Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials

Highlights Detailed summary of current trends in the advancement of flexible EMI shielding materials. The theoretical shielding mechanisms and the latest concept of "green shielding" index (g s ) are outlined. Functional applications of flexible EMI shielding materials are introduced from...

Full description

Saved in:
Bibliographic Details
Published in:Nano-micro letters Vol. 14; no. 1; pp. 80 - 31
Main Authors: Cheng, Junye, Li, Chuanbing, Xiong, Yingfei, Zhang, Huibin, Raza, Hassan, Ullah, Sana, Wu, Jinyi, Zheng, Guangping, Cao, Qi, Zhang, Deqing, Zheng, Qingbin, Che, Renchao
Format: Journal Article
Language:English
Published: Singapore Springer Nature Singapore 01.12.2022
Springer Nature B.V
Springer Singapore
SpringerOpen
Subjects:
ISSN:2311-6706, 2150-5551, 2150-5551
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Highlights Detailed summary of current trends in the advancement of flexible EMI shielding materials. The theoretical shielding mechanisms and the latest concept of "green shielding" index (g s ) are outlined. Functional applications of flexible EMI shielding materials are introduced from thermal conductivity, hydrophobicity to transparency, sensing even multiple functions. Exclusive insights in challenges and future design strategies opportunities for flexible EMI shielding materials are provided. With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.
AbstractList Detailed summary of current trends in the advancement of flexible EMI shielding materials.The theoretical shielding mechanisms and the latest concept of "green shielding" index (gs) are outlined.Functional applications of flexible EMI shielding materials are introduced from thermal conductivity, hydrophobicity to transparency, sensing even multiple functions.Exclusive insights in challenges and future design strategies opportunities for flexible EMI shielding materials are provided. With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.
With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.
Highlights Detailed summary of current trends in the advancement of flexible EMI shielding materials. The theoretical shielding mechanisms and the latest concept of "green shielding" index (g s ) are outlined. Functional applications of flexible EMI shielding materials are introduced from thermal conductivity, hydrophobicity to transparency, sensing even multiple functions. Exclusive insights in challenges and future design strategies opportunities for flexible EMI shielding materials are provided. With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.
Abstract With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.
With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.
HighlightsDetailed summary of current trends in the advancement of flexible EMI shielding materials.The theoretical shielding mechanisms and the latest concept of "green shielding" index (gs) are outlined.Functional applications of flexible EMI shielding materials are introduced from thermal conductivity, hydrophobicity to transparency, sensing even multiple functions.Exclusive insights in challenges and future design strategies opportunities for flexible EMI shielding materials are provided.With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.
ArticleNumber 80
Author Raza, Hassan
Wu, Jinyi
Zhang, Deqing
Li, Chuanbing
Ullah, Sana
Che, Renchao
Cao, Qi
Zheng, Qingbin
Xiong, Yingfei
Cheng, Junye
Zheng, Guangping
Zhang, Huibin
Author_xml – sequence: 1
  givenname: Junye
  surname: Cheng
  fullname: Cheng, Junye
  organization: School of Science and Engineering, The Chinese University of Hong Kong
– sequence: 2
  givenname: Chuanbing
  surname: Li
  fullname: Li, Chuanbing
  organization: School of Science and Engineering, The Chinese University of Hong Kong
– sequence: 3
  givenname: Yingfei
  surname: Xiong
  fullname: Xiong, Yingfei
  organization: School of Materials Science and Engineering, Qiqihar University
– sequence: 4
  givenname: Huibin
  surname: Zhang
  fullname: Zhang, Huibin
  organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University
– sequence: 5
  givenname: Hassan
  surname: Raza
  fullname: Raza, Hassan
  organization: Department of Mechanical Engineering, Hong Kong Polytechnic University
– sequence: 6
  givenname: Sana
  surname: Ullah
  fullname: Ullah, Sana
  organization: Department of Mechanical Engineering, Hong Kong Polytechnic University
– sequence: 7
  givenname: Jinyi
  surname: Wu
  fullname: Wu, Jinyi
  organization: School of Science and Engineering, The Chinese University of Hong Kong
– sequence: 8
  givenname: Guangping
  surname: Zheng
  fullname: Zheng, Guangping
  organization: Department of Mechanical Engineering, Hong Kong Polytechnic University
– sequence: 9
  givenname: Qi
  surname: Cao
  fullname: Cao, Qi
  email: qicao@seu.edu.cn
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University
– sequence: 10
  givenname: Deqing
  surname: Zhang
  fullname: Zhang, Deqing
  organization: School of Materials Science and Engineering, Qiqihar University
– sequence: 11
  givenname: Qingbin
  surname: Zheng
  fullname: Zheng, Qingbin
  email: zhengqingbin@cuhk.edu.cn
  organization: School of Science and Engineering, The Chinese University of Hong Kong
– sequence: 12
  givenname: Renchao
  surname: Che
  fullname: Che, Renchao
  email: rcche@fudan.edu.cn
  organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35333993$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9PFjEQxjcGI4h8AQ9mEy9eVvt_dy8mBEHfBGIiem667XQp6dti2yXw7e3LiygcOM2kfZ5fpzPzutkJMUDTvMXoI0ao_5QZGgjqECEdqhnt-hfNHsEcdZxzvFNzinEneiR2m4Oc3YQ4YT3pOXvV7FJOKR1Hutfc_AANobSH5loFDbl1of0C2c2hPS9JFZhdPVTBtGeLL84uQRcXg_Ku3LbRticebtzkoT32oEuKazUHKE63q1AgWUhQqe35hQNvXJjbs4pMTvn8pnlpa4CD-7jf_Do5_nn0rTv9_nV1dHjaaYH60qkJjwzpiQKxWGMxMdZrbjhCuhd6mrRFILRVAxNiGCk1WljCBZ04wkwJoPvNass1UV3Kq-TWKt3KqJy8O4hplirVgj1Ig42djAHCe8s0hmHE3OgKsWDYpMfK-rxlXS3TGsymcUn5R9DHN8FdyDley2Hkoh9oBXy4B6T4e4Fc5NplDd6rAHHJkgjGEMED30jfP5FexiXVxt-pKCYMj6Kq3v1f0UMpfwdcBWQr0CnmnMA-SDCSm0WS20WSdZHk3SLJvpqGJybtitrMvf7K-eetdGvN9Z0wQ_pX9jOuP7pN37E
CitedBy_id crossref_primary_10_1016_j_cej_2023_147446
crossref_primary_10_1016_j_indcrop_2024_119310
crossref_primary_10_1016_j_jre_2023_12_007
crossref_primary_10_1002_mame_202300167
crossref_primary_10_1002_adfm_202425506
crossref_primary_10_1016_j_jece_2024_112579
crossref_primary_10_1039_D5MH00577A
crossref_primary_10_1007_s40820_023_01203_5
crossref_primary_10_1039_D5NR01172H
crossref_primary_10_1016_j_carbon_2023_118716
crossref_primary_10_1016_j_jelechem_2023_117394
crossref_primary_10_1002_adfm_202518265
crossref_primary_10_1016_j_polymer_2024_127175
crossref_primary_10_1007_s11468_024_02695_6
crossref_primary_10_1007_s10854_025_15244_6
crossref_primary_10_1016_j_jcis_2023_07_054
crossref_primary_10_1016_j_mtcomm_2025_111996
crossref_primary_10_1016_j_jallcom_2024_175170
crossref_primary_10_1002_adfm_202422487
crossref_primary_10_1016_j_mtphys_2024_101521
crossref_primary_10_1007_s42114_023_00792_4
crossref_primary_10_3390_electronics14071350
crossref_primary_10_1002_adem_202402030
crossref_primary_10_1016_j_mtcomm_2024_108506
crossref_primary_10_1002_adfm_202415921
crossref_primary_10_1016_j_mtcomm_2023_106267
crossref_primary_10_1007_s40843_022_2269_0
crossref_primary_10_1007_s10965_024_04207_w
crossref_primary_10_1016_j_carbon_2024_119420
crossref_primary_10_1080_25740881_2024_2419644
crossref_primary_10_1016_j_carbon_2023_118610
crossref_primary_10_1016_j_ccr_2024_215964
crossref_primary_10_1002_adfm_202210456
crossref_primary_10_1007_s40820_024_01398_1
crossref_primary_10_1016_j_compositesb_2022_110402
crossref_primary_10_1109_TDEI_2023_3314704
crossref_primary_10_1002_advs_202510078
crossref_primary_10_3390_electronics12234780
crossref_primary_10_1016_j_jmst_2025_02_011
crossref_primary_10_1002_smtd_202300112
crossref_primary_10_1109_TCPMT_2024_3451730
crossref_primary_10_1016_j_jcis_2025_01_207
crossref_primary_10_1002_adfm_202404824
crossref_primary_10_1016_j_esci_2025_100407
crossref_primary_10_1039_D4MH00273C
crossref_primary_10_1002_adem_202501259
crossref_primary_10_3390_nano13050787
crossref_primary_10_3390_ma16072728
crossref_primary_10_1016_j_jallcom_2023_171644
crossref_primary_10_1016_j_jallcom_2025_179969
crossref_primary_10_1002_adfm_202417215
crossref_primary_10_1016_j_jcis_2022_10_083
crossref_primary_10_1080_10408436_2023_2214577
crossref_primary_10_3390_polym15224469
crossref_primary_10_1016_j_est_2024_111937
crossref_primary_10_1016_j_carbon_2022_06_026
crossref_primary_10_1016_j_wees_2024_07_003
crossref_primary_10_1016_j_compscitech_2024_110589
crossref_primary_10_1049_mna2_12204
crossref_primary_10_1016_j_compscitech_2024_110582
crossref_primary_10_1016_j_polymer_2024_126890
crossref_primary_10_1016_j_apsusc_2022_155707
crossref_primary_10_1016_j_ijbiomac_2024_138557
crossref_primary_10_1016_j_ceramint_2025_07_314
crossref_primary_10_3390_polym16131837
crossref_primary_10_1007_s10965_023_03843_y
crossref_primary_10_1002_smll_202410283
crossref_primary_10_1080_15583724_2024_2335504
crossref_primary_10_1007_s10570_023_05202_y
crossref_primary_10_1002_adfm_202420292
crossref_primary_10_1016_j_carbon_2025_120327
crossref_primary_10_1007_s12598_025_03548_9
crossref_primary_10_1016_j_apsusc_2022_155142
crossref_primary_10_1002_pc_70401
crossref_primary_10_1016_j_cej_2023_143960
crossref_primary_10_1016_j_cej_2023_147643
crossref_primary_10_1016_j_compositesa_2023_107536
crossref_primary_10_1016_j_compositesa_2025_108860
crossref_primary_10_1016_j_eurpolymj_2023_112029
crossref_primary_10_1016_j_compositesa_2025_109154
crossref_primary_10_1016_j_cej_2024_159114
crossref_primary_10_1002_smll_202405950
crossref_primary_10_1016_j_ijbiomac_2024_133891
crossref_primary_10_1016_j_jcis_2023_06_041
crossref_primary_10_1016_j_cej_2022_138011
crossref_primary_10_1016_j_cej_2024_159112
crossref_primary_10_1021_acsami_5c08956
crossref_primary_10_1016_j_mser_2024_100795
crossref_primary_10_1007_s11664_022_10074_2
crossref_primary_10_1016_j_jallcom_2023_172679
crossref_primary_10_1002_adfm_202506746
crossref_primary_10_1016_j_carbon_2025_120432
crossref_primary_10_1002_adfm_202315722
crossref_primary_10_1016_j_matchemphys_2024_129143
crossref_primary_10_1007_s40820_022_00926_1
crossref_primary_10_1002_admt_202501239
crossref_primary_10_1016_j_compscitech_2025_111159
crossref_primary_10_1016_j_apsusc_2024_159613
crossref_primary_10_1021_acsnano_4c00819
crossref_primary_10_1016_j_mtphys_2024_101440
crossref_primary_10_1016_j_jmst_2024_08_022
crossref_primary_10_1016_j_ceramint_2024_12_469
crossref_primary_10_1016_j_coco_2025_102294
crossref_primary_10_1007_s40820_023_01280_6
crossref_primary_10_1088_2058_8585_acc879
crossref_primary_10_3390_coatings13101670
crossref_primary_10_1007_s13399_024_06330_6
crossref_primary_10_1016_j_compositesb_2025_112167
crossref_primary_10_1039_D5RA04475H
crossref_primary_10_1016_j_jmrt_2025_06_005
crossref_primary_10_1016_j_jallcom_2023_171593
crossref_primary_10_1016_j_carbon_2023_118655
crossref_primary_10_1002_adma_202511099
crossref_primary_10_1038_s41467_024_51732_9
crossref_primary_10_1007_s41127_023_00056_4
crossref_primary_10_1016_j_compstruct_2025_119496
crossref_primary_10_1016_j_progpolymsci_2025_101990
crossref_primary_10_1002_smll_202408570
crossref_primary_10_1007_s40820_023_01061_1
crossref_primary_10_1016_j_flatc_2025_100909
crossref_primary_10_1016_j_indcrop_2025_121018
crossref_primary_10_1016_j_jmst_2024_10_006
crossref_primary_10_3390_nano15171346
crossref_primary_10_1016_j_compstruct_2022_116543
