Exploratory analysis to identify the best antigen and the best immune biomarkers to study SARS-CoV-2 infection

Background Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the fo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of translational medicine Vol. 19; no. 1; pp. 272 - 16
Main Authors: Petruccioli, Elisa, Najafi Fard, Saeid, Navarra, Assunta, Petrone, Linda, Vanini, Valentina, Cuzzi, Gilda, Gualano, Gina, Pierelli, Luca, Bertoletti, Antonio, Nicastri, Emanuele, Palmieri, Fabrizio, Ippolito, Giuseppe, Goletti, Delia
Format: Journal Article
Language:English
Published: London BioMed Central 26.06.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:1479-5876, 1479-5876
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients. Methods Whole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF, RANTES, TNF-α, VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals . Results We identified a COVID-19 signature based on six immune factors: IFN-γ, IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p  <  0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts. Conclusions We set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients. We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens.
AbstractList Recent studies proposed the whole-blood based IFN-[gamma]-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients. Whole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1[beta], IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-[gamma], IP-10, MCP-1, MIP-1[alpha], MIP-1[beta], PDGF, RANTES, TNF-[alpha], VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals. We identified a COVID-19 signature based on six immune factors: IFN-[gamma], IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p < 0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts. We set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients. We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens.
Background Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients. Methods Whole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF, RANTES, TNF-α, VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals . Results We identified a COVID-19 signature based on six immune factors: IFN-γ, IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p  <  0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts. Conclusions We set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients. We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens.
Background Recent studies proposed the whole-blood based IFN-[gamma]-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients. Methods Whole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1[beta], IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-[gamma], IP-10, MCP-1, MIP-1[alpha], MIP-1[beta], PDGF, RANTES, TNF-[alpha], VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals. Results We identified a COVID-19 signature based on six immune factors: IFN-[gamma], IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p < 0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts. Conclusions We set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients. We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens. Keywords: SARS-CoV-2, COVID-19, Biomarkers, T-cell, Immunity, IP-10, Whole-blood, Immune response, Spike, IFN-[gamma]
Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients. Whole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF, RANTES, TNF-α, VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals. We identified a COVID-19 signature based on six immune factors: IFN-γ, IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p  <  0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts. We set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients. We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens.
Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients.BACKGROUNDRecent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients.Whole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF, RANTES, TNF-α, VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals.METHODSWhole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF, RANTES, TNF-α, VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals.We identified a COVID-19 signature based on six immune factors: IFN-γ, IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p  <  0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts.RESULTSWe identified a COVID-19 signature based on six immune factors: IFN-γ, IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p  <  0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts.We set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients. We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens.CONCLUSIONSWe set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients. We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens.
Abstract Background Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients. Methods Whole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF, RANTES, TNF-α, VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals. Results We identified a COVID-19 signature based on six immune factors: IFN-γ, IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p  <  0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts. Conclusions We set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients. We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens.
Background Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients. Methods Whole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF, RANTES, TNF-α, VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals. Results We identified a COVID-19 signature based on six immune factors: IFN-γ, IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p  <  0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts. Conclusions We set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients. We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens.
