Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling

Single-cell RNA sequencing has enabled the decomposition of complex tissues into functionally distinct cell types. Often, investigators wish to assign cells to cell types through unsupervised clustering followed by manual annotation or via 'mapping' to existing data. However, manual interp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods Jg. 16; H. 10; S. 1007 - 1015
Hauptverfasser: Zhang, Allen W, O'Flanagan, Ciara, Chavez, Elizabeth A, Lim, Jamie L P, Ceglia, Nicholas, McPherson, Andrew, Wiens, Matt, Walters, Pascale, Chan, Tim, Hewitson, Brittany, Lai, Daniel, Mottok, Anja, Sarkozy, Clementine, Chong, Lauren, Aoki, Tomohiro, Wang, Xuehai, Weng, Andrew P, McAlpine, Jessica N, Aparicio, Samuel, Steidl, Christian, Campbell, Kieran R, Shah, Sohrab P
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Nature Publishing Group 01.10.2019
Schlagworte:
ISSN:1548-7091, 1548-7105, 1548-7105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-cell RNA sequencing has enabled the decomposition of complex tissues into functionally distinct cell types. Often, investigators wish to assign cells to cell types through unsupervised clustering followed by manual annotation or via 'mapping' to existing data. However, manual interpretation scales poorly to large datasets, mapping approaches require purified or pre-annotated data and both are prone to batch effects. To overcome these issues, we present CellAssign, a probabilistic model that leverages prior knowledge of cell-type marker genes to annotate single-cell RNA sequencing data into predefined or de novo cell types. CellAssign automates the process of assigning cells in a highly scalable manner across large datasets while controlling for batch and sample effects. We demonstrate the advantages of CellAssign through extensive simulations and analysis of tumor microenvironment composition in high-grade serous ovarian cancer and follicular lymphoma.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-019-0529-1