Deep learning-based algorithm for the detection of idiopathic full thickness macular holes in spectral domain optical coherence tomography
Background Automated identification of spectral domain optical coherence tomography (SD-OCT) features can improve retina clinic workflow efficiency as they are able to detect pathologic findings. The purpose of this study was to test a deep learning (DL)-based algorithm for the identification of Idi...
Uložené v:
| Vydané v: | International journal of retina and vitreous Ročník 10; číslo 1; s. 9 - 7 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
23.01.2024
Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 2056-9920, 2056-9920 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Background
Automated identification of spectral domain optical coherence tomography (SD-OCT) features can improve retina clinic workflow efficiency as they are able to detect pathologic findings. The purpose of this study was to test a deep learning (DL)-based algorithm for the identification of Idiopathic Full Thickness Macular Hole (IFTMH) features and stages of severity in SD-OCT B-scans.
Methods
In this cross-sectional study, subjects solely diagnosed with either IFTMH or Posterior Vitreous Detachment (PVD) were identified excluding secondary causes of macular holes, any concurrent maculopathies, or incomplete records. SD-OCT scans (512 × 128) from all subjects were acquired with CIRRUS
™
HD-OCT (ZEISS, Dublin, CA) and reviewed for quality. In order to establish a ground truth classification, each SD-OCT B-scan was labeled by two trained graders and adjudicated by a retina specialist when applicable. Two test sets were built based on different gold-standard classification methods. The sensitivity, specificity and accuracy of the algorithm to identify IFTMH features in SD-OCT B-scans were determined. Spearman’s correlation was run to examine if the algorithm’s probability score was associated with the severity stages of IFTMH.
Results
Six hundred and one SD-OCT cube scans from 601 subjects (299 with IFTMH and 302 with PVD) were used. A total of 76,928 individual SD-OCT B-scans were labeled gradable by the algorithm and yielded an accuracy of 88.5% (test set 1, 33,024 B-scans) and 91.4% (test set 2, 43,904 B-scans) in identifying SD-OCT features of IFTMHs. A Spearman’s correlation coefficient of 0.15 was achieved between the algorithm’s probability score and the stages of the 299 (47 [15.7%] stage 2, 56 [18.7%] stage 3 and 196 [65.6%] stage 4) IFTMHs cubes studied.
Conclusions
The DL-based algorithm was able to accurately detect IFTMHs features on individual SD-OCT B-scans in both test sets. However, there was a low correlation between the algorithm’s probability score and IFTMH severity stages. The algorithm may serve as a clinical decision support tool that assists with the identification of IFTMHs. Further training is necessary for the algorithm to identify stages of IFTMHs. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2056-9920 2056-9920 |
| DOI: | 10.1186/s40942-024-00526-8 |