ASYMPTOTIC THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION OF THE MEMORY PARAMETER IN STATIONARY GAUSSIAN PROCESSES

Consistency, asymptotic normality, and efficiency of the maximum likelihood estimator for stationary Gaussian time series were shown to hold in the short memory case by Hannan (1973, Journal of Applied Probability 10, 130–145) and in the long memory case by Dahlhaus (1989, Annals of Statistics 34, 1...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Econometric theory Ročník 28; číslo 2; s. 457 - 470
Hlavní autori: Lieberman, Offer, Rosemarin, Roy, Rousseau, Judith
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, USA Cambridge University Press 01.04.2012
Cambridge Univ. Press
Cambridge University Press (CUP)
Predmet:
ISSN:0266-4666, 1469-4360
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Consistency, asymptotic normality, and efficiency of the maximum likelihood estimator for stationary Gaussian time series were shown to hold in the short memory case by Hannan (1973, Journal of Applied Probability 10, 130–145) and in the long memory case by Dahlhaus (1989, Annals of Statistics 34, 1045–1047). In this paper we extend these results to the entire stationarity region, including the case of antipersistence and noninvertibility.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0266-4666
1469-4360
DOI:10.1017/S0266466611000399