Prediction of acute kidney injury risk after cardiac surgery: using a hybrid machine learning algorithm

Background Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models. Methods We conduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC medical informatics and decision making Jg. 22; H. 1; S. 137 - 10
Hauptverfasser: Petrosyan, Yelena, Mesana, Thierry G., Sun, Louise Y.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 18.05.2022
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1472-6947, 1472-6947
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models. Methods We conducted a retrospective study of adult patients who underwent major cardiac surgery requiring cardiopulmonary bypass between November 1st, 2009 and March 31st, 2015. AKI was defined according to the KDIGO criteria as stage 1 or greater, within 7 days of surgery. We randomly split the cohort into derivation and validation datasets. We developed three AKI risk models: (1) a hybrid machine learning (ML) algorithm, using Random Forests for variable selection, followed by high performance logistic regression; (2) a traditional logistic regression model and (3) an enhanced logistic regression model with 500 bootstraps, with backward variable selection. For each model, we assigned risk scores to each of the retained covariate and assessed model discrimination (C statistic) and calibration (Hosmer–Lemeshow goodness-of-fit test) in the validation datasets. Results Of 6522 included patients, 1760 (27.0%) developed AKI. The best performance was achieved by the hybrid ML algorithm to predict AKI of any severity. The ML and enhanced statistical models remained robust after internal validation (C statistic = 0.75; Hosmer–Lemeshow p  = 0.804, and AUC = 0.74, Hosmer–Lemeshow p  = 0.347, respectively). Conclusions We demonstrated that a hybrid ML model provides higher accuracy without sacrificing parsimony, computational efficiency, or interpretability, when compared with parametric statistical models. This score-based model can easily be used at the bedside to identify high-risk patients who may benefit from intensive perioperative monitoring and personalized management strategies.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1472-6947
1472-6947
DOI:10.1186/s12911-022-01859-w