ArticleNumber 272
Audience Academic
Author Ippolito, Giuseppe
Nicastri, Emanuele
Petruccioli, Elisa
Palmieri, Fabrizio
Navarra, Assunta
Vanini, Valentina
Gualano, Gina
Bertoletti, Antonio
Goletti, Delia
Pierelli, Luca
Najafi Fard, Saeid
Petrone, Linda
Cuzzi, Gilda
Author_xml – sequence: 1
  givenname: Elisa
  surname: Petruccioli
  fullname: Petruccioli, Elisa
  organization: Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS
– sequence: 2
  givenname: Saeid
  surname: Najafi Fard
  fullname: Najafi Fard, Saeid
  organization: Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS
– sequence: 3
  givenname: Assunta
  surname: Navarra
  fullname: Navarra, Assunta
  organization: Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-IRCCS
– sequence: 4
  givenname: Linda
  surname: Petrone
  fullname: Petrone, Linda
  organization: Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS
– sequence: 5
  givenname: Valentina
  surname: Vanini
  fullname: Vanini, Valentina
  organization: Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, UOS Professioni Sanitarie Tecniche National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS
– sequence: 6
  givenname: Gilda
  surname: Cuzzi
  fullname: Cuzzi, Gilda
  organization: Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS
– sequence: 7
  givenname: Gina
  surname: Gualano
  fullname: Gualano, Gina
  organization: Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS
– sequence: 8
  givenname: Luca
  surname: Pierelli
  fullname: Pierelli, Luca
  organization: UOC Transfusion Medicine and Stem Cell Unit, San Camillo Forlanini Hospital
– sequence: 9
  givenname: Antonio
  surname: Bertoletti
  fullname: Bertoletti, Antonio
  organization: Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School
– sequence: 10
  givenname: Emanuele
  surname: Nicastri
  fullname: Nicastri, Emanuele
  organization: Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS
– sequence: 11
  givenname: Fabrizio
  surname: Palmieri
  fullname: Palmieri, Fabrizio
  organization: Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS
– sequence: 12
  givenname: Giuseppe
  surname: Ippolito
  fullname: Ippolito, Giuseppe
  organization: Scientific Direction, National Institute for Infectious Disease “Lazzaro Spallanzani”-IRCCS
– sequence: 13
  givenname: Delia
  orcidid: 0000-0001-8360-4376
  surname: Goletti
  fullname: Goletti, Delia
  email: delia.goletti@inmi.it
  organization: Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34174875$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1rFDEUHaRiP_QP-CADvvgyNcnka16EZam1UBCs-hoySWabdSZZkxlx_33v7rZut0gJIeHmnJPck3NaHIUYXFG8xegcY8k_ZkwaLipEMMymlpV8UZxgKpqKScGPHu2Pi9OclwgRymjzqjiuKRZUCnZShIu_qz4mPca0LnXQ_Tr7XI6x9NaF0Xfrcrx1ZevyCKejX7gAq90X_TBMAfY-Djr9cmnLzeNk1-XN7NtNNY8_K1L60Dkz-hheFy873Wf35n49K358vvg-_1Jdf728ms-uK8ORGCvChe0oshQzIhhjhhnMUStq2TaOo45rbAS1WAtGTIeZ7RCmptVYNpLWHa3Piqudro16qVbJw-vWKmqvtoWYFkqn0ZveKYdZyyk3pBWYutbqumU1Zk5YThhCErQ-7bRWUzs4a8CXpPsD0cOT4G_VIv5RktSsQQQEPtwLpPh7AtfU4LNxfa-Di1NWhFHWNAwjDtD3T6DLOCX4lg2K1TWinMg9aqGhATA3wr1mI6pmXBBwTwoEqPP_oGBYN3gDUeo81A8I7x43-q_Dh7QAQO4AJsWck-uU8aPe_Cso-15hpDbBVLtgKgim2gZTbZ5MnlAf1J8l1TtSBnBYuLR34xnWHavo834
CitedBy_id crossref_primary_10_3390_v15051146
crossref_primary_10_1016_j_imbio_2023_152755
crossref_primary_10_3389_fimmu_2022_920227
crossref_primary_10_1093_ofid_ofad133
crossref_primary_10_3389_fmed_2023_1271632
crossref_primary_10_1111_ajt_16966
crossref_primary_10_3389_fimmu_2021_740249
