSUqPy3O2vF3ATSb4LLOLdrGVXApZke0JJSqrmw4P0mWKsVgbNKsKozpodUWejsNpZiqA68LyLNMkcD0hcUP3e2Ect5RSZA4CR2AippM9T0e6xZcMJT7D-B1aUBV5OUj0-br-fKgP_8ehPiLXm6yRnDVym2xtVmfhMbnqvm8W69WTrM-_ACi-TjE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELagIMSFfQkUZCQkDmCRFzteuJXSigOtkApVb5bjpTwJkurllQO_gR_N2HFSUhYJrvGMFDsz34zj8TcIPaVCGAgsDYnBkTAbApGOCaJobSsZW5unznOH78T-vjw6Uu_zpbB-rHYfjyQTUie3lvxlD0gKXzW2X4UwqSiRF9GlOrLNxD36weF0dhDbzY_XY36rNwtBian_Vzz-KSCdL5Y8d2KaAtHu9f-bwg10LSeeeGuwlJvogm9voSt7-Wj9Nvq-l8oqPc59JI6JW0UkxO6srAh3ARs8MO0GyF3x9s4BeYMBeWA3DCp44IV-hTsAoi_Lb_HRVGrbYjOxgOLcHggbZ04i4OL4Dxn3qSkPiN5BH3d3Pmy_JblVA7GQf60JlbwUrvR15bkVNICXA1rYitawfxFWiJJ5yyDZ8BXzzELe03jqgjJV7ZUJjt5FG23X-vsIl2Eh3cJRw3nFJLMySOWFAz1qbFOyAi3Gr6dt5jGP7TQ-67SfkVwPy6xhmXVaZi0L9HzSORlYPP4q_ToaxSQZGbjTg251rLNDa0u94F4xYZRlzkgTKlY3goWyUWWQtEDPoknpiBPwetbk6w4wyci4pbcASmtOOeMF2pxJgn_b-fBolDrjS68BiQUkgrJWBXoyDUfNWDPX-u40yUQ-PsZhQvcGG56mFHfVVDIYkTPrns15PtIuPyX28QWk_LKWokAvRiM_e68_L-qDfxN_iK5WyU8oqfgm2livTv0jdNl-XS_71ePk8D8AovxSBA
  priority: 102
  providerName: Springer Nature
Title Machine learning-driven development of a stratified CES-D screening system: optimizing depression assessment through adaptive item selection
URI https://link.springer.com/article/10.1186/s12888-025-06693-8
https://www.ncbi.nlm.nih.gov/pubmed/40133848
https://www.proquest.com/docview/3187554859
https://www.proquest.com/docview/3181367468
https://pubmed.ncbi.nlm.nih.gov/PMC11938587
https://doaj.org/article/c3e76e947a9c4da8af245b74f0b90f83
Volume 25
WOSCitedRecordID wos001452641600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-244X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017851
  issn: 1471-244X
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-244X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017851
  issn: 1471-244X
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-244X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017851
  issn: 1471-244X
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-244X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017851
  issn: 1471-244X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-244X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017851
  issn: 1471-244X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1471-244X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017851
  issn: 1471-244X
  databaseCode: M2M
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-244X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017851
  issn: 1471-244X
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-244X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017851
  issn: 1471-244X