crossref_primary_10_1016_j_conbuildmat_2023_132385
crossref_primary_10_1016_j_susmat_2024_e01088
crossref_primary_10_1016_j_jallcom_2025_180988
crossref_primary_10_1039_D5TA04606H
crossref_primary_10_1007_s11082_023_05285_8
crossref_primary_10_1007_s12633_025_03392_7
crossref_primary_10_1002_smll_202304327
crossref_primary_10_1016_j_carbon_2024_119592
crossref_primary_10_1108_PRT_11_2023_0101
crossref_primary_10_1016_j_mtcomm_2024_110351
crossref_primary_10_1016_j_cej_2023_142049
crossref_primary_10_1088_1361_6528_ada3dc
crossref_primary_10_1016_j_compositesb_2025_112735
crossref_primary_10_1016_j_compscitech_2024_110780
crossref_primary_10_1007_s40820_024_01494_2
crossref_primary_10_1016_j_coco_2024_102217
crossref_primary_10_1007_s10904_025_03597_8
crossref_primary_10_1016_j_cej_2024_153586
crossref_primary_10_1016_j_ijbiomac_2024_134162
crossref_primary_10_1016_j_materresbull_2024_112672
crossref_primary_10_1007_s40820_022_00990_7
crossref_primary_10_1016_j_carbon_2024_119244
crossref_primary_10_1149_2162_8777_adedb5
crossref_primary_10_1016_j_mtcomm_2024_110119
crossref_primary_10_1007_s40820_023_01122_5
crossref_primary_10_3390_ijerph20054388
crossref_primary_10_1016_j_cej_2023_142042
crossref_primary_10_1016_j_carbon_2023_118435
crossref_primary_10_1016_j_matchemphys_2023_127553
crossref_primary_10_1016_j_matlet_2025_138489
crossref_primary_10_1016_j_carbon_2023_118315
crossref_primary_10_1007_s10854_024_12084_8
crossref_primary_10_1002_advs_202501540
crossref_primary_10_1007_s00226_024_01588_5
crossref_primary_10_1016_j_diamond_2025_112244
crossref_primary_10_1016_j_nxmate_2024_100242
crossref_primary_10_1016_j_carbon_2024_119809
crossref_primary_10_1016_j_coco_2024_102029
crossref_primary_10_1016_j_compositesa_2023_107694
crossref_primary_10_1016_j_jcis_2023_06_087
crossref_primary_10_1016_j_jmst_2023_08_055
crossref_primary_10_1038_s41467_024_50541_4
crossref_primary_10_1364_OME_548069
crossref_primary_10_1016_j_cej_2023_141749
crossref_primary_10_1002_adma_202312596
crossref_primary_10_1007_s10853_024_09543_2
crossref_primary_10_1007_s40843_024_3329_0
crossref_primary_10_1016_j_jallcom_2024_174256
crossref_primary_10_1002_adfm_202506308
crossref_primary_10_1007_s40820_023_01039_z
crossref_primary_10_1016_j_cej_2023_146992
crossref_primary_10_1016_j_cej_2024_149186
crossref_primary_10_1021_acs_biomac_5c01374
crossref_primary_10_26599_NR_2025_94907500
crossref_primary_10_1016_j_carbon_2023_01_007
crossref_primary_10_1016_j_colsurfa_2023_131746
crossref_primary_10_1016_j_carbon_2023_118425
crossref_primary_10_3390_ma17112767
crossref_primary_10_1007_s40820_024_01591_2
crossref_primary_10_1007_s40820_023_01158_7
crossref_primary_10_1038_s41598_025_04531_1
crossref_primary_10_1002_adma_202311135
crossref_primary_10_1002_adfm_202415640
crossref_primary_10_1007_s40820_023_01295_z
crossref_primary_10_1016_j_carbon_2024_119386
crossref_primary_10_1016_j_ijbiomac_2025_142054
crossref_primary_10_1007_s12613_023_2795_2
crossref_primary_10_1016_j_mseb_2025_118539
crossref_primary_10_1016_j_cej_2023_145409
crossref_primary_10_1002_adfm_202517665
crossref_primary_10_1016_j_surfin_2023_103825
crossref_primary_10_1016_j_indcrop_2023_117713
crossref_primary_10_1016_j_apmt_2024_102500
crossref_primary_10_1002_marc_202400585
crossref_primary_10_1016_j_carbon_2024_119155
crossref_primary_10_1016_j_diamond_2022_109374
crossref_primary_10_3390_nano14070647
crossref_primary_10_1016_j_cej_2025_159382
crossref_primary_10_1016_j_jcis_2023_05_076
crossref_primary_10_1021_acsaenm_4c00709
crossref_primary_10_1016_j_apsusc_2025_162294
crossref_primary_10_1007_s12221_025_01063_3
crossref_primary_10_1007_s40820_024_01588_x
crossref_primary_10_1016_j_cej_2024_152696
crossref_primary_10_1016_j_coco_2024_102011
crossref_primary_10_1016_j_jallcom_2024_175119
crossref_primary_10_1016_j_compscitech_2024_110988
crossref_primary_10_1016_j_ijhydene_2025_01_379
crossref_primary_10_1007_s12274_022_4512_2
crossref_primary_10_1016_j_ijleo_2023_170696
crossref_primary_10_1021_acsami_5c07554
crossref_primary_10_1016_j_jclepro_2024_143636
crossref_primary_10_1016_j_matlet_2024_137751
crossref_primary_10_1016_j_mtphys_2024_101617
crossref_primary_10_1039_D2NR05047A
crossref_primary_10_1109_ACCESS_2025_3529280
crossref_primary_10_1002_adfm_202407439
crossref_primary_10_1016_j_cej_2023_146834
crossref_primary_10_1007_s13391_025_00585_5
crossref_primary_10_1007_s10854_024_13176_1
crossref_primary_10_1002_admt_202401998
crossref_primary_10_1007_s40820_024_01454_w
crossref_primary_10_1016_j_ceramint_2022_10_323
crossref_primary_10_1063_5_0171437
crossref_primary_10_1016_j_surfin_2024_104819
crossref_primary_10_1016_j_jallcom_2025_183166
crossref_primary_10_3390_jfb16050166
crossref_primary_10_3390_mi15020187
crossref_primary_10_1016_j_mtnano_2025_100583
crossref_primary_10_1016_j_mtcomm_2024_109500
crossref_primary_10_1016_j_apmt_2024_102565
crossref_primary_10_1002_adem_202401304
crossref_primary_10_1002_pi_6528
crossref_primary_10_1002_app_54658
crossref_primary_10_1016_j_carbon_2025_120831
crossref_primary_10_1016_j_ceramint_2024_03_140
crossref_primary_10_1016_j_talanta_2024_127085
crossref_primary_10_1002_admi_202300440
crossref_primary_10_1016_j_inoche_2025_115078
crossref_primary_10_1016_j_compscitech_2023_110067
crossref_primary_10_1016_j_jallcom_2025_182523
crossref_primary_10_1016_j_jmst_2025_08_009
crossref_primary_10_1039_D5TA05467B
crossref_primary_10_1016_j_cej_2024_151359
crossref_primary_10_1016_j_jallcom_2025_182404
crossref_primary_10_1016_j_mser_2024_100823
crossref_primary_10_26599_NR_2025_94907531
crossref_primary_10_1016_j_jallcom_2023_173019
crossref_primary_10_1016_j_diamond_2022_109422
crossref_primary_10_1016_j_carbon_2024_119189
crossref_primary_10_1016_j_carbon_2025_120700
crossref_primary_10_1002_pi_6514
crossref_primary_10_1016_j_cej_2023_145296
crossref_primary_10_1080_15583724_2024_2319585
crossref_primary_10_1002_adfm_202509048
crossref_primary_10_1016_j_compositesa_2023_107476
crossref_primary_10_62638_ZasMat1215
crossref_primary_10_1016_j_synthmet_2024_117687
crossref_primary_10_3390_polym16243549
crossref_primary_10_1002_mame_202300301
crossref_primary_10_1016_j_compscitech_2024_110490
crossref_primary_10_1016_j_materresbull_2023_112630
crossref_primary_10_1016_j_cej_2024_157311
crossref_primary_10_1007_s10973_023_12793_y
crossref_primary_10_1016_j_jmst_2024_01_008
crossref_primary_10_1016_S1872_5805_24_60840_1
crossref_primary_10_1016_j_jallcom_2023_170872
crossref_primary_10_1016_j_carbon_2025_120250
crossref_primary_10_1016_j_cej_2025_163716
crossref_primary_10_1016_j_jcis_2022_09_003
crossref_primary_10_1016_j_mtcomm_2023_107862
crossref_primary_10_1039_D4QI02776K
crossref_primary_10_3390_en15124455
crossref_primary_10_1016_j_diamond_2024_111688
crossref_primary_10_1016_j_chemosphere_2023_139441
crossref_primary_10_1016_j_carbon_2023_118380
crossref_primary_10_1021_acsanm_5c03629
crossref_primary_10_1016_j_jestch_2024_101838
crossref_primary_10_1016_j_carbon_2023_118245
crossref_primary_10_1016_j_carbon_2024_119875
crossref_primary_10_1039_D5NR02300A
crossref_primary_10_1002_smll_202501879
crossref_primary_10_1016_j_ijbiomac_2024_133347
crossref_primary_10_1177_15280837251364519
crossref_primary_10_3390_nano14131099
crossref_primary_10_1016_j_compositesa_2022_107063
crossref_primary_10_3390_fib11120110
crossref_primary_10_1016_j_mtcomm_2022_104608
crossref_primary_10_1016_j_compositesb_2024_112041
crossref_primary_10_1016_j_jallcom_2024_174627
crossref_primary_10_1007_s40820_024_01540_z
crossref_primary_10_1111_jace_19642
crossref_primary_10_1016_j_cej_2024_154954
crossref_primary_10_1002_slct_202204132
crossref_primary_10_1021_acsapm_4c03385
crossref_primary_10_1016_j_colsurfa_2024_135109
crossref_primary_10_1021_acsanm_5c01451
crossref_primary_10_3390_ma16206736
crossref_primary_10_1002_smll_202304278
Cites_doi 10.3390/polym10121319
10.1016/j.jpcs.2019.05.041
10.1021/am508527s
10.1039/C6TC04780G
10.1039/C4NR05547K
10.1016/j.jmst.2021.05.001
10.1039/C4TC01285B
10.1039/C5TC02512E
10.1007/s12274-017-1758-1
10.1002/adfm.201806819
10.1002/adma.201503149
10.1002/adma.201403735
10.1002/adfm.202108194
10.1016/j.carbon.2013.10.070
10.1021/acsami.5b11715
10.1002/adma.201908496
10.1016/j.jmst.2021.08.005
10.1002/adma.201504438
10.1021/acsami.8b22212
10.1016/j.compscitech.2006.06.015
10.1007/s10570-017-1373-z
10.1063/5.0075019
10.1021/acsami.6b15826
10.1021/am508683p
10.1016/j.envres.2018.01.037
10.1016/j.compositesb.2017.03.022
10.1016/j.carbon.2009.02.030
10.1002/adma.201204196
10.1007/s10853-016-0702-1
10.1002/app.1253
10.1016/j.apsusc.2018.08.152
10.1039/C3NR06092F
10.1016/j.jmat.2021.09.003
10.1016/j.compositesa.2019.05.031
10.1021/acsnano.8b05739
10.1021/acsami.0c05688
10.1016/j.envint.2018.08.064
10.1093/toxsci/kfx221
10.1016/j.carbon.2018.03.023
10.1039/C9TC03309B
10.1021/cm103441u
10.1016/j.carbon.2013.04.008
10.1016/j.carbon.2016.07.015
10.1002/masy.201800097
10.1016/j.cej.2020.124608
10.1002/adma.200306460
10.1016/j.apsusc.2018.07.107
10.1021/acsami.9b17513
10.1016/j.apsusc.2017.03.293
10.1021/jp4058498
10.1016/j.carbon.2013.08.043
10.1038/nmat3001
10.1016/j.carbon.2018.03.061
10.1021/am502103u
10.1002/adma.201907499
10.1021/acsami.9b06509
10.1016/j.nanoen.2020.104741
10.1021/acsaelm.0c00490
10.1038/s41528-019-0050-8
10.1088/1361-6528/ab35fa
10.1016/j.compositesa.2020.106229
10.1016/j.carbon.2012.04.030
10.1126/science.aag2421
10.1021/acsami.6b11989
10.1016/j.carbon.2017.05.100
10.1016/j.polymer.2021.124413
10.1021/acsami.0c04482
10.1016/j.scriptamat.2009.03.048
10.1016/j.scib.2019.10.011
10.1016/j.carbon.2019.01.030
10.1007/s10854-018-9068-2
10.1002/smll.201800534
10.1073/pnas.2105838118
10.1002/aelm.201900796
10.1063/1.3152764
10.1002/pssr.201409151
10.1002/adfm.202000883
10.1016/j.carbon.2014.05.014
10.1063/1.4809675
10.3390/nano10040702
10.1016/j.carbon.2018.09.014
10.1002/adma.201304138
10.1002/adom.201900267
10.1016/j.carbon.2018.04.086
10.1016/j.carbon.2015.10.101
10.1016/j.actamat.2017.03.031
10.1002/adfm.201403809
10.1002/adfm.202102812
10.1016/j.carbon.2019.02.068
10.1039/C9RA08679J
10.1126/science.aad1080
10.1016/j.jmat.2021.02.017
10.1016/j.compositesb.2019.107123
10.1016/j.compscitech.2020.107995
10.1002/adma.201405788
10.1002/mame.201900482
10.1021/acsami.6b06455
10.1063/1.1532540
10.1016/j.apsusc.2020.147052
10.1016/j.carbon.2018.10.056
10.1039/C9TC05462F
10.1002/admt.201900761
10.1007/s00339-019-2430-2
10.1007/s40145-019-0328-2
10.1016/j.jallcom.2018.01.081
10.1002/anie.201908402
10.1016/j.cej.2018.11.051
10.1002/adfm.201903960
10.1021/acsomega.9b03641
10.1016/j.carbon.2016.12.092
10.1016/j.carbon.2019.01.009
10.1063/1.2210187
10.1039/C7NR07346A
10.1002/adma.201702367
10.1002/adfm.201901448
10.1007/s10853-014-8429-3
10.1016/j.jallcom.2020.154531
10.1016/j.carbon.2018.02.084
10.1002/adma.201305293
10.1002/em.22343
10.1021/am502412q
10.1021/acsami.0c07122
10.1039/D0TA11040J
10.1002/smll.202100970
10.1016/j.envres.2015.11.011
10.1016/j.matdes.2016.05.005
10.1016/j.cej.2019.122625
10.1039/C5TA01457C
10.1021/acsami.8b21671
10.1021/acsanm.8b02150
10.1016/j.carbon.2017.11.055
10.1016/j.jallcom.2019.02.294
10.1155/2013/591893
10.1021/am502910d
10.1039/C8TA09800J
10.1016/j.jmmm.2007.10.030
10.1088/1361-6528/28/4/045710
10.1007/s10854-017-6664-5
10.1021/acsami.7b01017
10.1016/j.cej.2019.03.295
10.1016/j.compositesa.2016.03.009
10.1021/acsami.6b02652
10.1021/nl0602589
10.1039/C6TC01619G
10.1007/s12274-017-1664-6
10.1021/acsnano.0c02401
10.1088/1361-6528/ab8b8d
10.1021/cr068112h
10.1039/D1TA00417D
10.1016/j.carbon.2020.11.089
10.1016/j.carbon.2015.05.033
10.1016/j.jallcom.2011.01.058
10.1039/C8NR07351A