crossref_primary_10_1080_08820139_2024_2385992
crossref_primary_10_3390_cells11010052
crossref_primary_10_1371_journal_pone_0283983
crossref_primary_10_3390_sports11050097
crossref_primary_10_3390_vaccines10101601
crossref_primary_10_3389_fimmu_2022_984098
crossref_primary_10_3390_pathogens12070862
crossref_primary_10_3389_fimmu_2022_846753
crossref_primary_10_3390_ijms22168828
crossref_primary_10_3389_fimmu_2023_1244556
Cites_doi 10.1038/s41591-020-1038-6
10.1183/13993003.01727-2020
10.1126/science.abf4063
10.1084/jem.20202617
10.1016/j.cmi.2020.09.051
10.1016/j.ijid.2021.02.034
10.1016/j.jinf.2021.02.023
10.1126/science.abd7728
10.1038/s41467-020-17292-4
10.1126/sciimmunol.abd2071
10.1016/j.antiviral.2014.06.013
10.1016/j.cell.2020.09.038
10.1111/pim.12499
10.1016/S0140-6736(20)30183-5
10.1016/j.jinf.2014.02.008
10.1016/j.ijid.2021.02.090
10.1016/j.vaccine.2016.02.063
10.1038/s41591-020-1051-9
10.1038/s41586-020-2588-y
10.1111/pim.12695
10.1111/resp.13272
10.1016/j.tube.2018.06.005
10.1016/j.immuni.2020.05.002
10.1038/s41392-020-0148-4
10.4081/idr.2020.8543
10.1186/s12967-015-0513-1
10.1016/j.jcv.2017.03.003
10.1016/j.chom.2020.02.001
10.1016/j.cell.2020.04.026
10.1038/icb.2010.158
10.1007/s40265-020-01421-w
10.1096/fj.201802418R
10.1056/NEJMe2034982
10.1038/s41586-020-2550-z
10.1016/j.cmi.2018.07.017
10.1093/cid/ciaa1537
10.1016/j.jinf.2012.03.017
10.1016/j.ijid.2021.04.034
10.5588/ijtld.16.0342
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12967-021-02938-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 16
ExternalDocumentID oai_doaj_org_article_e15b646c2b714ebda3b5315e7d625008
PMC8235902
A672267870
34174875
10_1186_s12967_021_02938_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GrantInformation_xml – fundername: COVID-2020-12371675
  grantid: COVID-2020-12371675
– fundername: COVID-2020-12371735
  grantid: COVID-2020-12371735
– fundername: Ricerca Corrente linea 1 Infezioni Emergenti e Riemergenti Italian Ministry of Health
– fundername: Ricerca Corrente linea 4 Italian Ministry of Health
– fundername: COVID 2020-12371675
  grantid: COVID 2020-12371675
– fundername: ;
– fundername: ;
  grantid: COVID 2020-12371675
– fundername: ;
  grantid: COVID-2020-12371735
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7XB
8FK
AZQEC
COVID
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c607t-267df40d41527555c5c160b738b9e60f6a1c74d1a752cf15df014cba189843f43
IEDL.DBID DOA
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000668579000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1479-5876
IngestDate Fri Oct 03 12:53:23 EDT 2025
Tue Nov 04 01:55:39 EST 2025
Fri Sep 05 08:02:33 EDT 2025
Sun Oct 19 00:04:31 EDT 2025
Tue Nov 11 10:28:24 EST 2025
Tue Nov 04 17:54:46 EST 2025
Thu Jan 02 22:55:26 EST 2025
Tue Nov 18 21:52:00 EST 2025
Sat Nov 29 06:00:41 EST 2025
Sat Sep 06 07:28:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COVID-19
Spike
SARS-CoV-2
IFN-γ
Immune response
T-cell
Whole-blood
Biomarkers
IP-10
Immunity
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-267df40d41527555c5c160b738b9e60f6a1c74d1a752cf15df014cba189843f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8360-4376
OpenAccessLink https://doaj.org/article/e15b646c2b714ebda3b5315e7d625008
PMID 34174875
PQID 2553304628
PQPubID 43076
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_e15b646c2b714ebda3b5315e7d625008
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8235902
proquest_miscellaneous_2545995106
