ASYMPTOTIC THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION OF THE MEMORY PARAMETER IN STATIONARY GAUSSIAN PROCESSES
Consistency, asymptotic normality, and efficiency of the maximum likelihood estimator for stationary Gaussian time series were shown to hold in the short memory case by Hannan (1973, Journal of Applied Probability 10, 130–145) and in the long memory case by Dahlhaus (1989, Annals of Statistics 34, 1...
Uloženo v:
| Vydáno v: | Econometric theory Ročník 28; číslo 2; s. 457 - 470 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, USA
Cambridge University Press
01.04.2012
Cambridge Univ. Press Cambridge University Press (CUP) |
| Témata: | |
| ISSN: | 0266-4666, 1469-4360 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Consistency, asymptotic normality, and efficiency of the maximum likelihood estimator for stationary Gaussian time series were shown to hold in the short memory case by Hannan (1973, Journal of Applied Probability 10, 130–145) and in the long memory case by Dahlhaus (1989, Annals of Statistics 34, 1045–1047). In this paper we extend these results to the entire stationarity region, including the case of antipersistence and noninvertibility. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0266-4666 1469-4360 |
| DOI: | 10.1017/S0266466611000399 |