10.1016/j.polymertesting.2017.02.021
10.1039/C7NR05951E
10.1021/acsami.7b04602
10.1016/j.carbon.2016.02.040
10.1016/s1470-2045(11)70147-4
10.1039/C3NR04565J
10.1007/s10854-019-01315-y
10.1016/j.matdes.2018.02.047
10.1039/C3NR05313J
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-022-00823-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
ProQuest Materials Science Database (NC LIVE)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 31
ExternalDocumentID oai_doaj_org_article_d1dfbdde257f4c1e8915dca6efed4bc9
PMC8956783
35333993
10_1007_s40820_022_00823_7
Genre Journal Article
Review
GrantInformation_xml – fundername: Shanghai Jiao Tong University
– fundername: ;
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c607t-ab1940cb3e2f1c16b447c5d500c76cbbcf0e6cfa84668933dc6f2563b5014a6e3
IEDL.DBID M7S
ISICitedReferencesCount 424
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782151100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2311-6706
2150-5551
IngestDate Fri Oct 03 12:50:57 EDT 2025
Tue Nov 04 02:00:36 EST 2025
Sun Nov 09 13:21:03 EST 2025
Sat Oct 18 22:52:56 EDT 2025
Thu Apr 03 07:08:39 EDT 2025
Tue Nov 18 21:18:49 EST 2025
Sat Nov 29 02:07:26 EST 2025
Fri Feb 21 02:45:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multifunctionalities
Flexible shielding materials
Green shielding index
EMI shielding mechanism
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-ab1940cb3e2f1c16b447c5d500c76cbbcf0e6cfa84668933dc6f2563b5014a6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/2643124196?pq-origsite=%requestingapplication%
PMID 35333993
PQID 2643124196
PQPubID 2044332
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_d1dfbdde257f4c1e8915dca6efed4bc9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8956783
proquest_miscellaneous_2644021853
proquest_journals_2643124196
pubmed_primary_35333993
crossref_primary_10_1007_s40820_022_00823_7
crossref_citationtrail_10_1007_s40820_022_00823_7
springer_journals_10_1007_s40820_022_00823_7
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2022
Publisher Springer Nature Singapore
Springer Nature B.V
Springer Singapore
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: Springer Singapore
– name: SpringerOpen
References MaZKangSMaJShaoLZhangYUltraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shieldingACS Nano20201478368838210.1021/acsnano.0c02401
LuBDongXLHuangHZhangXFZhuXGMicrowave absorption properties of the core/shell-type iron and nickel nanoparticlesJ. Magn. Magn. Mater.200832061106111110.1016/j.jmmm.2007.10.030
LinSLiuJWangQZuDWangHHighly robust, flexible, and large-scale 3D-metallized sponge for high-performance electromagnetic interference shieldingAdv. Mater. Technol.202052190076110.1002/admt.201900761
ZhaoSGaoZChenCWangGZhangBAlternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption propertyCarbon20169819620310.1016/j.carbon.2015.10.101
WangYGuFQNiLJLiangKMarcusKEasily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shieldingNanoscale2017946183181832510.1039/C7NR05951E
Smith-RoeSLWydeMEStoutMDWintersJWHobbsCAEvaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposureEnviron. Mol. Mutagen.202061227629010.1002/em.22343
GonzálezMBaselgaJPozueloJModulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogelsCarbon2019147273410.1016/j.carbon.2019.02.068
XiongRHuKGrantAMMaRXuWUltrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivityAdv. Opt. Mater.20162871501150910.1002/adma.201504438
WangLHuangMQianXLiuLYouWConfined magnetic-dielectric balance boosted electromagnetic wave absorptionSmall20211730210097010.1002/smll.202100970
WangBLiWDengJChiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallizationJ. Mater. Sci.20175284575458610.1007/s10853-016-0702-1
ZhanYOlivieroMWangJSorrentinoABuonocoreGGEnhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networksNanoscale20191131011102010.1039/C8NR07351A
WangQWZhangHBLiuJZhaoSXieXMultifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performancesAdv. Funct. Mater.2019297180681910.1002/adfm.201806819
LiXWenCYangLZhangRLiXMXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropyCarbon202117550951810.1016/j.carbon.2020.11.089
ChengYHuPZhouSYanLSunBAchieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foamCarbon201813243044310.1016/j.carbon.2018.02.084
HanMYinXWuHHouZSongCTi3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-bandACS Appl. Mater. Interfaces2016832210112101910.1021/acsami.6b06455
ZhangDQLiuTTShuJCLiangSWangXXSelf-assembly construction of WS2–rGO architecture with green EMI shieldingACS Appl. Mater. Interfaces20191130268072681610.1021/acsami.9b06509
HanMYinXHantanasirisakulKLiXIqbalAAnisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorptionAdv. Opt. Mater.2019710190026710.1002/adom.201900267
SongWLCaoMSFanLZLuMMLiYHighly ordered porous carbon/wax composites for effective electromagnetic attenuation and shieldingCarbon20147713014210.1016/j.carbon.2014.05.014
SunGDongBCaoMWeiBHuCHierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorptionChem. Mater.20112361587159310.1021/cm103441u
SongWLGuanXTFanLZCaoWQWangCYTuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shieldingCarbon20159315116010.1016/j.carbon.2015.05.033
ZhouQYinXYeFMoRTangZOptically transparent and flexible broadband microwave metamaterial absorber with sandwich structureJ. Appl. Phys. A2019125213110.1007/s00339-019-2430-2
KwonSMaRKimUChoiHRBaikSFlexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubberCarbon20146811812410.1016/j.carbon.2013.10.070
ShangTLinZQiCLiuXLiP3D macroscopic architectures from self-assembled MXene hydrogelsAdv. Funct. Mater.20192933190396010.1002/adfm.201903960
HuDHuangXLiSJiangPFlexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shieldingCompos. Sci. Technol.202018810.1016/j.compscitech.2020.107995
NguyenVTMinBKYiYKimSJChoiCGMXene(Ti3C2Tx)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skinsChem. Eng. J.202039310.1016/j.cej.2020.124608
LiuBChengJPengHQChenDCuiXIn situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolutionJ. Mater. Chem. A20197277578210.1039/C8TA09800J
The 3GPP specification. https://www.3gpp.org/DynaReport/38-series.htm
BianRLinRWangGLuGZhiW3D assembly of Ti3C2-MXene directed by water/oil interfacesNanoscale20181083621362510.1039/C7NR07346A
KongLYinXXuHYuanXWangTPowerful absorbing and lightweight electromagnetic shielding CNTs/rGO compositeCarbon2019145616610.1016/j.carbon.2019.01.009
ZhanZSongQZhouZLuCUltrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shieldingJ. Mater. Chem. C20197329820982910.1039/C9TC03309B
ZhangDLiuTChengJChaiJYangXLight-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxidesNanotechnology2019304410.1088/1361-6528/ab35fa
ChengYLiZLiYDaiSJiGRationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorptionCarbon201812764365210.1016/j.carbon.2017.11.055
ChengJZhangHXiongYGaoLWenBConstruction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a reviewJ. Materiomics2021761233126310.1016/j.jmat.2021.02.017
LiRLinHLanPGaoJHuangYLightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shieldingPolymers20181012131910.3390/polym10121319
SongWLCaoMSHouZLFangXYShiXLHigh dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-bandAppl. Phys. Lett.2009942310.1063/1.3152764
ChenZRenWGaoLLiuBPeiSThree-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour depositionNat. Mater.201110642442810.1038/nmat3001
FengXNingJWangBGuoHXiaMFunctional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXeneNano Energy20207210.1016/j.nanoen.2020.104741
JiaLCLiYKYanDXFlexible and efficient electromagnetic interference shielding materials from ground tire rubberCarbon201712126727310.1016/j.carbon.2017.05.100
ChaudharyATeotiaSKumarRGuptaVDhakateSRMulti-component framework derived SiC composite paper to support efficient thermal transport and high EMI shielding performanceCompos. B Eng.201917610.1016/j.compositesb.2019.107123
NaguibMMochalinVNBarsoumMWGogotsiY25th anniversary article: MXenes: a new family of two-dimensional materialsAdv. Mater.2014267992100510.1002/adma.201304138
ZhangYWangXCaoMConfinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorptionNano Res.20181131426143610.1007/s12274-017-1758-1
CrespoMGonzálezMElíasALRajukumarLPBaselgaJUltra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz rangePhys. Status Solidi RRL20148869870410.1002/pssr.201409151
ZhaoBZengSLiXGuoXBaiZFlexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiationJ. Mater. Chem. C20208250050910.1039/C9TC05462F
WangWMaXShaoYQiXYangJFlexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistanceJ. Mater. Chem. A2021985033504410.1039/D0TA11040J
ZengZJiangFYueYHanDLinLFlexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shieldingAdv. Mater.20203219190849610.1002/adma.201908496
TanYJLiJGaoYLiJGuoSA facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shieldingAppl. Surf. Sci.201845823624410.1016/j.apsusc.2018.07.107
BianXMLiuLLiHBWangCYXieQConstruction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shieldingNanotechnology201628410.1088/1361-6528/28/4/045710
ShahzadFAlhabebMHatterCBAnasoriBHongSMElectromagnetic interference shielding with 2D transition metal carbides (MXenes)Science201635363041137114010.1126/science.aag2421
RaagulanKKimBMChaiKYRecent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel compositesNanomaterials202010470210.3390/nano10040702
ChenYZhangHZengGTunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structureCarbon201814049450310.1016/j.carbon.2018.09.014
LiangCRuanKZhangYGuJMultifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performancesACS Appl. Mater. Interfaces20201215180231803110.1021/acsami.0c04482
LiuQCaoQZhao
T Shang (823_CR104) 2019; 29
X Liu (823_CR46) 2017; 130
P Li (823_CR127) 2016; 4
H Xu (823_CR91) 2017; 9
D Hu (823_CR122) 2020; 188
J Chai (823_CR34) 2020; 829
R Qiang (823_CR62) 2015; 3
M Naguib (823_CR59) 2014; 26
B Wang (823_CR57) 2017; 52
B Shen (823_CR112) 2016; 8
Z Wu (823_CR158) 2019; 29
K Qian (823_CR106) 2021; 141
M Peng (823_CR79) 2021; 130
S Ghosh (823_CR19) 2018; 29
M Han (823_CR77) 2016; 8
Y Zhang (823_CR12) 2017; 9
Q Liu (823_CR149) 2015; 7
H Zhang (823_CR37) 2021
G Sun (823_CR68) 2011; 23
Z Chen (823_CR135) 2011; 10
C Zhou (823_CR78) 2019; 370
P Liu (823_CR159) 2021; 31
Y Du (823_CR63) 2014; 6
F Shahzad (823_CR58) 2016; 353
D Zhang (823_CR72) 2018; 740
S Kwon (823_CR42) 2014; 68
J Liu (823_CR105) 2017; 29
M Han (823_CR47) 2017; 9
H Danker-Hopfe (823_CR3) 2016; 145
DX Yan (823_CR48) 2015; 25
D Lu (823_CR118) 2018; 133
QW Wang (823_CR140) 2019; 29
SL Smith-Roe (823_CR8) 2020; 61
H Zhang (823_CR153) 2021; 32
R Xiong (823_CR35) 2016; 28
MH Al-Saleh (823_CR43) 2009; 47
H Lv (823_CR92) 2015; 3
S Shi (823_CR103) 2019; 58
Q Liu (823_CR148) 2016; 28
Y Li (823_CR56) 2017; 24
R Bian (823_CR102) 2018; 10
L Falcioni (823_CR7) 2018; 165
DQ Zhang (823_CR29) 2019; 11
DW Hatchett (823_CR107) 2008; 108
Y Cheng (823_CR74) 2020; 6
Z Wang (823_CR142) 2020; 12
D Zhang (823_CR33) 2014; 49
E Zhou (823_CR49) 2018; 133
KR Sahu (823_CR25) 2018; 381
Z Zeng (823_CR132) 2020; 32
LC Jia (823_CR113) 2017; 121
S Zhao (823_CR83) 2016; 98
J Luo (823_CR90) 2020; 380
B Yao (823_CR126) 2020; 32
823_CR9
Y Zhang (823_CR71) 2018; 11
D Feng (823_CR115) 2019; 124
X Feng (823_CR123) 2020; 72
MH Al-Saleh (823_CR41) 2013; 60
Y Deng (823_CR88) 2006; 100
M González (823_CR97) 2019; 147
Z Chen (823_CR11) 2013; 25
Y Zhang (823_CR73) 2015; 27
D Zhang (823_CR39) 2018; 462
N Yousefi (823_CR125) 2014; 26
J Cheng (823_CR130) 2017; 59
WL Song (823_CR23) 2014; 6
K Sushmita (823_CR27) 2020; 5
G Tong (823_CR69) 2011; 509
M Yu (823_CR86) 2014; 2
B Zhao (823_CR145) 2020; 10