proquest_journals_2553304628
gale_infotracmisc_A672267870
gale_infotracacademiconefile_A672267870
pubmed_primary_34174875
crossref_citationtrail_10_1186_s12967_021_02938_8
crossref_primary_10_1186_s12967_021_02938_8
springer_journals_10_1186_s12967_021_02938_8
PublicationCentury 2000
PublicationDate 2021-06-26
PublicationDateYYYYMMDD 2021-06-26
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of translational medicine
PublicationTitleAbbrev J Transl Med
PublicationTitleAlternate J Transl Med
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References JM Dan (2938_CR36) 2021; 371
L Petrone (2938_CR10) 2021; 27
C Rydyznski Moderbacher (2938_CR13) 2020; 183
D Goletti (2938_CR4) 2021; 384
L Petrone (2938_CR32) 2017; 39
W Dammermann (2938_CR33) 2015
K Murugesan (2938_CR20) 2020
JR Groom (2938_CR25) 2011; 89
N Le Bert (2938_CR19) 2020; 584
AG Laing (2938_CR6) 2020; 26
G Echeverría (2938_CR21) 2021; 105
L Tan (2938_CR14) 2020
2938_CR40
L Petrone (2938_CR31) 2020; 42
L Petrone (2938_CR27) 2014; 68
L Petrone (2938_CR26) 2016; 20
DX Liu (2938_CR23) 2014; 109
L Petrone (2938_CR38) 2018; 111
KL Siu (2938_CR24) 2019; 33
D Goletti (2938_CR34) 2018; 23
C Lucas (2938_CR9) 2020; 584
S De Biasi (2938_CR17) 2020
L Petrone (2938_CR12) 2021; 82
DM Del Valle (2938_CR8) 2020; 26
N Le Bert (2938_CR42) 2021; 218
VS Santos (2938_CR29) 2019; 25
E Nicastri (2938_CR41) 2020; 12
D Weiskopf (2938_CR16) 2020; 5
V Vanini (2938_CR30) 2012; 65
A Wu (2938_CR2) 2020; 27
D Blanco-Melo (2938_CR7) 2020; 181
A Wajnberg (2938_CR37) 2020; 370
N Vabret (2938_CR15) 2020; 52
CWM Ong (2938_CR18) 2020; 56
F Cantini (2938_CR3) 2020; 80
L Petrone (2938_CR11) 2021
C Huang (2938_CR5) 2020; 395
A Aiello (2938_CR22) 2021
L Petrone (2938_CR28) 2018; 111
OW Ng (2938_CR35) 2016; 34
WHO (2938_CR1) 2021
MS Hayney (2938_CR39) 2017; 90
References_xml – volume: 26
  start-page: 1623
  year: 2020
  ident: 2938_CR6
  publication-title: Nat Med
  doi: 10.1038/s41591-020-1038-6
– volume: 56
  start-page: 2001727
  year: 2020
  ident: 2938_CR18
  publication-title: Eur Respir J
  doi: 10.1183/13993003.01727-2020
– volume: 371
  start-page: eabf4063
  year: 2021
  ident: 2938_CR36
  publication-title: Science
  doi: 10.1126/science.abf4063
– volume: 218
  start-page: e20202617
  year: 2021
  ident: 2938_CR42
  publication-title: J Exp Med
  doi: 10.1084/jem.20202617
– volume: 27
  start-page: 286.e7
  year: 2021
  ident: 2938_CR10
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2020.09.051
– volume: 105
  start-page: 21
  year: 2021
  ident: 2938_CR21
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2021.02.034
– volume: 82
  start-page: 58
  year: 2021
  ident: 2938_CR12
  publication-title: J Infect
  doi: 10.1016/j.jinf.2021.02.023
– volume: 370
  start-page: 1227
  year: 2020
  ident: 2938_CR37
  publication-title: Science
  doi: 10.1126/science.abd7728
– year: 2020
  ident: 2938_CR17
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17292-4
– volume: 5
  start-page: eabd2071
  year: 2020
  ident: 2938_CR16
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.abd2071
– volume: 109
  start-page: 97
  year: 2014
  ident: 2938_CR23
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2014.06.013
– volume: 183
  start-page: 996
  year: 2020
  ident: 2938_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.038
– volume: 39
  start-page: e12499
  year: 2017
  ident: 2938_CR32
  publication-title: Parasite Immunol
  doi: 10.1111/pim.12499
– volume: 395
