ASYMPTOTIC THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION OF THE MEMORY PARAMETER IN STATIONARY GAUSSIAN PROCESSES

Consistency, asymptotic normality, and efficiency of the maximum likelihood estimator for stationary Gaussian time series were shown to hold in the short memory case by Hannan (1973, Journal of Applied Probability 10, 130–145) and in the long memory case by Dahlhaus (1989, Annals of Statistics 34, 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory Jg. 28; H. 2; S. 457 - 470
Hauptverfasser: Lieberman, Offer, Rosemarin, Roy, Rousseau, Judith
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, USA Cambridge University Press 01.04.2012
Cambridge Univ. Press
Cambridge University Press (CUP)
Schlagworte:
ISSN:0266-4666, 1469-4360
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consistency, asymptotic normality, and efficiency of the maximum likelihood estimator for stationary Gaussian time series were shown to hold in the short memory case by Hannan (1973, Journal of Applied Probability 10, 130–145) and in the long memory case by Dahlhaus (1989, Annals of Statistics 34, 1045–1047). In this paper we extend these results to the entire stationarity region, including the case of antipersistence and noninvertibility.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0266-4666
1469-4360
DOI:10.1017/S0266466611000399