A real-time deep machine learning approach for sudden tool failure prediction and prevention in machining processes

Tool Condition Monitoring systems are essential to achieve the desired industrial competitive advantage in terms of reducing costs, increasing productivity, improving quality, and preventing machined part damage. A sudden tool failure is analytically unpredictable due to the high dynamics of the mac...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 8; p. 3894
Main Authors: Hassan, Mahmoud, Sadek, Ahmad, Attia, Helmi
Format: Journal Article
Language:English
Published: Switzerland MDPI 11.04.2023
MDPI AG
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tool Condition Monitoring systems are essential to achieve the desired industrial competitive advantage in terms of reducing costs, increasing productivity, improving quality, and preventing machined part damage. A sudden tool failure is analytically unpredictable due to the high dynamics of the machining process in the industrial environment. Therefore, a system for detecting and preventing sudden tool failures was developed for real-time implementation. A discrete wavelet transform lifting scheme (DWT) was developed to extract a time-frequency representation of the AErms signals. A long short-term memory (LSTM) autoencoder was developed to compress and reconstruct the DWT features. The variations between the reconstructed and the original DWT representations due to the induced acoustic emissions (AE) waves during unstable crack propagation were used as a prefailure indicator. Based on the statistics of the LSTM autoencoder training process, a threshold was defined to detect tool prefailure regardless of the cutting conditions. Experimental validation results demonstrated the ability of the developed approach to accurately predict sudden tool failures before they occur and allow enough time to take corrective action to protect the machined part. The developed approach overcomes the limitations of the prefailure detection approach available in the literature in terms of defining a threshold function and sensitivity to chip adhesion-separation phenomenon during the machining of hard-to-cut materials.
NRC publication: Yes
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23083894