  start-page: 497
  year: 2020
  ident: 2938_CR5
  publication-title: China Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 68
  start-page: 591
  year: 2014
  ident: 2938_CR27
  publication-title: J Infect
  doi: 10.1016/j.jinf.2014.02.008
– year: 2021
  ident: 2938_CR11
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2021.02.090
– volume: 34
  start-page: 2008
  year: 2016
  ident: 2938_CR35
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2016.02.063
– volume: 26
  start-page: 1636
  year: 2020
  ident: 2938_CR8
  publication-title: Nat Med
  doi: 10.1038/s41591-020-1051-9
– volume: 584
  start-page: 463
  year: 2020
  ident: 2938_CR9
  publication-title: Nature
  doi: 10.1038/s41586-020-2588-y
– volume: 42
  start-page: e12695
  year: 2020
  ident: 2938_CR31
  publication-title: Parasite Immunol
  doi: 10.1111/pim.12695
– volume-title: COVID-19 Clinical management: living guidance
  year: 2021
  ident: 2938_CR1
– volume: 23
  start-page: 455
  year: 2018
  ident: 2938_CR34
  publication-title: Respirology
  doi: 10.1111/resp.13272
– volume: 111
  start-page: 147
  year: 2018
  ident: 2938_CR38
  publication-title: Tuberculosis
  doi: 10.1016/j.tube.2018.06.005
– volume: 52
  start-page: 910
  year: 2020
  ident: 2938_CR15
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.05.002
– year: 2020
  ident: 2938_CR14
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-020-0148-4
– volume: 12
  start-page: 8543
  year: 2020
  ident: 2938_CR41
  publication-title: Infect Dis Rep
  doi: 10.4081/idr.2020.8543
– year: 2015
  ident: 2938_CR33
  publication-title: J Transl Med
  doi: 10.1186/s12967-015-0513-1
– volume: 90
  start-page: 32
  year: 2017
  ident: 2938_CR39
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2017.03.003
– volume: 27
  start-page: 325
  year: 2020
  ident: 2938_CR2
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.02.001
– volume: 181
  start-page: 1036
  year: 2020
  ident: 2938_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.026
– volume: 89
  start-page: 207
  year: 2011
  ident: 2938_CR25
  publication-title: Immunol Cell Biol
  doi: 10.1038/icb.2010.158
– volume: 80
  start-page: 1929
  year: 2020
  ident: 2938_CR3
  publication-title: Drugs
  doi: 10.1007/s40265-020-01421-w
– volume: 33
  start-page: 8865
  year: 2019
  ident: 2938_CR24
  publication-title: FASEB J
  doi: 10.1096/fj.201802418R
– volume: 384
  start-page: 867
  year: 2021
  ident: 2938_CR4
  publication-title: N Engl J Med
  doi: 10.1056/NEJMe2034982
– volume: 111
  start-page: 147
  year: 2018
  ident: 2938_CR28
  publication-title: Tuberculosis
  doi: 10.1016/j.tube.2018.06.005
– volume: 584
  start-page: 457
  year: 2020
  ident: 2938_CR19
  publication-title: Nature
  doi: 10.1038/s41586-020-2550-z
– volume: 25
  start-page: 169
  year: 2019
  ident: 2938_CR29
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2018.07.017
– year: 2020
  ident: 2938_CR20
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa1537
– ident: 2938_CR40
– volume: 65
  start-page: 49
  year: 2012
  ident: 2938_CR30
  publication-title: J Infect
  doi: 10.1016/j.jinf.2012.03.017
– year: 2021
  ident: 2938_CR22
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2021.04.034
– volume: 20
  start-page: 1554
  year: 2016
  ident: 2938_CR26
  publication-title: Int J Tuberc Lung Dis
  doi: 10.5588/ijtld.16.0342
SSID ssj0024549
Score 2.4264677
Snippet Background Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of...
Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease...
Background Recent studies proposed the whole-blood based IFN-[gamma]-release assay to study the antigen-specific SARS-CoV-2 response. Since the early...
Recent studies proposed the whole-blood based IFN-[gamma]-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of...
Background Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of...
Abstract Background Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 272
SubjectTerms Antibody response
Antigens
Biological markers
Biomarkers
Biomedical and Life Sciences
Biomedicine
Blood
Chemokines
Clinical trials
Coronaviruses
COVID-19
COVID-19 Vaccines
Cytokines
Disease
Granulocyte colony-stimulating factor
Granulocyte-macrophage colony-stimulating factor
Growth factors
Health aspects
Humans
Identification and classification
Immune response
Immunity
Immunogenicity
ImmunoVirology and ImmunoOncology
Infections
Infectious diseases
Interleukin 10
Interleukin 12
Interleukin 13
Interleukin 2
Interleukin 4
Interleukin 5
Interleukin 6
Interleukin 7
Interleukin 8
Interleukin 9
IP-10
Lymphocytes T
Medicine/Public Health
Monocyte chemoattractant protein 1
Patients
Peptides
Proteins
RNA, Viral
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
T-cell
Tuberculosis
Vaccines
Variables
Vascular endothelial growth factor
Viral antigens
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgLb0qgoCAhcYCoefiVE1oqKg5QIQpob5btOLASTcruFol_z4zj7JIieuG0UWxr4_ibVzzzGeBZ2dSOM1tl3qC4MWVtZh1HLFvZKNSaaINDofA7eXSk5vP6Q_zgtopplaNODIq66R19I99H15dCb1GqV6c_Mjo1inZX4xEal-EKHZtNOJfzbcDFMPgZC2WU2F-hbUO1QEkJOVo5lamJMQqc_X9r5j9M0_m0yXN7p8EkHd7838ncghvRGU1nA3puwyXf3YFr7-N2-13ohgy9sBGfmkhfkq77dBHKe9tfKbqPqcX_xdY18Xrib7O9uaDiE7xe9CeUBbQMYwOhbXo8-3icHfRfsjId88G6e_D58M2ng7dZPKAhcyKX66wUsmlZ3pATIDnnjrtC5FZWytZe5K0whZOsKYzkpWsL3rQYkDlrClUrVrWsug87Xd_5B5BiYFXlxkhf1Y6ZsjTe5rZFbcLwfXNnEijGldIuspfTIRrfdYhilNDD6mpcXR1WV6sEXmzGnA7cHRf2fk0A2PQk3u1wo19-1VGMtS-4FUy40sqCeduYyqIS4142GEeiO5XAc4KPJu2Aj-dMLHLASRLPlp4Jif4uKckE9iY9UardtHlEjo5aZaW3sEng6aaZRlKmXOf7M-rDiEMOI_0Edge8bqaEsicpQE1ATpA8mfO0pVt8C5zjqqyI6CeBlyPmt4_173f68OJZPILrZZBGgVDag5318sw_hqvu53qxWj4JsvwbZ9tPZg
