ASYMPTOTIC THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION OF THE MEMORY PARAMETER IN STATIONARY GAUSSIAN PROCESSES
Consistency, asymptotic normality, and efficiency of the maximum likelihood estimator for stationary Gaussian time series were shown to hold in the short memory case by Hannan (1973, Journal of Applied Probability 10, 130–145) and in the long memory case by Dahlhaus (1989, Annals of Statistics 34, 1...
Uložené v:
| Vydané v: | Econometric theory Ročník 28; číslo 2; s. 457 - 470 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, USA
Cambridge University Press
01.04.2012
Cambridge Univ. Press Cambridge University Press (CUP) |
| Predmet: | |
| ISSN: | 0266-4666, 1469-4360 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Consistency, asymptotic normality, and efficiency of the maximum likelihood estimator for stationary Gaussian time series were shown to hold in the short memory case by Hannan (1973, Journal of Applied Probability 10, 130–145) and in the long memory case by Dahlhaus (1989, Annals of Statistics 34, 1045–1047). In this paper we extend these results to the entire stationarity region, including the case of antipersistence and noninvertibility. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0266-4666 1469-4360 |
| DOI: | 10.1017/S0266466611000399 |