AJ Mannix (823_CR160) 2015; 350
Z Ma (823_CR99) 2020; 14
R Li (823_CR24) 2018; 10
WL Song (823_CR67) 2009; 61
K Raagulan (823_CR94) 2020; 10
J Zhang (823_CR163) 2022; 96
823_CR1
M Han (823_CR18) 2019; 7
S Zhao (823_CR84) 2018; 11
J Hou (823_CR93) 2017; 28
Z Huang (823_CR152) 2022; 107
ST Hsiao (823_CR21) 2014; 6
YJ Wan (823_CR120) 2018; 14
Y Wu (823_CR134) 2017; 9
WL Song (823_CR14) 2015; 93
D Zhang (823_CR31) 2019; 134
J Luo (823_CR139) 2019; 11
H Wang (823_CR65) 2013; 102
R Baan (823_CR2) 2011; 12
D Zhang (823_CR61) 2020; 31
Y Hong (823_CR51) 2003; 74
N Das (823_CR129) 2001; 80
D Zhang (823_CR32) 2013; 2013
M Crespo (823_CR101) 2014; 8
J Liu (823_CR85) 2019; 2
H Li (823_CR131) 2019; 304
H Xu (823_CR89) 2019; 142
VT Nguyen (823_CR146) 2020; 393
Y Zhan (823_CR114) 2019; 11
CM Watts (823_CR16) 2012; 24
K Yuan (823_CR156) 2015; 7
Q Zhou (823_CR17) 2019; 125
J Cheng (823_CR40) 2021; 7
B Zhao (823_CR128) 2020; 8
XM Bian (823_CR55) 2016; 28
S Bi (823_CR95) 2017; 412
W Shen (823_CR133) 2022; 238
C Zhou (823_CR76) 2016; 108
L Kong (823_CR96) 2013; 117
AP Singh (823_CR52) 2012; 50
Y Han (823_CR10) 2017; 115
Z Yu (823_CR80) 2020; 12
RC Che (823_CR157) 2004; 16
Y Wang (823_CR26) 2017; 9
D Zhang (823_CR151) 2020; 528
X Sun (823_CR119) 2016; 85
R Bogers (823_CR6) 2018; 121
MS Cao (823_CR28) 2019; 359
C Liang (823_CR138) 2020; 12
S Lin (823_CR143) 2019
S Shahin (823_CR5) 2018; 161
TK Gupta (823_CR50) 2014; 6
WL Song (823_CR66) 2009; 94
Z Zhan (823_CR121) 2019; 7
L Kong (823_CR116) 2019; 145
B Zhao (823_CR161) 2021; 9
A Iqbal (823_CR36) 2020; 30
H Mei (823_CR117) 2018; 144
S Lu (823_CR53) 2018; 136
S Mondal (823_CR110) 2017; 119
X Ye (823_CR154) 2019; 8
GG Tibbetts (823_CR111) 2007; 67
H Sun (823_CR155) 2014; 26
J Li (823_CR136) 2017; 5
D Zhang (823_CR30) 2019; 30
WL Song (823_CR13) 2014; 66
Q Liu (823_CR150) 2015; 7
YJ Tan (823_CR15) 2018; 458
C Cui (823_CR22) 2019; 788
B Zhang (823_CR81) 2019; 30
B Shen (823_CR100) 2016; 102
S Zhao (823_CR124) 2018; 12
L Liu (823_CR4) 2021; 118
WL Song (823_CR44) 2014; 77
Y Cheng (823_CR75) 2018; 132
Y Chen (823_CR98) 2018; 140
N Li (823_CR54) 2006; 6
B Liu (823_CR64) 2019; 7
M Panahi-Sarmad (823_CR144) 2020; 2
S Lin (823_CR45) 2020; 5
M Chen (823_CR20) 2014; 6
D Zhang (823_CR38) 2020; 65
CB Li (823_CR165) 2020; 12
L Wang (823_CR70) 2014; 6
Y Cheng (823_CR87) 2018; 127
A Chaudhary (823_CR137) 2019; 176
W Wang (823_CR147) 2021; 9
H Xu (823_CR60) 2019; 11
B Lu (823_CR82) 2008; 320
X Li (823_CR164) 2021; 175
X Liu (823_CR108) 2016; 104
HC Chu (823_CR141) 2016; 8
S Zhu (823_CR109) 2019; 145
L Wang (823_CR162) 2021; 17
References_xml – reference: ZhangDChengJYangXZhaoBCaoMElectromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructuresJ. Mater. Sci.201449207221723010.1007/s10853-014-8429-3
– reference: ZhangDChaiJChengJJiaYYangXHighly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with hetero-structuresAppl. Surf. Sci.201846287288210.1016/j.apsusc.2018.08.152
– reference: BianXMLiuLLiHBWangCYXieQConstruction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shieldingNanotechnology201628410.1088/1361-6528/28/4/045710
– reference: WangLHuangMQianXLiuLYouWConfined magnetic-dielectric balance boosted electromagnetic wave absorptionSmall20211730210097010.1002/smll.202100970
– reference: SongWLGuanXTFanLZCaoWQWangCYTuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shieldingCarbon20159315116010.1016/j.carbon.2015.05.033
– reference: ChenYZhangHZengGTunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structureCarbon201814049450310.1016/j.carbon.2018.09.014
– reference: RaagulanKKimBMChaiKYRecent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel compositesNanomaterials202010470210.3390/nano10040702
– reference: ZhangHChengJWangHHuangZZhengQInitiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6 48 GHz through phase engineering modulationAdv. Funct. Mater.2021326210819410.1002/adfm.202108194
– reference: LiuLDengHTangXLuYZhouJSpecific electromagnetic radiation in the wireless signal range increases wakefulness in micePNAS20211183110.1073/pnas.2105838118
– reference: ZhangDQLiuTTShuJCLiangSWangXXSelf-assembly construction of WS2–rGO architecture with green EMI shieldingACS Appl. Mater. Interfaces20191130268072681610.1021/acsami.9b06509
– reference: LiuJYouWYuJLiuXZhangXElectron holography of yolk–shell Fe3O4@mSiO2 microspheres for use in microwave absorptionACS Appl. Nano Mater.20192291091610.1021/acsanm.8b02150
– reference: ShenWEstevezDZhouLXuPQinFStretchable silver@CNT-poly(vinyl alcohol) films with efficient electromagnetic shielding prepared by polydopamine functionalizationPolymer202223810.1016/j.polymer.2021.124413
– reference: WangZJiaoBQingYNanHHuangLFlexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shieldingACS Appl. Mater. Interfaces20201222826283410.1021/acsami.9b17513
– reference: ChenZRenWGaoLLiuBPeiSThree-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour depositionNat. Mater.201110642442810.1038/nmat3001
– reference: YousefiNSunXLinXShenXJiaJHighly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shieldingAdv. Mater.201426315480548710.1002/adma.201305293
– reference: ChaudharyATeotiaSKumarRGuptaVDhakateSRMulti-component framework derived SiC composite paper to support efficient thermal transport and high EMI shielding performanceCompos. B Eng.201917610.1016/j.compositesb.2019.107123
– reference: ZhuSXingCWuFZuoXZhangYCake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shieldingCarbon201914525926510.1016/j.carbon.2019.01.030
– reference: ChengJYangXDongLYuanZWangWEffective nondestructive evaluations on UHMWPE/Recycled-PA6 blends using FTIR imaging and dynamic mechanical analysisPolym. Test.20175937137610.1016/j.polymertesting.2017.02.021
– reference: LiXWenCYangLZhangRLiXMXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropyCarbon202117550951810.1016/j.carbon.2020.11.089
– reference: LiangCRuanKZhangYGuJMultifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performancesACS Appl. Mater. Interfaces20201215180231803110.1021/acsami.0c04482
– reference: HsiaoSTMaCCMLiaoWHWangYSLiSMLightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performanceACS Appl. Mater. Interfaces2014613106671067810.1021/am502412q
– reference: ZhouQYinXYeFMoRTangZOptically transparent and flexible broadband microwave metamaterial absorber with sandwich structureJ. Appl. Phys. A2019125213110.1007/s00339-019-2430-2
– reference: LiNHuangYDuFHeXLinXElectromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy compositesNano Lett.2006661141114510.1021/nl0602589
– reference: YanDXPangHLiBVajtaiRXuLStructured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shieldingAdv. Funct. Mater.201525455956610.1002/adfm.201403809
– reference: NguyenVTMinBKYiYKimSJChoiCGMXene(Ti3C2Tx)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skinsChem. Eng. J.202039310.1016/j.cej.2020.124608
– reference: The 3GPP specification. https://www.3gpp.org/DynaReport/38-series.htm
– reference: ChenMZhangLDuanSJingSJiangHHighly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performancesNanoscale2014673796380310.1039/C3NR06092F
– reference: T. Alsop, Number of wireless local area network (WLAN) connected devices worldwide from 2016 to 2021. (2020). https://www.statista.com/statistics/802706/world-wlan-connected-device/
– reference: ShenBLiYZhaiWZhengWCompressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shieldingACS Appl. Mater. Interfaces20168128050805710.1021/acsami.5b11715
– reference: ZhangYHuangYZhangTChangHXiaoPBroadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foamAdv. Mater.201527122049205310.1002/adma.201405788
– reference: HanMYinXLiXAnasoriBZhangLLaminated and two-dimensional carbon-supported microwave absorbers derived from MXenesACS Appl. Mater. Interfaces2017923200382004510.1021/acsami.7b04602
– reference: LiPDuDGuoLGuoYOuyangJStretchable and conductive polymer films for high-performance electromagnetic interference shieldingJ. Mater. Chem. C20164276525653210.1039/C6TC01619G
– reference: LuSShaoJMaKChenDWangXFlexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shieldingCarbon201813638739410.1016/j.carbon.2018.04.086
– reference: CheRCPengLMDuanXFChenQLiangXLMicrowave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubesAdv. Mater.200416540140510.1002/adma.200306460
– reference: ShenBLiYYiDZhaiWWeiXMicrocellular graphene foam for improved broadband electromagnetic interference shieldingCarbon201610215416010.1016/j.carbon.2016.02.040
– reference: FalcioniLBuaLTibaldiELauriolaMAngelisLDReport of final results regarding brain and heart tumors in sprague-dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emissionEnviron. Res.201816549650310.1016/j.envres.2018.01.037
– reference: XuHYinXZhuMHanMHouZCarbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorptionACS Appl. Mater. Interfaces2017976332634110.1021/acsami.6b15826
– reference: HuangZChengJZhangHXiongYZhouZHigh-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-bandJ. Mater. Sci. Technol.202210715516410.1016/j.jmst.2021.08.005
– reference: ZhangYQiuMYuYWenBChengLA novel polyaniline-coated bagasse fiber composite with core–shell heterostructure provides effective electromagnetic shielding performanceACS Appl. Mater. Interfaces20179180981810.1021/acsami.6b11989
– reference: LuoJZhangKChengMGuMSunXMoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorptionChem. Eng. J.202038010.1016/j.cej.2019.122625
– reference: YaoBHongWChenTHanZXuXHighly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectivenessAdv. Mater.20203214190749910.1002/adma.201907499
– reference: NaguibMMochalinVNBarsoumMWGogotsiY25th anniversary article: MXenes: a new family of two-dimensional materialsAdv. Mater.2014267992100510.1002/adma.201304138
– reference: ZhangDChengJChaiJDengJRenRMagnetic-field-induced dielectric behaviors and magneto-electrical coupling of multiferroic compounds containing cobalt ferrite/barium calcium titanate composite fibersJ. Alloys Compd.20187401067107610.1016/j.jallcom.2018.01.081
– reference: XuHYinXZhuMLiMZhangHConstructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorptionCarbon201914234635310.1016/j.carbon.2018.10.056
– reference: FengDLiuPWangQExploiting the piezo resistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networksCompos. A Appl. Sci. Manuf.201912410.1016/j.compositesa.2019.05.031
– reference: CaoMSCaiYZHePShuJCCaoWQ2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shieldingChem. Eng. J.20193591265130210.1016/j.cej.2018.11.051
– reference: ZhangDYangXChengJLuMZhaoBFacile preparation, characterization, and highly effective microwave absorption performance of CNTs/Fe3O4/PANI nanocompositesJ. Nanomater.2013201310.1155/2013/591893
– reference: LuoJWangLHuangXLiBGuoZMechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shieldingACS Appl. Mater. Interfaces20191111108831089410.1021/acsami.8b22212
– reference: ZhangDLiuTChengJChaiJYangXLight-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxidesNanotechnology2019304410.1088/1361-6528/ab35fa
– reference: MondalSGangulySDasPKhastgirDDasNCLow percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocompositesCompos. B Eng.2017119415610.1016/j.compositesb.2017.03.022
– reference: Panahi-SarmadMNorooziMAbrishamMEghbaliniaSTeimouryFA comprehensive review on carbon-based polymer nanocomposite foams as electromagnetic interference shields and piezoresistive sensorsACS Appl. Electron. Mater.2020282318235010.1021/acsaelm.0c00490
– reference: LiRLinHLanPGaoJHuangYLightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shieldingPolymers20181012131910.3390/polym10121319
– reference: ChengJZhangHXiongYGaoLWenBConstruction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a reviewJ. Materiomics2021761233126310.1016/j.jmat.2021.02.017
– reference: MannixAJZhouXFKiralyBWoodJDAlducinDSynthesis of borophenes: anisotropic, two-dimensional boron polymorphsScience201535062671513151610.1126/science.aad1080
– reference: LuDMoZLiangBYangLHeZFlexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shieldingCarbon201813345746310.1016/j.carbon.2018.03.061
– reference: ZhaoBZengSLiXGuoXBaiZFlexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiationJ. Mater. Chem. C20208250050910.1039/C9TC05462F
– reference: LiuQCaoQZhaoXBiHWangCInsights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holographyACS Appl. Mater. Interfaces2015774233424010.1021/am508527s
– reference: HatchettDWJosowiczMComposites of intrinsically conducting polymers as sensing nanomaterialsChem. Rev.2008108274676910.1021/cr068112h
– reference: SushmitaKMadrasGBoseSPolymer nanocomposites containing semiconductors as advanced materials for EMI shieldingACS Omega20205104705471810.1021/acsomega.9b03641
– reference: LiuXZhangLYinXYeFLiuYFlexible thin SiC fiber fabrics using carbon nanotube modification for improving electromagnetic shielding propertiesMater. Des.2016104687510.1016/j.matdes.2016.05.005
– reference: WangWMaXShaoYQiXYangJFlexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistanceJ. Mater. Chem. A2021985033504410.1039/D0TA11040J
– reference: YuanKCheRCaoQSunZYueQDesigned fabrication and characterization of three-dimensionally ordered arrays of core–shell magnetic mesoporous carbon microspheresACS Appl. Mater. Interfaces2015795312531910.1021/am508683p
– reference: BogersRGilsAVClahsenSVercruijsseWKampIVIndividual variation in temporal relationships between exposure to radiofrequency electromagnetic fields and non-specific physical symptoms: a new approach in studying ‘electrosensitivity’Environ. Int.201812129730710.1016/j.envint.2018.08.064
– reference: WangQWZhangHBLiuJZhaoSXieXMultifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performancesAdv. Funct. Mater.2019297180681910.1002/adfm.201806819
– reference: LiYWangBSuiXXuHZhangLFacile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant propertiesCellulose20172493815382310.1007/s10570-017-1373-z
– reference: ZhangDLiangSChaiJLiuTYangXHighly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal methodJ. Phys. Chem. Solids.2019134778210.1016/j.jpcs.2019.05.041
– reference: ZhaoBHamidinejadMWangSBaiPCheRAdvances in electromagnetic shielding properties of composite foamsJ. Mater. Chem. A20219148896894910.1039/D1TA00417D
– reference: CuiCXiangCGengLLaiXGuoRFlexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shieldingJ. Alloys Compd.20197881246125510.1016/j.jallcom.2019.02.294
– reference: BianRLinRWangGLuGZhiW3D assembly of Ti3C2-MXene directed by water/oil interfacesNanoscale20181083621362510.1039/C7NR07346A
– reference: ShangTLinZQiCLiuXLiP3D macroscopic architectures from self-assembled MXene hydrogelsAdv. Funct. Mater.20192933190396010.1002/adfm.201903960
– reference: ChuHCChangYCLinYChangSHChangWCSpray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applicationsACS Appl. Mater. Interfaces2016820130091301710.1021/acsami.6b02652
– reference: WattsCMLiuXPadillaWJMetamaterial electromagnetic wave absorbersAdv. Mater.20122423OP98OP120
– reference: WangYGuFQNiLJLiangKMarcusKEasily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shieldingNanoscale2017946183181832510.1039/C7NR05951E
– reference: ZengZJiangFYueYHanDLinLFlexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shieldingAdv. Mater.20203219190849610.1002/adma.201908496
– reference: LiCBLiYJZhaoQLuoYYangGYElectromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compressionACS Appl. Mater. Interfaces20201227306863069410.1021/acsami.0c05688
– reference: XiongRHuKGrantAMMaRXuWUltrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivityAdv. Opt. Mater.20162871501150910.1002/adma.201504438
– reference: HouJZhangLQiuHDuanWWangXFabrication and microwave absorption performances of hollow-structure Fe3O4/PANI microspheresJ. Mater. Sci. Mater. Electron.201728139279928810.1007/s10854-017-6664-5
– reference: JiaLCLiYKYanDXFlexible and efficient electromagnetic interference shielding materials from ground tire rubberCarbon201712126727310.1016/j.carbon.2017.05.100
– reference: ZhanZSongQZhouZLuCUltrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shieldingJ. Mater. Chem. C20197329820982910.1039/C9TC03309B
– reference: WuYWangZLiuXShenXZhengQUltralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shieldingACS Appl. Mater. Interfaces20179109059906910.1021/acsami.7b01017
– reference: Al-SalehMHSundararajUElectromagnetic interference shielding mechanisms of CNT/polymer compositesCarbon20094771738174610.1016/j.carbon.2009.02.030
– reference: YuZDaiTYuanSZouHLiuPElectromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogelsACS Appl. Mater. Interfaces20201227309903100110.1021/acsami.0c07122
– reference: HuDHuangXLiSJiangPFlexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shieldingCompos. Sci. Technol.202018810.1016/j.compscitech.2020.107995
– reference: LuBDongXLHuangHZhangXFZhuXGMicrowave absorption properties of the core/shell-type iron and nickel nanoparticlesJ. Magn. Magn. Mater.200832061106111110.1016/j.jmmm.2007.10.030
– reference: LiuXYuZIshikawaRChenLLiuXSingle-source-precursor derived rGO/CNTs-SiCN ceramic nanocomposite with ultra-high electromagnetic shielding effectivenessActa Mater.2017130839310.1016/j.actamat.2017.03.031
– reference: FengXNingJWangBGuoHXiaMFunctional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXeneNano Energy20207210.1016/j.nanoen.2020.104741
– reference: LiuQXuXXiaWCheRChenCDependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holographyNanoscale2015751736174310.1039/C4NR05547K
– reference: YeXChenZAiSHouBZhangJPorous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacityJ. Adv. Ceram.20198447948810.1007/s40145-019-0328-2
– reference: Smith-RoeSLWydeMEStoutMDWintersJWHobbsCAEvaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposureEnviron. Mol. Mutagen.202061227629010.1002/em.22343
– reference: WangBLiWDengJChiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallizationJ. Mater. Sci.20175284575458610.1007/s10853-016-0702-1
– reference: ChengYZhaoHLvHShiTJiGLightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applicationsAdv. Electron. Mater.202061190079610.1002/aelm.201900796
– reference: ZhouCGengSXuXWangTZhangLLightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorptionCarbon201610823424110.1016/j.carbon.2016.07.015
– reference: LiuJZhangHBSunRLiuYLiuZHydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shieldingAdv. Mater.20172938170236710.1002/adma.201702367
– reference: ZhangYWangXCaoMConfinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorptionNano Res.20181131426143610.1007/s12274-017-1758-1
– reference: QianKZhouQWuHFangJMiaoMCarbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shieldingCompos. A Appl. Sci. Manuf.202114110.1016/j.compositesa.2020.106229
– reference: ShahzadFAlhabebMHatterCBAnasoriBHongSMElectromagnetic interference shielding with 2D transition metal carbides (MXenes)Science201635363041137114010.1126/science.aag2421
– reference: SahuKRDeUPolymer composites for flexible electromagnetic shieldsMacromol. Symp.20183811180009710.1002/masy.201800097
– reference: SongWLCaoMSLuMMBiSWangCYFlexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shieldingCarbon201466677610.1016/j.carbon.2013.08.043
– reference: QiangRDuYZhaoHWangYTianCMetal organic framework-derived Fe/C nanocubes toward efficient microwave absorptionJ. Mater. Chem. A2015325134261343410.1039/C5TA01457C
– reference: WangLHuangYSunXHuangHLiuPSynthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structuresNanoscale2014663157316410.1039/C3NR05313J
– reference: BiSZhangLMuCLiuMHuXElectromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogelsAppl. Surf. Sci.201741252953610.1016/j.apsusc.2017.03.293
– reference: KwonSMaRKimUChoiHRBaikSFlexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubberCarbon20146811812410.1016/j.carbon.2013.10.070
– reference: ShahinSBanerjeeSSwarupVSinghSPChaturvediCMFrom the cover: 2. 45-GHz microwave radiation impairs hippocampal learning and spatial memory: involvement of local stress mechanism-induced suppression of iGluR/ERK/CREB signalingToxicol. Sci.2018161234937410.1093/toxsci/kfx221
– reference: KongLYinXZhangYYuanXLiQElectromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clustersJ. Phys. Chem. C201311738197011971110.1021/jp4058498
– reference: LinSLiuJWangQZuDWangHHighly robust, flexible, and large-scale 3D-metallized sponge for high-performance electromagnetic interference shieldingAdv. Mater. Technol.202052190076110.1002/admt.201900761
– reference: DasNChakiTKhastgirDChakrabortyAElectromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillersJ. Appl. Polym. Sci.200180101601160810.1002/app.1253
– reference: ZhangDXiongYChengJChaiJLiuTSynergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticlesSci. Bull.202065213814610.1016/j.scib.2019.10.011
– reference: WuZPeiKXingLYuXYouWEnhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular compositeAdv. Funct. Mater.20192928190144810.1002/adfm.201901448
– reference: ZhangDLiuTZhangMZhangHYangXConfinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorptionNanotechnology2020313210.1088/1361-6528/ab8b8d
– reference: SunHCheRYouXJiangYYangZCross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensitiesAdv. Mater.201426488120812510.1002/adma.201403735
– reference: Al-SalehMHSaadehWHSundararajUEMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative studyCarbon20136014615610.1016/j.carbon.2013.04.008
– reference: Danker-HopfeHDornHBolzTPeterAHansenMLEffects of mobile phone exposure (GSM 900 and WCDMA/UMTS) on polysomnography based sleep quality: an intra- and inter-individual perspectiveEnviron. Res.2016145506010.1016/j.envres.2015.11.011
– reference: GonzálezMBaselgaJPozueloJModulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogelsCarbon2019147273410.1016/j.carbon.2019.02.068
– reference: SongWLCaoMHouZYuanJFangXHigh-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocompositeScr. Mater.200961220120410.1016/j.scriptamat.2009.03.048
– reference: SunGDongBCaoMWeiBHuCHierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorptionChem. Mater.20112361587159310.1021/cm103441u
– reference: LiuQCaoQBiHLiangCYuanKConi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorptionAdv. Mater.201628348649010.1002/adma.201503149
– reference: IqbalASambyalPKooCM2D MXenes for electromagnetic shielding: a reviewAdv. Funct. Mater.20203047200088310.1002/adfm.202000883
– reference: WangHDaiYGongWGengDMaSBroadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonancesAppl. Phys. Lett.20131022210.1063/1.4809675
– reference: LiuPGaoSZhangGHuangYYouWHollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorptionAdv. Funct. Mater.20213127210281210.1002/adfm.202102812
– reference: LvHJiGLiuWZhangHDuYAchieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight featuresJ. Mater. Chem. C2015339102321024110.1039/C5TC02512E
– reference: ZhangHLiuTHuangZChengJWangHEngineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibersJ. Materiomics.202110.1016/j.jmat.2021.09.003
– reference: ZhaoBZhangXDengJZhangCLiYFlexible PEBAX/graphene electromagnetic shielding composite films with a negative pressure effect of resistance for pressure sensors applicationsRSC Adv.20201031535154310.1039/C9RA08679J
– reference: HanMYinXHantanasirisakulKLiXIqbalAAnisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorptionAdv. Opt. Mater.2019710190026710.1002/adom.201900267
– reference: GhoshSGangulySRemananSMondalSJanaSUltra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materialsJ. Mater. Sci. Mater. Electron.20182912101771018910.1007/s10854-018-9068-2
– reference: DengYZhaoLShenBLiuLHuWMicrowave characterization of submicrometer-sized nickel hollow sphere compositesJ. Appl. Phys.2006100110.1063/1.2210187
– reference: TibbettsGGLakeMLStrongKLRiceBPA review of the fabrication and properties of vapor-grown carbon nanofiber/polymer compositesCompos. Sci. Technol.20076771709171810.1016/j.compscitech.2006.06.015
– reference: ZhaoSYanLTianXLiuYChenCFlexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performanceNano Res.201811153054110.1007/s12274-017-1664-6
– reference: KongLYinXXuHYuanXWangTPowerful absorbing and lightweight electromagnetic shielding CNTs/rGO compositeCarbon2019145616610.1016/j.carbon.2019.01.009
– reference: SunXLiuXShenXWuYWangZGraphene foam/carbon nanotube/poly (dimethyl siloxane) composites for exceptional microwave shieldingCompos. A Appl. Sci. Manuf.20168519920610.1016/j.compositesa.2016.03.009
– reference: YuMLiangCLiuMLiuXYuanKYolk–shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol–gel method for high temperature stable microwave absorptionJ. Mater. Chem. C20142357275728310.1039/C4TC01285B
– reference: ChengYLiZLiYDaiSJiGRationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorptionCarbon201812764365210.1016/j.carbon.2017.11.055
– reference: TanYJLiJGaoYLiJGuoSA facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shieldingAppl. Surf. Sci.201845823624410.1016/j.apsusc.2018.07.107
– reference: SinghAPGargPAlamFSinghKMathurRBPhenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-bandCarbon201250103868387510.1016/j.carbon.2012.04.030
– reference: XuHYinXLiXLiMLiangSLightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated featureACS Appl. Mater. Interfaces20191110101981020710.1021/acsami.8b21671
– reference: ZhaoSZhangHBLuoJQWangQWXuBHighly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performancesACS Nano20181211111931120210.1021/acsnano.8b05739
– reference: HanMYinXWuHHouZSongCTi3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-bandACS Appl. Mater. Interfaces2016832210112101910.1021/acsami.6b06455
– reference: PengMQinFClarification of basic concepts for electromagnetic interference shielding effectivenessJ. Appl. Phys.202113010.1063/5.0075019
– reference: LiuBChengJPengHQChenDCuiXIn situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolutionJ. Mater. Chem. A20197277578210.1039/C8TA09800J
– reference: ZhouCWuCYanMA versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorptionChem. Eng. J.201937098899610.1016/j.cej.2019.03.295
– reference: DuYLiuWQiangRWangYHanXShell thickness-dependent microwave absorption of core–shell Fe3O4@C compositesACS Appl. Mater. Interfaces2014615129971300610.1021/am502910d
– reference: MaZKangSMaJShaoLZhangYUltraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shieldingACS Nano20201478368838210.1021/acsnano.0c02401
– reference: MeiHZhaoXXiaJWeiFHanDCompacting CNT sponge to achieve larger electromagnetic interference shielding performanceMater. Des.201814432333010.1016/j.matdes.2018.02.047
– reference: BaanRGrosseYLauby-SecretanBGhissassiFEBouvardVCarcinogenicity of radiofrequency electromagnetic fieldsLancet Oncol.201112762462610.1016/s1470-2045(11)70147-4
– reference: ZhangBWangJPengJSunJSuXDouble-shell PANS@PANI@Ag hollow microspheres and graphene dispersed in epoxy with enhanced microwave absorptionJ. Mater. Sci. Mater. Electron.201930109785979710.1007/s10854-019-01315-y
– reference: LinSWangHWuFWangQBaiXRoom-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shieldingnpj Electron Flex201910.1038/s41528-019-0050-8
– reference: SongWLCaoMSFanLZLuMMLiYHighly ordered porous carbon/wax composites for effective electromagnetic attenuation and shieldingCarbon20147713014210.1016/j.carbon.2014.05.014
– reference: ShiSQianBWuXSunHWangHSelf-assembly of MXene-surfactants at liquid–liquid interfaces: From structured liquids to 3D aerogelsAngew. Chem. Int. Ed.20195850181711817610.1002/anie.201908402
– reference: HanYLiuYHanLLinJJinPHigh-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shieldingCarbon2017115344210.1016/j.carbon.2016.12.092
– reference: ZhangJWangZLiJDongYHeAMagnetic-electric composite coating with oriented segregated structure for enhanced electromagnetic shieldingJ. Mater. Sci. Technol.202296112010.1016/j.jmst.2021.05.001
– reference: ZhaoSGaoZChenCWangGZhangBAlternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption propertyCarbon20169819620310.1016/j.carbon.2015.10.101
– reference: LiHJensenMWangNChenYGaoYCuxS/PAN 3D nanofiber mats as ultra-lightweight and flexible electromagnetic interference shielding materialsMacromol. Mater. Eng.201930412190048210.1002/mame.201900482
– reference: ChaiJChengJZhangDXiongYYangXEnhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheetsJ. Alloys Compd.202082910.1016/j.jallcom.2020.154531
– reference: ZhouEXiJGuoYLiuYXuZSynergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding filmsCarbon201813331632210.1016/j.carbon.2018.03.023
– reference: ZhanYOlivieroMWangJSorrentinoABuonocoreGGEnhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networksNanoscale20191131011102010.1039/C8NR07351A
– reference: ChengYHuPZhouSYanLSunBAchieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foamCarbon201813243044310.1016/j.carbon.2018.02.084
– reference: SongWLCaoMSHouZLFangXYShiXLHigh dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-bandAppl. Phys. Lett.2009942310.1063/1.3152764
– reference: LiJLiuHGuoJHuZWangZFlexible, conductive, porous, fibrillar polymer–gold nanocomposites with enhanced electromagnetic interference shielding and mechanical propertiesJ. Mater. Chem. C2017551095110510.1039/C6TC04780G
– reference: SongWLWangJFanLZLiYWangCYInterfacial engineering of carbon nanofiber–graphene–carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networksACS Appl. Mater. Interfaces2014613105161052310.1021/am502103u
– reference: ZhangDWangHChengJHanCYangXConductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performanceAppl. Surf. Sci.202052810.1016/j.apsusc.2020.147052
– reference: HongYLeeCJeongCLeeDKimKMethod and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency rangesRev. Sci. Instrum.20037421098110210.1063/1.1532540
– reference: WanYJZhuPLYuSHSunRWongCPAnticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shieldingSmall20181427180053410.1002/smll.201800534
– reference: GuptaTKSinghBPMathurRBDhakateSRMulti-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectivenessNanoscale20146284285110.1039/C3NR04565J
– reference: CrespoMGonzálezMElíasALRajukumarLPBaselgaJUltra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz rangePhys. Status Solidi RRL20148869870410.1002/pssr.201409151
– reference: ChenZXuCMaCRenWChengHMLightweight and flexible graphene foam composites for high-performance electromagnetic interference shieldingAdv. Mater.20132591296130010.1002/adma.201204196
– reference: TongGWuWGuanJQianHYuanJSynthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: microwave electromagnetic and absorbing propertiesJ. Alloys Compd.2011509114320432610.1016/j.jallcom.2011.01.058
– volume: 10
  start-page: 1319
  issue: 12
  year: 2018
  ident: 823_CR24
  publication-title: Polymers
  doi: 10.3390/polym10121319
– volume: 134
  start-page: 77
  year: 2019
  ident: 823_CR31
  publication-title: J. Phys. Chem. Solids.
  doi: 10.1016/j.jpcs.2019.05.041
– volume: 7
  start-page: 4233
  issue: 7
  year: 2015
  ident: 823_CR150
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508527s
– volume: 5
  start-page: 1095
  issue: 5
  year: 2017
  ident: 823_CR136
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04780G
– volume: 7
  start-page: 1736
  issue: 5
  year: 2015
  ident: 823_CR149
  publication-title: Nanoscale
  doi: 10.1039/C4NR05547K
– volume: 96
  start-page: 11
  year: 2022
  ident: 823_CR163
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.05.001
– volume: 2
  start-page: 7275
  issue: 35
  year: 2014
  ident: 823_CR86
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01285B
– volume: 3
  start-page: 10232
  issue: 39
  year: 2015
  ident: 823_CR92
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC02512E
– volume: 11
  start-page: 1426
  issue: 3
  year: 2018
  ident: 823_CR71
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1758-1
– volume: 29
  start-page: 1806819
  issue: 7
  year: 2019
  ident: 823_CR140
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806819
– volume: 28
  start-page: 486
  issue: 3
  year: 2016
  ident: 823_CR148
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503149
– volume: 26
  start-page: 8120
  issue: 48
  year: 2014
  ident: 823_CR155
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403735
– volume: 32
  start-page: 2108194
  issue: 6
  year: 2021
  ident: 823_CR153
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108194
– volume: 68
  start-page: 118
  year: 2014
  ident: 823_CR42
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.10.070
– volume: 8
  start-page: 8050
  issue: 12
  year: 2016
  ident: 823_CR112
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11715
– volume: 32
  start-page: 1908496
  issue: 19
  year: 2020
  ident: 823_CR132
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908496
– volume: 107
  start-page: 155
  year: 2022
  ident: 823_CR152
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.08.005
– volume: 28
  start-page: 1501
  issue: 7
  year: 2016
  ident: 823_CR35
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adma.201504438
– volume: 11
  start-page: 10883
  issue: 11
  year: 2019
  ident: 823_CR139
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22212
– volume: 67
  start-page: 1709
  issue: 7
  year: 2007
  ident: 823_CR111
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2006.06.015
– volume: 24
  start-page: 3815
  issue: 9
  year: 2017
  ident: 823_CR56
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1373-z
– volume: 130
  year: 2021
  ident: 823_CR79
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0075019
– volume: 9
  start-page: 6332
  issue: 7
  year: 2017
  ident: 823_CR91
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15826
– volume: 7
  start-page: 5312
  issue: 9
  year: 2015
  ident: 823_CR156
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508683p
– volume: 165
  start-page: 496
  year: 2018
  ident: 823_CR7
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2018.01.037
– volume: 119
  start-page: 41
  year: 2017
  ident: 823_CR110
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2017.03.022
– volume: 47
  start-page: 1738
  issue: 7
  year: 2009
  ident: 823_CR43
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.02.030
– volume: 25
  start-page: 1296
  issue: 9
  year: 2013
  ident: 823_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204196
– volume: 52
  start-page: 4575
  issue: 8
  year: 2017
  ident: 823_CR57
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-0702-1
– volume: 80
  start-page: 1601
  issue: 10
  year: 2001
  ident: 823_CR129
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1253
– volume: 462
  start-page: 872
  year: 2018
  ident: 823_CR39
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.152
– volume: 6
  start-page: 3796
  issue: 7
  year: 2014
  ident: 823_CR20
  publication-title: Nanoscale
  doi: 10.1039/C3NR06092F
– year: 2021
  ident: 823_CR37
  publication-title: J. Materiomics.