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagRYgL70egREZC4gBWN2uv7eWC2pIKJBJFLVThZDl-lEqwG5KUA7-BH83Y62zYInrhslL8kHbimW889ux8CD2nQmhwLDMSnCNhxnsiLROkpIXJZaA2j8xzJx_EeCyn03KSDtyWKa1yjYkRqG1twhn5LuieANcni_LN_DsJrFHhdjVRaFxF24E2O-i5mLYBVySeX38oI_nuErAY9CIQuIKjLSmRHWcUa_b_jcx_uKaLaZMX7k6jSzq89b_C3EY302YU7zXacwddcdVddH2UrtvvoV-jmGrpcOKWOCV2EdAR202qEa491ripvuthP4sPhsfkLQY0gggZpuCmVvRrXAM4fTv7GZra9NsK67YyKE6UQVhbPQ8gjMO5Ml5Goh4Yeh99Ohx-PHhHEn0DMbAnWxEqeSZs5orccSOoB8sHBDE5LSCmEUaIjDnDYAPicuaYgb3QzFHrS50XrtTe0gdoq6or9wjhzA-kHViqOc-ZZEZ6WTphYR7VZpaxHhqs11GZVNs8UGx8VTHGkVw1a69g7VVceyV76GU7Z95U9rh09H5Qj3ZkqModG-rFqUpGrgx1gruSCV0aZrXUPmfFTDCfzcrMS9pDL4JyqYAd8HpGp08gQMhQhUvtAbwWnHLGe2inMxJs3nS713qlEuYs1UapeuhZ2x1mhjy6ytXncUyo0cc4CPSw0eZWpBBpU8mgR3b0vCNzt6c6-xIrkg8gDJCFFD30am0Sm_f695_6-HIxnqAbeTRWSnK-g7ZWi3P3FF0zP1Zny0U_mnp8yj7a3h-OJ0f9eKICz1E-grbJ-9HkM_w6Oj75DdJxYvM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bbxQhGCW1GvXF-2W0KiYaH5R0FhhgTIypvaRNdxsTW9M3ZBmom-jOurvV6G_wt_gb_WAu69TYtz74OsBmYA_nMPDxHYSeMCkNCMuQBHEk3HpPVMElyVlmqQrW5tF57n1f7u2pw8P87RL61dyFCWGVDSdGoi5KG_bIVwF7EqRPZfnryRcSXKPC6WpjoVHBYtd9_wafbLNXOxvw_z6ldGtzf32b1K4CxMJSYU6YEqksUpdRJ6xkHgAJwLaUZbDUllbKlDvLQRcd5Y5bkOihY4XPDc1cbnzB4HfPofMclDA4JgzooD21CEb3zcUcJVZnwP2Aw2AYC8KeM6I64hc9Av5Wgj-k8GSY5omz2iiBW1f_t8G7hq7Ui228Vs2O62jJjW-gi4M6nOAm-jmIoaQO194ZR6SYBvbHxSKUCpceG1xlF_awXsfrm-_IBga2dS40wVUu7Je4BPL9PPoRHrXhxWNs2synuLZEwqYwkyAyOOyb41k0IoKqt9DBmYzFbbQ8LsfuLsKp76miVzAjBOWKW-VV7mQB7Zixw5QnqNfgRts6d3uwEPmk4zecErrCmgas6Yg1rRL0vG0zqTKXnFr7TYBjWzNkHY8PyumRrklMW-akcDmXJre8MMp4yrOh5D4d5qlXLEHPAph14EZ4PWvqKx7QyZBlTK-BfGSCCS4StNKpCZxmu8UNjnXNqTO9AHGCHrfFoWWIExy78jjWCTkIuYAO3almT9ulsJPAFIcS1ZlXnT53S8ajjzHjeg8-c1SmZIJeNFNw8V7_HtR7p3fjEbq0vT_o6_7O3u59dJlGomCEihW0PJ8euwfogv06H82mDyPNYPThrKfmb5Qjtpc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagoIoL70eggJGQOIDVbOz4wa20XYFoVxWFqjfL8aOsBMlqd8uB38CPZuxk06Y8JMQ1npFiZ_zNTDz-BqHnVAgDjqUi0TkSZkMg0jFBFC1tIWNr89R57mhPTCby-FgdnLvFn6rdV0eS7Z2GyNJULzdnLrRbXPLNBaAqfOHYihVcpqJEXkZXGGQysajrw-FRf44QW8-vrsr8Vm_gjhJr_6_YfM45XSycvHB6mpzS-Mb_T-cmut4FpHirtaBb6JKvb6P1_e7I_Q76sZ_KLT3u-kucEDePCIndWbkRbgI2uGXgDRDT4u3dQ7KDAZEgSwYV3PJFv8YNANTX6ff4qC_BrbHp2UFx1zYIG2dmEYhx_LeMF6lZD4jeRZ_Gux-335KuhQOxEJctCZU8Fy73ZeG5FTTA7gcUsQUtIa8RVoicecsgCPEF88xCPFR56oIyRemVCY7eQ2t1U_sHCOdhJN3IUcN5wSSzMkjlhQM9amyVswyNVl9S247fPLbZ-KJTniO5bpdZwzLrtMxaZuhlrzNr2T3-Kv0mGkgvGZm504NmfqK7ja4t9YJ7xYRRljkjTShYWQkW8krlQdIMvYjmpSN-wOtZ012DgElGJi69BRBbcsoZz9DGQBL2vR0OrwxUd7iz0IDQAgJEWaoMPeuHo2aspat9c5pkIk8f4zCh-60991OK2TaVDEbkwNIHcx6O1NPPiZV8BKmALKXI0KuVwZ-9158X9eG_iT9F6wc7Y733bvL-EbpWpC1DScE30Npyfuofo6v223K6mD9JOPATr1BdzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-driven+development+of+a+stratified+CES-D+screening+system%3A+optimizing+depression+assessment+through+adaptive+item+selection&rft.jtitle=BMC+psychiatry&rft.au=Ruo-Fei+Xu&rft.au=Zhen-Jing%2C+Liu&rft.au=Ouyang%2C+Shunan&rft.au=Qin+Dong&rft.date=2025-03-26&rft.pub=Springer+Nature+B.V&rft.eissn=1471-244X&rft.volume=25&rft.spage=1&rft_id=info:doi/10.1186%2Fs12888-025-06693-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-244X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-244X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-244X&client=summon