Avoiding a replication crisis in deep-learning-based bioimage analysis

Deep learning algorithms are powerful tools for analyzing, restoring and transforming bioimaging data. One promise of deep learning is parameter-free one-click image analysis with expert-level performance in a fraction of the time previously required. However, as with most emerging technologies, the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature methods Ročník 18; číslo 10; s. 1136 - 1144
Hlavní autoři: Laine, Romain F, Arganda-Carreras, Ignacio, Henriques, Ricardo, Jacquemet, Guillaume
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Nature Publishing Group 01.10.2021
Témata:
ISSN:1548-7091, 1548-7105, 1548-7105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Deep learning algorithms are powerful tools for analyzing, restoring and transforming bioimaging data. One promise of deep learning is parameter-free one-click image analysis with expert-level performance in a fraction of the time previously required. However, as with most emerging technologies, the potential for inappropriate use is raising concerns among the research community. In this Comment, we discuss key concepts that we believe are important for researchers to consider when using deep learning for their microscopy studies. We describe how results obtained using deep learning can be validated and propose what should, in our view, be considered when choosing a suitable tool. We also suggest what aspects of a deep learning analysis should be reported in publications to ensure reproducibility. We hope this perspective will foster further discussion among developers, image analysis specialists, users and journal editors to define adequate guidelines and ensure the appropriate use of this transformative technology.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-021-01284-3