  doi: 10.1016/j.jmat.2021.09.003
– volume: 124
  year: 2019
  ident: 823_CR115
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2019.05.031
– volume: 12
  start-page: 11193
  issue: 11
  year: 2018
  ident: 823_CR124
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05739
– volume: 12
  start-page: 30686
  issue: 27
  year: 2020
  ident: 823_CR165
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c05688
– volume: 121
  start-page: 297
  year: 2018
  ident: 823_CR6
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.08.064
– volume: 161
  start-page: 349
  issue: 2
  year: 2018
  ident: 823_CR5
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfx221
– volume: 133
  start-page: 316
  year: 2018
  ident: 823_CR49
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.03.023
– volume: 7
  start-page: 9820
  issue: 32
  year: 2019
  ident: 823_CR121
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC03309B
– volume: 23
  start-page: 1587
  issue: 6
  year: 2011
  ident: 823_CR68
  publication-title: Chem. Mater.
  doi: 10.1021/cm103441u
– volume: 60
  start-page: 146
  year: 2013
  ident: 823_CR41
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.04.008
– volume: 108
  start-page: 234
  year: 2016
  ident: 823_CR76
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.07.015
– volume: 381
  start-page: 1800097
  issue: 1
  year: 2018
  ident: 823_CR25
  publication-title: Macromol. Symp.
  doi: 10.1002/masy.201800097
– volume: 393
  year: 2020
  ident: 823_CR146
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124608
– volume: 16
  start-page: 401
  issue: 5
  year: 2004
  ident: 823_CR157
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306460
– volume: 458
  start-page: 236
  year: 2018
  ident: 823_CR15
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.07.107
– volume: 12
  start-page: 2826
  issue: 2
  year: 2020
  ident: 823_CR142
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b17513
– volume: 412
  start-page: 529
  year: 2017
  ident: 823_CR95
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.03.293
– volume: 117
  start-page: 19701
  issue: 38
  year: 2013
  ident: 823_CR96
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4058498
– volume: 66
  start-page: 67
  year: 2014
  ident: 823_CR13
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.08.043
– volume: 10
  start-page: 424
  issue: 6
  year: 2011
  ident: 823_CR135
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3001
– volume: 133
  start-page: 457
  year: 2018
  ident: 823_CR118
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.03.061
– volume: 6
  start-page: 10516
  issue: 13
  year: 2014
  ident: 823_CR23
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502103u
– volume: 32
  start-page: 1907499
  issue: 14
  year: 2020
  ident: 823_CR126
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907499
– volume: 11
  start-page: 26807
  issue: 30
  year: 2019
  ident: 823_CR29
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06509
– volume: 72
  year: 2020
  ident: 823_CR123
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104741
– volume: 2
  start-page: 2318
  issue: 8
  year: 2020
  ident: 823_CR144
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.0c00490
– year: 2019
  ident: 823_CR143
  publication-title: npj Electron Flex
  doi: 10.1038/s41528-019-0050-8
– volume: 30
  issue: 44
  year: 2019
  ident: 823_CR30
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab35fa
– volume: 141
  year: 2021
  ident: 823_CR106
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2020.106229
– volume: 50
  start-page: 3868
  issue: 10
  year: 2012
  ident: 823_CR52
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.04.030
– volume: 353
  start-page: 1137
  issue: 6304
  year: 2016
  ident: 823_CR58
  publication-title: Science
  doi: 10.1126/science.aag2421
– volume: 9
  start-page: 809
  issue: 1
  year: 2017
  ident: 823_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11989
– volume: 121
  start-page: 267
  year: 2017
  ident: 823_CR113
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.05.100
– volume: 238
  year: 2022
  ident: 823_CR133
  publication-title: Polymer
  doi: 10.1016/j.polymer.2021.124413
– volume: 12
  start-page: 18023
  issue: 15
  year: 2020
  ident: 823_CR138
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04482
– volume: 61
  start-page: 201
  issue: 2
  year: 2009
  ident: 823_CR67
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2009.03.048
– volume: 65
  start-page: 138
  issue: 2
  year: 2020
  ident: 823_CR38
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.10.011
– volume: 145
  start-page: 259
  year: 2019
  ident: 823_CR109
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.030
– volume: 29
  start-page: 10177
  issue: 12
  year: 2018
  ident: 823_CR19
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-018-9068-2
– volume: 14
  start-page: 1800534
  issue: 27
  year: 2018
  ident: 823_CR120
  publication-title: Small
  doi: 10.1002/smll.201800534
– volume: 118
  issue: 31
  year: 2021
  ident: 823_CR4
  publication-title: PNAS
  doi: 10.1073/pnas.2105838118
– volume: 6
  start-page: 1900796
  issue: 1
  year: 2020
  ident: 823_CR74
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900796
– volume: 24
  start-page: OP98
  issue: 23
  year: 2012
  ident: 823_CR16
  publication-title: Adv. Mater.
– volume: 94
  issue: 23
  year: 2009
  ident: 823_CR66
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3152764
– ident: 823_CR9
– volume: 8
  start-page: 698
  issue: 8
  year: 2014
  ident: 823_CR101
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201409151
– volume: 30
  start-page: 2000883
  issue: 47
  year: 2020
  ident: 823_CR36
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000883
– volume: 77
  start-page: 130
  year: 2014
  ident: 823_CR44
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.05.014
– volume: 102
  issue: 22
  year: 2013
  ident: 823_CR65
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4809675
– volume: 10
  start-page: 702
  issue: 4
  year: 2020
  ident: 823_CR94
  publication-title: Nanomaterials
  doi: 10.3390/nano10040702
– volume: 140
  start-page: 494
  year: 2018
  ident: 823_CR98
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.014
– volume: 26
  start-page: 992
  issue: 7
  year: 2014
  ident: 823_CR59
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304138
– volume: 7
  start-page: 1900267
  issue: 10
  year: 2019
  ident: 823_CR18
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900267
– volume: 136
  start-page: 387
  year: 2018
  ident: 823_CR53
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.04.086
– volume: 98
  start-page: 196
  year: 2016
  ident: 823_CR83
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.10.101
– volume: 130
  start-page: 83
  year: 2017
  ident: 823_CR46
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.03.031
– volume: 25
  start-page: 559
  issue: 4
  year: 2015
  ident: 823_CR48
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403809
– volume: 31
  start-page: 2102812
  issue: 27
  year: 2021
  ident: 823_CR159
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102812
– volume: 147
  start-page: 27
  year: 2019
  ident: 823_CR97
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.02.068
– ident: 823_CR1
– volume: 10
  start-page: 1535
  issue: 3
  year: 2020
  ident: 823_CR145
  publication-title: RSC Adv.
  doi: 10.1039/C9RA08679J
– volume: 350
  start-page: 1513
  issue: 6267
  year: 2015
  ident: 823_CR160
  publication-title: Science
  doi: 10.1126/science.aad1080
– volume: 7
  start-page: 1233
  issue: 6
  year: 2021
  ident: 823_CR40
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2021.02.017
– volume: 176
  year: 2019
  ident: 823_CR137
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.107123
– volume: 188
  year: 2020
  ident: 823_CR122
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2020.107995
– volume: 27
  start-page: 2049
  issue: 12
  year: 2015
  ident: 823_CR73
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405788
– volume: 304
  start-page: 1900482
  issue: 12
  year: 2019
  ident: 823_CR131
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201900482
– volume: 8
  start-page: 21011
  issue: 32
  year: 2016
  ident: 823_CR77
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b06455
– volume: 74
  start-page: 1098
  issue: 2
  year: 2003
  ident: 823_CR51
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1532540
– volume: 528
  year: 2020
  ident: 823_CR151
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147052
– volume: 142
  start-page: 346
  year: 2019
  ident: 823_CR89
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.10.056
– volume: 8
  start-page: 500
  issue: 2
  year: 2020
  ident: 823_CR128
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05462F
– volume: 5
  start-page: 1900761
  issue: 2
  year: 2020
  ident: 823_CR45
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900761
– volume: 125
  start-page: 131
  issue: 2
  year: 2019
  ident: 823_CR17
  publication-title: J. Appl. Phys. A
  doi: 10.1007/s00339-019-2430-2
– volume: 8
  start-page: 479
  issue: 4
  year: 2019
  ident: 823_CR154
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-019-0328-2
– volume: 740
  start-page: 1067
  year: 2018
  ident: 823_CR72
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.01.081
– volume: 58
  start-page: 18171
  issue: 50
  year: 2019
  ident: 823_CR103
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908402
– volume: 359
  start-page: 1265
  year: 2019
  ident: 823_CR28
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.051
– volume: 29
  start-page: 1903960
  issue: 33
  year: 2019
  ident: 823_CR104
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903960
– volume: 5
  start-page: 4705
  issue: 10
  year: 2020
  ident: 823_CR27
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b03641
– volume: 115
  start-page: 34
  year: 2017
  ident: 823_CR10
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.12.092
– volume: 145
  start-page: 61
  year: 2019
  ident: 823_CR116
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.009
– volume: 100
  issue: 1
  year: 2006
  ident: 823_CR88
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2210187
– volume: 10
  start-page: 3621
  issue: 8
  year: 2018
  ident: 823_CR102
  publication-title: Nanoscale
  doi: 10.1039/C7NR07346A
– volume: 29
  start-page: 1702367
  issue: 38
  year: 2017
  ident: 823_CR105
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702367
– volume: 29
  start-page: 1901448
  issue: 28
  year: 2019
  ident: 823_CR158
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901448
– volume: 49
  start-page: 7221
  issue: 20
  year: 2014
  ident: 823_CR33
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-014-8429-3
– volume: 829
  year: 2020
  ident: 823_CR34
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154531
– volume: 132
  start-page: 430
  year: 2018
  ident: 823_CR75
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.02.084
– volume: 26
  start-page: 5480
  issue: 31
  year: 2014
  ident: 823_CR125
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305293
– volume: 61
  start-page: 276
  issue: 2
  year: 2020
  ident: 823_CR8
  publication-title: Environ. Mol. Mutagen.
  doi: 10.1002/em.22343
– volume: 6
  start-page: 10667
  issue: 13
  year: 2014
  ident: 823_CR21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502412q
– volume: 12
  start-page: 30990
  issue: 27
  year: 2020
  ident: 823_CR80
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c07122
– volume: 9
  start-page: 5033
  issue: 8
  year: 2021
  ident: 823_CR147
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11040J
– volume: 17
  start-page: 2100970
  issue: 30
  year: 2021
  ident: 823_CR162
  publication-title: Small
  doi: 10.1002/smll.202100970
– volume: 145
  start-page: 50
  year: 2016
  ident: 823_CR3
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2015.11.011
– volume: 104
  start-page: 68
  year: 2016
  ident: 823_CR108
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.05.005
– volume: 380
  year: 2020
  ident: 823_CR90
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122625
– volume: 3
  start-page: 13426
  issue: 25
  year: 2015
  ident: 823_CR62
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01457C
– volume: 11
  start-page: 10198
  issue: 10
  year: 2019
  ident: 823_CR60
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b21671
– volume: 2
  start-page: 910
  issue: 2
  year: 2019
  ident: 823_CR85
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b02150
– volume: 127
  start-page: 643
  year: 2018
  ident: 823_CR87
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.11.055
– volume: 788
  start-page: 1246
  year: 2019
  ident: 823_CR22
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.02.294
– volume: 2013
  year: 2013
  ident: 823_CR32
  publication-title: J. Nanomater.
  doi: 10.1155/2013/591893
– volume: 6
  start-page: 12997
  issue: 15
  year: 2014
  ident: 823_CR63
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502910d
– volume: 7
  start-page: 775
  issue: 2
  year: 2019
  ident: 823_CR64
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09800J
– volume: 320
  start-page: 1106
  issue: 6
  year: 2008
  ident: 823_CR82
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2007.10.030
– volume: 28
  issue: 4
  year: 2016
  ident: 823_CR55
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/28/4/045710
– volume: 28
  start-page: 9279
  issue: 13
  year: 2017
  ident: 823_CR93
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-017-6664-5
– volume: 9
  start-page: 9059
  issue: 10
  year: 2017
  ident: 823_CR134
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01017
– volume: 370
  start-page: 988
  year: 2019
  ident: 823_CR78
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.295
– volume: 85
  start-page: 199
  year: 2016
  ident: 823_CR119
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2016.03.009
– volume: 8
  start-page: 13009
  issue: 20
  year: 2016
  ident: 823_CR141
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02652
– volume: 6
  start-page: 1141
  issue: 6
  year: 2006
  ident: 823_CR54
  publication-title: Nano Lett.
  doi: 10.1021/nl0602589
– volume: 4
  start-page: 6525
  issue: 27
  year: 2016
  ident: 823_CR127
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC01619G
– volume: 11
  start-page: 530
  issue: 1
  year: 2018
  ident: 823_CR84
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1664-6
– volume: 14
  start-page: 8368
  issue: 7
  year: 2020
  ident: 823_CR99
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02401
– volume: 31
  issue: 32
  year: 2020
  ident: 823_CR61
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab8b8d
– volume: 108
  start-page: 746
  issue: 2
  year: 2008
  ident: 823_CR107
  publication-title: Chem. Rev.