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQYgLb0qgoCAhcYCoefiV41JRcYAKdaHqzbIdByLRBO2mSPx7Zpxkl5SHBKdE8VixJ_PwxDOfAZ7lVek4s0XiDaobU9Ym1nGUZSsrhVYTfXAoFH4rj47U6Wn5fiwKW0_Z7tOWZLDUQa2V2F-jZ0KlppSCFH2UStRluILuTtGBDcfLky3CHoY8U3nMb_vNXFBA6v_VHv_kkC4mS17YMQ2O6PDm_03hFtwYF57xYpCU23DJt3fg2rtxa_0utEM2Xth0j80IVRL3XdyEUt76e4xLxdjioLG1JwxPvFbbhw0VmuB9051Rxs8q9A3gtfFycbxMDrqTJI-n3K_2Hnw8fP3h4E0yHsaQOJHKPsmFrGqWVuTwJefccZeJ1MpC2dKLtBYmc5JVmZE8d3XGqxqDL2dNpkrFipoV92Gn7Vr_AGIMoorUGOmL0jGT58bb1NZoORhymTsTQTZ9H-1GpHI6MOOLDhGLEnpgpEZG6sBIrSJ4senzdcDp-Cv1K_rsG0rC2A4PutUnPaqs9hm3ggmXW5kxbytTWDRY3MsKY0ZcOkXwnIRGkyXA4TkzFjTgJAlTSy-ExLUtGcQI9maUqMFu3jyJnR4tyFpjqEe_mkSO73m6aaaelBXX-u6caBjhxWFUH8HuIKWbKaGeSQpGI5Az-Z3Ned7SNp8DvrjKCwL1ieDlJMXbYf2Zpw__jfwRXM-DIggUrT3Y6Vfn_jFcdd_6Zr16EjT6BzSARcI
  priority: 102
  providerName: Springer Nature
Title Exploratory analysis to identify the best antigen and the best immune biomarkers to study SARS-CoV-2 infection
URI https://link.springer.com/article/10.1186/s12967-021-02938-8
https://www.ncbi.nlm.nih.gov/pubmed/34174875
https://www.proquest.com/docview/2553304628
https://www.proquest.com/docview/2545995106
https://pubmed.ncbi.nlm.nih.gov/PMC8235902
https://doaj.org/article/e15b646c2b714ebda3b5315e7d625008
Volume 19
WOSCitedRecordID wos000668579000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Link
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RSV
  dateStart: 20030601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BQIgXxDeBUQUJiQeIljj-ymM3bQKJVVULU3mybMfRIkGC2g6J_56zk3TLEPDCS9PEtmKf78MX3_0M8JqUhWXU5InTKG5UGpMYy5CXjSglak20wSFR-KOYzeRqVcyvHPXlY8I6eOCOcAcuY4ZTbokRGXWm1LlBtmFOlLhy79N8U1EMztSAsoduz5AiI_nBBq0aKgQfjpCifZOJHJmhgNb_u06-YpSuB0xe2zUNxujkPtzrV5HxtOv9A7jhmodw57TfJ38ETRdaF3bQY93jjsTbNq5DXm71M8Z1X2zw7Vi69YCceC0vH9Y-awT_1-03H76zDm0DEm28nC6WyVF7lpB4CORqHsPnk-NPR--T_mSFxPJUbBPCRVnRtPTWWzDGLLMZT43IpSkcTyuuMytomWnBiK0yVlboSVmjM1lImlc0fwJ7Tdu4ZxCjR5SnWguXF5ZqQrQzqalQDVAkF7M6gmwgtLI97Lg__eKrCu6H5KqbHIWTo8LkKBnB212b7x3oxl9rH_r529X0gNnhAbKR6tlI_YuNInjjZ195scbuWd1nJ-AgPUCWmnKBC1Wv3SLYH9VEcbTj4oF_VK8ONgr9Nv_diBN8z6tdsW_pQ9wa1174OtSDv6GLHsHTjt12Q0KhEd6zjECMGHE05nFJU58HsHBJco_QE8G7gWUvu_Vnmj7_HzR9AXdJEDmODLcPe9v1hXsJt-2Pbb1ZT-CmWInwKydw6_B4Nl9MghDj3fzD6fwL3i2WZ78AZjVHSA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70egQJBAHCBq4ji294DQUqhadVshWtDejO0ksBIkZXcL6p_iNzLjJLukiN564JRVbEeZ5JtvZjYzY4AnLB-4jNs0KgyqG1fWRtZliGUrc4WsiTbYFwqP5N6eGo8H71bgV1cLQ2mVHSd6os5rR_-Rr6PrS6G3YOrV4feIdo2ir6vdFhoNLHaK458Yss1ebr_B9_uUsc23BxtbUburQORELOcREzIveZyT5ZJZlrnMJSK2MlV2UIi4FCZxkueJkRlzZZLlJUYRzppEDRRPS57idc_BeeRxScGeHC8DPI7BVleYo8T6DG0p0hAlQcRoVVWkesbP7xHwtyX4wxSeTNM88a3Wm8DNq__bw7sGV1pnOxw22nEdVorqBlzcbdMJbkLVZCD6RIPQtO1ZwnkdTnz5cnkconscWpQTR-fUtxSP-fLkhIpr8Pek_kZZTlO_1jfsDfeH7_ejjfpjxMIu3626BR_ORNrbsFrVVXEXQgwc09gYWaQDxw1jprCxLZEtOb7fzJkAkg4Z2rXd2WmTkK_aR2lK6AZNGtGkPZq0CuD5Ys1h05vk1NmvCXCLmdRX3J-op591S1O6SDIruHDMyoQXNjepRZLOCpljnIzuYgDPCK6a2A9vz5m2iAOFpD5ieigk-vNkBAJY681E1nL94Q6pumXNmV7CNIDHi2FaSZmAVVEf0RxOPfKSWARwp9GPhUjILZIC8ABkT3N6MvdHqskX31NdsZQaGQXwotOx5W39-5neO12KR3Bp62B3pEfbezv34TLzTCAQVmuwOp8eFQ_ggvsxn8ymDz2PhPDprHXvNzZOqkY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB5BQRUv3IehgJGQeACrPvbKYyhUIEpUEaj6ttpdryES2FXiIvHvmVnbSV0OCfGUyDureCZzemc-AzzNy4njzBaJN2huTFmbWMdRl60sFXpNjMFhUPhAzmbq-HhyeGaKP3S7D0eS3UwDoTTV7e5JWXUmrsTuCqMUGji1F6QYr1SiLsIlRo30VK_PjzZoe1j-DKMyv903CkcBtf9X33wmOJ1vnDx3ehqC0v61_2fnOlztE9J42mnQDbjg65uw_b4_cr8FddelFw7jY9NDmMRtEy_CiG_1I8YUMrbIAK62hO2Jn-Xm4oIGUPD7ovlGnUDLsDeA2sbz6Yd5stccJXk89ITVt-HT_uuPe2-S_iUNiROpbJNcyLJiaUmJgOScO-4ykVpZKDvxIq2EyZxkZWYkz12V8bLCosxZk6mJYkXFijuwVTe1vwcxFldFaoz0xcQxk-fG29RW6FEYSpw7E0E2_Ffa9Qjm9CKNrzpUMkroTpAaBamDILWK4Pl6z0mH3_FX6pekAmtKwt4OF5rlZ92bsvYZt4IJl1uZMW9LU1h0ZNzLEmtJTKkieEYKpMlD4O050w86IJOEtaWnQmLOS44ygp0RJVq2Gy8PKqh7z7LSWALSIyiR4-88WS_TTuqWq31zSjSMcOSw2o_gbqexa5bQ_iQVqRHIkS6PeB6v1IsvAXdc5QWB_UTwYtDozW39Wab3_438MWwfvtrXB29n7x7AlTzYhEAt24GtdnnqH8Jl971drJaPgqH_BLCFUYo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploratory+analysis+to+identify+the+best+antigen+and+the+best+immune+biomarkers+to+study+SARS-CoV-2+infection&rft.jtitle=Journal+of+translational+medicine&rft.au=Petruccioli%2C+Elisa&rft.au=Najafi+Fard%2C+Saeid&rft.au=Navarra%2C+Assunta&rft.au=Petrone%2C+Linda&rft.date=2021-06-26&rft.issn=1479-5876&rft.eissn=1479-5876&rft.volume=19&rft.issue=1&rft.spage=272&rft_id=info:doi/10.1186%2Fs12967-021-02938-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon