Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling

Single-cell RNA sequencing has enabled the decomposition of complex tissues into functionally distinct cell types. Often, investigators wish to assign cells to cell types through unsupervised clustering followed by manual annotation or via 'mapping' to existing data. However, manual interp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature methods Ročník 16; číslo 10; s. 1007 - 1015
Hlavní autori: Zhang, Allen W, O'Flanagan, Ciara, Chavez, Elizabeth A, Lim, Jamie L P, Ceglia, Nicholas, McPherson, Andrew, Wiens, Matt, Walters, Pascale, Chan, Tim, Hewitson, Brittany, Lai, Daniel, Mottok, Anja, Sarkozy, Clementine, Chong, Lauren, Aoki, Tomohiro, Wang, Xuehai, Weng, Andrew P, McAlpine, Jessica N, Aparicio, Samuel, Steidl, Christian, Campbell, Kieran R, Shah, Sohrab P
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Nature Publishing Group 01.10.2019
Predmet:
ISSN:1548-7091, 1548-7105, 1548-7105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Single-cell RNA sequencing has enabled the decomposition of complex tissues into functionally distinct cell types. Often, investigators wish to assign cells to cell types through unsupervised clustering followed by manual annotation or via 'mapping' to existing data. However, manual interpretation scales poorly to large datasets, mapping approaches require purified or pre-annotated data and both are prone to batch effects. To overcome these issues, we present CellAssign, a probabilistic model that leverages prior knowledge of cell-type marker genes to annotate single-cell RNA sequencing data into predefined or de novo cell types. CellAssign automates the process of assigning cells in a highly scalable manner across large datasets while controlling for batch and sample effects. We demonstrate the advantages of CellAssign through extensive simulations and analysis of tumor microenvironment composition in high-grade serous ovarian cancer and follicular lymphoma.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-019-0529-1