  doi: 10.1021/cr068112h
– volume: 9
  start-page: 8896
  issue: 14
  year: 2021
  ident: 823_CR161
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA00417D
– volume: 175
  start-page: 509
  year: 2021
  ident: 823_CR164
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.11.089
– volume: 93
  start-page: 151
  year: 2015
  ident: 823_CR14
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.05.033
– volume: 509
  start-page: 4320
  issue: 11
  year: 2011
  ident: 823_CR69
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.01.058
– volume: 11
  start-page: 1011
  issue: 3
  year: 2019
  ident: 823_CR114
  publication-title: Nanoscale
  doi: 10.1039/C8NR07351A
– volume: 59
  start-page: 371
  year: 2017
  ident: 823_CR130
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2017.02.021
– volume: 9
  start-page: 18318
  issue: 46
  year: 2017
  ident: 823_CR26
  publication-title: Nanoscale
  doi: 10.1039/C7NR05951E
– volume: 9
  start-page: 20038
  issue: 23
  year: 2017
  ident: 823_CR47
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04602
– volume: 102
  start-page: 154
  year: 2016
  ident: 823_CR100
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.02.040
– volume: 12
  start-page: 624
  issue: 7
  year: 2011
  ident: 823_CR2
  publication-title: Lancet Oncol.
  doi: 10.1016/s1470-2045(11)70147-4
– volume: 6
  start-page: 842
  issue: 2
  year: 2014
  ident: 823_CR50
  publication-title: Nanoscale
  doi: 10.1039/C3NR04565J
– volume: 30
  start-page: 9785
  issue: 10
  year: 2019
  ident: 823_CR81
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-019-01315-y
– volume: 144
  start-page: 323
  year: 2018
  ident: 823_CR117
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.02.047
– volume: 6
  start-page: 3157
  issue: 6
  year: 2014
  ident: 823_CR70
  publication-title: Nanoscale
  doi: 10.1039/C3NR05313J
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.67929
SecondaryResourceType review_article
Snippet Highlights Detailed summary of current trends in the advancement of flexible EMI shielding materials. The theoretical shielding mechanisms and the latest...
With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in...
HighlightsDetailed summary of current trends in the advancement of flexible EMI shielding materials.The theoretical shielding mechanisms and the latest concept...
Detailed summary of current trends in the advancement of flexible EMI shielding materials.The theoretical shielding mechanisms and the latest concept of "green...
Abstract With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 80
SubjectTerms Electromagnetic radiation
Electromagnetic shielding
Electronic devices
EMI shielding mechanism
Engineering
Flexible shielding materials
Green shielding index
Hydrophobicity
Microwave absorption and EMI shielding
Multifunctionalities
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Review
Silicones
Thermal conductivity
Uranium
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOqJRXSkFG4gYWTuzYybFAVxyg4gCoN8tPWKlkUXeL-PnM2NnsLlC4cE3syPLMeD5nZr4h5KnwnscQFZMdt0ymTrDOup7Z4OvYWZVCrpD79FafnnZnZ_37rVZfmBNW6IHLxr0IdUgObBBUK0mc39dt8FbFFIN0Ppfucd1vXaZAkxqNHZk28UFsqyy3WGokcrqIDZFZi8RlesOP2TYS_ProaAuQ1hjCyp3q6popzdVYgZPr8LBrM2eYGJ8jV0zveLncDOBPCPb3RMxforHZyc32ya0RndLjsiu3ybU4HJCbW5yFd8gPAJrwHXpckgeWdD7Q1zkNhK6ZbuGhHQLNtb3oN8vvRoD7dJHoDBk43XmkJ6UBz1f7ecBCSpr_TY7VhxRbdOewGH1nV8VI7pKPs5MPr96wsX0D84rrFbOu7iX3TsQm1b5WTkrt29By7rXyzvnEo_LJAgJSgJpE8CoBABMOQ50gYHGP7A2LIT4g1MrG9R5UoAlOejh0ergpAvSRSUfXal6Rer3dxo_c5thi49xMrMxZRAZEZLKIjK7Is2nOt8Ls8dfRL1GK00hk5c4PQFfNqKvmX7pakaO1DpjxqFgaQKQCQBachBV5Mr0GI8fIjR3i4jKPkQjGWlGR-0VlppUIAOyIMiuid5RpZ6m7b4b5l0wk3sHlWHcw8_la7TbLunorDv_HVjwkNxq0l5wYdET2VheX8RG57r-v5suLx9mYfwLP0kcC
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink Open Access Journals
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcKAH3o9AQUbiBpbs2LGTYyldcYCKA6DeIj_blUoW7W4rfj4zzmO7UJDgmjjKZDKe-ZKZ-YaQV9J7HkPUTNXcMpVqyWrrGmaDF7G2OoXcIff1gzk6qo-Pm09DU9hqrHYfU5LZU0_NbjgamTOsPs_pIWaukxuVqBss5DvYcI6XBqcxbXKDOFJZXWKoUcjnIjckZhWSlpkNN2ZVKojpQ5DtQbTB9FWeUicE04brofvmarG2IlweBHAVev29CPOXTGwOcLM7_6eau-T2AGjpfm-B98i12N0nu5doDh-QH4BN4fZ0v683WNF5R9_lyhE6kuPCQdsFmtuBMdT2fyjhC4EuEp0haac7i_Swn9nzzZ502HtJ8-_MoWGR4lTvnEmjH-2631cPyZfZ4eeD92yY-MC85mbNrBON4t7JWCbhhXZKGV-FinNvtHfOJx61TxZAkwagJYPXCTCbdJgdtTrKR2SnW3TxCaFWla7x4JDK4JQHP9XAxyWgJZVMdJXhBRHjW2r9QIeOUznO2onIOWu1Ba22WautKcjr6ZrvPRnIX1e_xZc_rUQi73xgsTxpB7_QBhGSgxADgiaF26MRVfDwKCkG5XxTkL3RdNrBu6xaALEScBk4z4K8nE6DX8Bkj-3i4jyvUYjfKlmQx72lTZJIwPgITAtitmxwS9TtM938NHOPw3YDeANXvhktcSPWn1Xx9N-WPyO3SjTmXDW0R3bWy_P4nNz0F-v5avki7_afRTtHlQ
  priority: 102
  providerName: Springer Nature
Title Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials
URI https://link.springer.com/article/10.1007/s40820-022-00823-7
https://www.ncbi.nlm.nih.gov/pubmed/35333993
https://www.proquest.com/docview/2643124196
https://www.proquest.com/docview/2644021853
https://pubmed.ncbi.nlm.nih.gov/PMC8956783
https://doaj.org/article/d1dfbdde257f4c1e8915dca6efed4bc9
Volume 14
WOSCitedRecordID wos000782151100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: C24
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoywEOvKELJTISN1jYh9fePaGmJAJBo4iXApeVnyVSuylJijjx25nxepOGRy9cLO2uV7I945mxZ-YbQh7nWifWWB6zMpExc2Uel1JVsTQ6taXkzvgMuU9vxWhUTibVOFy4LUJYZScTvaA2M4135M9Bceegi4BhXpx-i7FqFHpXQwmNLbKDKAmpD9173_FTJrAu09pLiMWV2TmsGobILvkazqxA-DKxRsksMgbaPajb1pwW6Mjy9erSNOYi4SEPx2fjYe3mJMbweO-_isWGrvMlAf5mx_4ZjvmbT9aruuH1_12kG-RaMHLpfsuVN8kl29wiV89BH94mP8BehYHQ_TYGYUGnDX3po0loB5gLL2VjqE8RRvXb3lrCqYHOHB0ikKc6tnTQ1vE5kUcN5mNSf8UZkhgpVvr23jV6KJftXrtDPg4HHw5exaEKRKx5IpaxVGnFEq1ym7lUp1wxJnRhiiTRgmultEss106CIcXB-MqN5g7suFyhx1Rym98l282ssbuESpapSoOQyoxiGmRXBQdOWDHmhFWFSCKSdvSqdYBIx0odx_UK3NnTuAYa157GtYjIk9U_py1AyIW9-8gGq54I7u1fzOZHdZAVtUmNU6B2YKCO4Zap0sJomIqzhildRWSvo34dJM6iXpM-Io9Wn0FWoANINnZ25vswtOmKPCL3Wp5bjSQHux-N1YiIDW7cGOrml2b61eORl3DGFiX8-bTj2_Ww_r0U9y-exQNyJcOt5COH9sj2cn5mH5LL-vtyupj3yJaYlD2y0x-Mxu_g6SBjPX-dAu2b_rOelwPY_hxAOy6-QN_x68Px51_La1tD
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIly4P0wFFgkOIGFH2uvfUCo0EaNmkQ5FFROZl9uIxWnJCmPP8VvZGZtJw2P3nrgaq-j3ey3M7M7O98H8CzWOrDGpj7PAunzMov9TKrcl0aHNpNpaVyF3Ie-GA6zg4N8tAY_21oYulbZ2kRnqM1E0xn5K3TcMfoiBMybky8-qUZRdrWV0KhhsWd_fMMt2-x1bxvn93kUdXf23-36jaqAr9NAzH2pcN8eaBXbqAx1mCrOhU5MEgRapFopXQY21aVEx5ySFr3RaYlxQawoAydTG-PvXoJ1TmDvwPqoNxh9bBEcCVKCWuYlSc6Zn2HH4cQlEy8J1BIiTBNLXs4k4hhPNA6-DuAFpc6cQl4Y-qkI0qbyx9X_kVp04NOFfJcx88WKd3UiBH-LnP-8APpbFtg51-71_21absC1JoxnW_W6uwlrtroFV8-QO96G7xiR48DZVn3LYsbGFdt292VYSwmMD2VlmCuCpgCjPpfFfRGblKxLVKXq2LKdWqnoszysqOKUuUPcpkyTkZa5yx-ygZzX1uQOvL-Qod-FTjWp7H1gkkcq14jMyCiu0TrnuKXGGeKlsCoRgQdhi49CNyTwpEVyXCzoqx2mCsRU4TBVCA9eLL45qSlQzm39lmC3aEn05e7BZHpYNNawMKEpFTpW7GjJySjkYWI0DqW0hiude7DZoq1obOqsWELNg6eL12gNKcUlKzs5dW04Ra1J7MG9GuOLnsS4s6Fw3AOxgv6Vrq6-qcZHjnE9yxMM6vDLl-06WXbr33_Fg_NH8QSu7O4P-kW_N9x7CBsRLWN3T2oTOvPpqX0El_XX-Xg2fdxYGQafLnoF_QKLxrFG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIAQHngUCBYzEDazm4djJsbRdgSirHgD1ZvlZVirZajdF_HxmnGyyCwUJcU2caDKZzHzOzHxDyKvC2tQ7LxivUs14qApWaVMz7WzmKy2Cix1yX47kdFqdnNTHa138sdp9lZLsehqQpalpd89d2B0a33BMcsqwEj2mipi8Sq5hRgptfH_kH88lTmYa84Q4XpmvsdVw5HYpRkKzEgnM5MiTWeYc4nsfcDtALTGVFSfWZRkTMhV9J87lYm1EuzgU4DIk-3tB5i9Z2RjsJnf-X013ye0e6NK9zjLvkSu-uU9urdEfPiA_ALPCzeheV4ewpLOGHsSKEroizYWDunE0tgljCO7-XMLOgc4DnSCZpznz9LCb5fNNnzbYk0njb86-kZHitO-YYaMfddt9b9vk8-Tw0_471k-CYFaksmXaZDVPrSl8HjKbCcO5tKUr09RKYY2xIfXCBg1gSgAAK5wVAbBcYTBrqoUvHpKtZt74x4RqnpvagqPKneEW_FcNm05AUTxIb0qZJiRbvTFle5p0nNZxpgaC56hVBVpVUatKJuT1cM15RxLy19Vv0RCGlUjwHQ_MF6eq9xfKZS4YCD0gaOD42dRZ6Sw8SvCOG1snZGdlRqr3OksF4LYAvAZONSEvh9PgLzAJpBs_v4hrOOK6skjIo87qBkkKwP4IWBMiN-xxQ9TNM83sa-Qkr2CfLSu48s3KKkex_qyKJ_-2_AW5cXwwUUfvpx-ekps52nUsLNohW-3iwj8j1-33drZcPI9O4Cc2wlNe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Design+Strategies+and+Multifunctionality+of+Flexible+Electromagnetic+Interference+Shielding+Materials&rft.jtitle=Nano-micro+letters&rft.au=Cheng%2C+Junye&rft.au=Li%2C+Chuanbing&rft.au=Xiong%2C+Yingfei&rft.au=Zhang%2C+Huibin&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=14&rft.issue=1&rft.spage=80&rft_id=info:doi/10.1007%2Fs40820-022-00823-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon