Resurveying historical vegetation data — opportunities and challenges

Background: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied vegetation science Jg. 20; H. 2; S. 164 - 171
Hauptverfasser: Kapfer, Jutta, Hédl, Radim, Jurasinski, Gerald, Kopecký, Martin, Schei, Fride H., Grytnes, John-Arvid
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States John Wiley & Sons Ltd 01.04.2017
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1402-2001, 1654-109X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant errors to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. Methods: Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys, distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarize the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. Results and conclusions: Re-sampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) retain a high level of experience of the observers to keep observer bias low; and (v) edit and standardize data sets before analyses.
AbstractList Background: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant errors to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. Methods: Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys, distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarize the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. Results and conclusions: Re-sampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) retain a high level of experience of the observers to keep observer bias low; and (v) edit and standardize data sets before analyses.
Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant error to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental-change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarise the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. Resampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias, and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) keep a high level of experience of the observers to keep observer bias low; and (v) edit and standardise datasets before analyses.
Background Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant errors to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. Methods Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys, distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarize the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. Results and conclusions Re-sampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) retain a high level of experience of the observers to keep observer bias low; and (v) edit and standardize data sets before analyses. Resurveying historical vegetation plots provides a unique opportunity to estimate vegetation and environmental changes over the past decades. This paper describes the properties of vegetation resurveys distinguishing basic types of plots according to relocation error and it highlights the potential of such data types for studying vegetation dynamics and their drivers.
Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant error to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists.BACKGROUNDResurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant error to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists.Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental-change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarise the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research.MATERIAL & METHODSVegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental-change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarise the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research.Resampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias, and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) keep a high level of experience of the observers to keep observer bias low; and (v) edit and standardise datasets before analyses.RESULTS AND CONCLUSIONSResampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias, and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) keep a high level of experience of the observers to keep observer bias low; and (v) edit and standardise datasets before analyses.
Background Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant errors to temporal change. These errors may have major implications for the reliability of studies on long‐term environmental change and deserve closer attention of vegetation ecologists. Methods Vegetation data obtained from the resurveying of non‐permanently marked plots are assessed for their potential to study environmental change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys, distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarize the challenges and limitations of resurveying non‐permanently marked vegetation plots for different purposes in environmental change research. Results and conclusions Re‐sampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non‐permanent plots, while the latter are further divided into quasi‐permanent (with approximate relocation) and non‐traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) retain a high level of experience of the observers to keep observer bias low; and (v) edit and standardize data sets before analyses. Resurveying historical vegetation plots provides a unique opportunity to estimate vegetation and environmental changes over the past decades. This paper describes the properties of vegetation resurveys distinguishing basic types of plots according to relocation error and it highlights the potential of such data types for studying vegetation dynamics and their drivers.
Author Schei, Fride H.
Kapfer, Jutta
Kopecký, Martin
Hédl, Radim
Jurasinski, Gerald
Grytnes, John-Arvid
AuthorAffiliation 2 Institute of Botany, The Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic
1 Department of Biology, University of Bergen, Thormøhlensgate 53A, 5020 Bergen, Norway
3 Department of Botany, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
4 Landscape Ecology and Site Evaluation, University of Rostock, 18059 Rostock, Germany
5 Norwegian Institute of Bioeconomy Research, Holtveien 66, 9016 Tromsø, Norway
7 Norwegian Institute of Bioeconomy Research, Fanaflaten 4, 5244 Fana, Norway
6 Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6-Suchdol, Czech Republic
AuthorAffiliation_xml – name: 3 Department of Botany, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
– name: 6 Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6-Suchdol, Czech Republic
– name: 2 Institute of Botany, The Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic
– name: 1 Department of Biology, University of Bergen, Thormøhlensgate 53A, 5020 Bergen, Norway
– name: 4 Landscape Ecology and Site Evaluation, University of Rostock, 18059 Rostock, Germany
– name: 7 Norwegian Institute of Bioeconomy Research, Fanaflaten 4, 5244 Fana, Norway
– name: 5 Norwegian Institute of Bioeconomy Research, Holtveien 66, 9016 Tromsø, Norway
Author_xml – sequence: 1
  givenname: Jutta
  surname: Kapfer
  fullname: Kapfer, Jutta
– sequence: 2
  givenname: Radim
  surname: Hédl
  fullname: Hédl, Radim
– sequence: 3
  givenname: Gerald
  surname: Jurasinski
  fullname: Jurasinski, Gerald
– sequence: 4
  givenname: Martin
  surname: Kopecký
  fullname: Kopecký, Martin
– sequence: 5
  givenname: Fride H.
  surname: Schei
  fullname: Schei, Fride H.
– sequence: 6
  givenname: John-Arvid
  surname: Grytnes
  fullname: Grytnes, John-Arvid
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30245580$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhoO02A-98V4Z8KYIU3MyySS5EcqiVSgU6gfehWwms5tlNtkmMyt71x_hL_SXmHW6pRaxucmB87wvnPecI7Tng7cIvQB8Cvm91etkToGQWj5Bh1AzWgKW3_dyTTEpCcZwgI5SWuSCSyafooMKE8qYwIfo_MqmIa7txvlZMXepD9EZ3RVrO7O97l3wRaN7Xfy6-VmE1SrEfvCudzYV2jeFmeuus35m0zO03-ou2ee3_zH6-uH9l8nH8uLy_NPk7KI0NSayFNpI0hJDG1NXjMipZrrKLcpIw6UWuKFVy8WUV4TI1lhaGw6mgqkUjWhaXB2jd6PvapgubWOs76Pu1Cq6pY4bFbRTf3e8m6tZWKsaKKOUZIOTW4MYrgeberV0ydiu096GISmSE-WUgqCPo5hgITHj_FEUhADOGNRVRl8_QBdhiD6HlikuMOZAt4av7s95N-BucxnAI2BiSCnaVhk3LiyP7ToFWG2PQ22PQ_05jix580Cyc_0nDCP8w3V28x9SnX37PNlpXo6axfaO7jQ5dgCaA_0NE17UOw
CitedBy_id crossref_primary_10_1111_avsc_12417
crossref_primary_10_1111_avsc_12532
crossref_primary_10_1016_j_rama_2018_06_003
crossref_primary_10_1002_ece3_7106
crossref_primary_10_1080_11263504_2022_2104399
crossref_primary_10_1111_ecog_07116
crossref_primary_10_3390_f11050545
crossref_primary_10_1111_jvs_13317
crossref_primary_10_1080_17445647_2021_1957033
crossref_primary_10_1016_j_ecolind_2019_105790
crossref_primary_10_1016_j_scitotenv_2023_165164
crossref_primary_10_1016_j_biocon_2024_110502
crossref_primary_10_1111_avsc_70012
crossref_primary_10_1002_ece3_7592
crossref_primary_10_1016_j_foreco_2025_122562
crossref_primary_10_1007_s10531_018_01688_2
crossref_primary_10_1016_j_jenvman_2023_118199
crossref_primary_10_1038_s41597_023_02763_2
crossref_primary_10_3390_f10060498
crossref_primary_10_1016_j_chnaes_2022_09_002
crossref_primary_10_1016_j_foreco_2025_122841
crossref_primary_10_1111_nph_20068
crossref_primary_10_1111_1365_2745_13339
crossref_primary_10_1111_jvs_13201
crossref_primary_10_3390_rs15061547
crossref_primary_10_1111_avsc_70009
crossref_primary_10_1111_jvs_12911
crossref_primary_10_1111_jvs_13208
crossref_primary_10_1002_ecm_1543
crossref_primary_10_3897_pls2024612_03
crossref_primary_10_1080_17550874_2019_1646831
crossref_primary_10_1111_aen_12515
crossref_primary_10_1007_s10531_020_02031_4
crossref_primary_10_1111_avsc_12372
crossref_primary_10_1007_s11258_023_01306_4
crossref_primary_10_1111_nph_19587
crossref_primary_10_1016_j_ecolind_2018_09_039
crossref_primary_10_1111_jvs_70040
crossref_primary_10_1111_jvs_12882
crossref_primary_10_1016_j_ecoleng_2022_106878
crossref_primary_10_3390_f11111218
crossref_primary_10_1177_05529360251318072
crossref_primary_10_1080_11263504_2022_2100498
crossref_primary_10_1111_aje_13207
crossref_primary_10_3390_rs15245716
crossref_primary_10_1656_045_028_s1103
crossref_primary_10_1016_j_apsoil_2025_106484
crossref_primary_10_1111_avsc_12287
crossref_primary_10_1016_j_baae_2018_05_013
crossref_primary_10_1111_jvs_12928
crossref_primary_10_1002_ece3_8186
crossref_primary_10_1007_s00035_024_00320_0
crossref_primary_10_1016_j_ecolind_2023_111015
crossref_primary_10_1111_avsc_12307
crossref_primary_10_1016_j_foreco_2024_122322
crossref_primary_10_1111_avsc_12669
crossref_primary_10_1111_avsc_12424
crossref_primary_10_1134_S1067413621010033
crossref_primary_10_1007_s12210_022_01110_8
crossref_primary_10_1007_s10980_023_01661_7
crossref_primary_10_1111_ele_70218
crossref_primary_10_1007_s10342_023_01595_4
crossref_primary_10_1007_s12224_018_9322_7
crossref_primary_10_1016_j_scitotenv_2017_10_001
crossref_primary_10_1002_ece3_4422
crossref_primary_10_1111_1365_2745_13118
crossref_primary_10_2478_ffp_2025_0009
crossref_primary_10_3390_su16010451
crossref_primary_10_1029_2022EF002823
crossref_primary_10_1016_j_catena_2022_106412
crossref_primary_10_1016_j_sajb_2020_03_025
crossref_primary_10_1111_jvs_12939
crossref_primary_10_1111_avsc_12338
crossref_primary_10_1016_j_biocon_2017_06_027
crossref_primary_10_1016_j_biocon_2017_04_017
crossref_primary_10_1007_s11258_018_0831_5
crossref_primary_10_1111_gcb_14568
crossref_primary_10_3389_fenvs_2023_1153601
crossref_primary_10_1002_ecs2_2929
crossref_primary_10_1007_s10531_021_02310_8
crossref_primary_10_1016_j_foreco_2021_119754
crossref_primary_10_1038_s41598_023_42808_5
crossref_primary_10_1111_jvs_13235
crossref_primary_10_1007_s11258_018_0794_6
crossref_primary_10_1111_gcb_70030
crossref_primary_10_1111_jvs_13119
crossref_primary_10_1016_j_agee_2017_06_033
crossref_primary_10_1080_11956860_2025_2540144
crossref_primary_10_1111_geb_13351
crossref_primary_10_1007_s10531_023_02723_7
crossref_primary_10_1016_j_baae_2025_05_003
crossref_primary_10_1111_avsc_12289
crossref_primary_10_1111_jvs_70038
crossref_primary_10_1002_ece3_5778
crossref_primary_10_1007_s00035_021_00270_x
crossref_primary_10_1111_avsc_12726
crossref_primary_10_1111_jvs_12673
crossref_primary_10_1007_s10526_023_10229_y
crossref_primary_10_1002_ece3_70035
crossref_primary_10_1016_j_biocon_2023_110393
crossref_primary_10_1016_j_biocon_2025_111124
crossref_primary_10_1111_jbi_14503
crossref_primary_10_1007_s00035_019_00223_5
crossref_primary_10_1007_s10530_024_03292_8
crossref_primary_10_1111_avsc_12452
crossref_primary_10_1111_avsc_12573
crossref_primary_10_1111_csp2_70101
crossref_primary_10_1111_gcb_14030
crossref_primary_10_1016_j_biocon_2023_110317
crossref_primary_10_1080_23766808_2021_1940056
crossref_primary_10_1007_s12210_018_0681_z
crossref_primary_10_1007_s12224_018_9312_9
crossref_primary_10_1111_avsc_12513
crossref_primary_10_15835_nbha49112223
crossref_primary_10_1016_j_aquabot_2021_103401
crossref_primary_10_3390_plants13070962
crossref_primary_10_1007_s10661_021_09227_3
crossref_primary_10_1111_avsc_12598
crossref_primary_10_1007_s11258_023_01342_0
crossref_primary_10_3390_f9060316
crossref_primary_10_1002_ece3_3882
crossref_primary_10_3389_fpls_2022_1067096
crossref_primary_10_1111_jvs_13254
crossref_primary_10_1111_oik_05114
crossref_primary_10_1002_ece3_70244
crossref_primary_10_1111_jvs_13255
crossref_primary_10_1002_ece3_6913
crossref_primary_10_1111_ecog_07213
crossref_primary_10_1016_j_biocon_2025_111210
crossref_primary_10_1016_j_flora_2025_152742
crossref_primary_10_1111_jvs_13138
crossref_primary_10_1007_s12224_024_09445_w
crossref_primary_10_1007_s11258_020_01057_6
crossref_primary_10_1111_jvs_12727
crossref_primary_10_1016_j_ufug_2019_126524
crossref_primary_10_1111_2041_210X_70131
crossref_primary_10_1016_j_sajb_2025_01_024
crossref_primary_10_1007_s11258_023_01351_z
crossref_primary_10_1016_j_biocon_2020_108689
crossref_primary_10_3389_fmicb_2024_1422529
crossref_primary_10_3389_fenvs_2024_1306062
crossref_primary_10_1007_s10531_025_03128_4
crossref_primary_10_1111_avsc_12587
crossref_primary_10_1016_j_scitotenv_2018_06_222
crossref_primary_10_1111_avsc_12347
crossref_primary_10_1093_biosci_biac063
crossref_primary_10_1007_s11258_021_01125_5
crossref_primary_10_1007_s10531_025_03087_w
crossref_primary_10_1111_avsc_12507
crossref_primary_10_1111_jvs_13263
crossref_primary_10_1016_j_biocon_2025_111500
crossref_primary_10_1111_jvs_12697
crossref_primary_10_1073_pnas_1904585116
crossref_primary_10_1111_jvs_13303
crossref_primary_10_1111_jvs_12854
crossref_primary_10_1007_s12224_024_09456_7
crossref_primary_10_1111_geb_13682
Cites_doi 10.1126/science.1122667
10.1038/nature10548
10.1073/pnas.1006823107
10.1111/jvs.12211
10.2307/3236808
10.1111/j.1472-4642.2010.00637.x
10.2307/1939337
10.1111/1365-2664.12010
10.1007/978-3-7091-8110-2
10.1016/j.foreco.2008.04.042
10.1111/j.1654-1103.2007.tb02553.x
10.7809/b-e.00082
10.1111/j.1365-2745.2006.01145.x
10.1046/j.1523-1739.1997.96082.x
10.1080/17550871003706233
10.1080/17550874.2013.764943
10.1023/B:VEGE.0000021681.83068.53
10.1111/j.1365-2745.2011.01928.x
10.1111/avsc.12050
10.1007/BF00121023
10.1111/j.1469-8137.1994.tb04252.x
10.1191/0959683603hl589ft
10.1098/rspb.2005.3119
10.1890/08-1140.1
10.1038/369448a0
10.1007/BF00006028
10.1111/j.1654-1103.2006.tb02449.x
10.1111/gcb.12993
10.1111/j.1654-1103.2011.01265.x
10.1111/j.1365-2486.2009.01896.x
10.1073/pnas.0802891105
10.1111/geb.12170
10.1111/j.1365-2486.2010.02345.x
10.1111/j.1365-2486.2006.01128.x
10.1073/pnas.1312779110
10.1111/j.1600-0587.2011.07057.x
10.1111/j.1654-1103.2012.01416.x
10.1023/A:1021441331839
10.1111/j.1472-4642.2011.00799.x
10.1098/rspb.2009.0938
10.1016/j.foreco.2011.06.024
10.1890/12-1006.1
10.1111/ddi.12299
10.2307/3236314
10.1111/j.1365-2745.2006.01104.x
10.1126/science.1219033
10.2307/3237030
10.1111/j.1365-2745.2011.01847.x
10.1126/science.1156831
10.1007/BF02853510
10.1080/17550874.2013.862752
ContentType Journal Article
Copyright Copyright © 2017 International Association for Vegetation Science
2016 International Association for Vegetation Science
Copyright_xml – notice: Copyright © 2017 International Association for Vegetation Science
– notice: 2016 International Association for Vegetation Science
DBID AAYXX
CITATION
NPM
7SN
C1K
7S9
L.6
7X8
5PM
DOI 10.1111/avsc.12269
DatabaseName CrossRef
PubMed
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
PubMed
AGRICOLA
Ecology Abstracts
Ecology Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1654-109X
EndPage 171
ExternalDocumentID PMC6145442
4320906797
30245580
10_1111_avsc_12269
AVSC12269
44211484
Genre article
Journal Article
GrantInformation_xml – fundername: European Research Council
  funderid: FP7/2007–2013; 278065
– fundername: Polish‐Norwegian Research Programme
  funderid: Pol‐Nor/196829/87/2013
– fundername: The Fram Centre
  funderid: 362202
– fundername: European Research Council
  grantid: 278065
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OC
23M
2~F
33P
3SF
4.4
4P2
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAXTN
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPLY
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEJZ
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AICQM
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CBGCD
CS3
D-E
D-F
DATOO
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZ~
IAO
IGH
IHR
IPSME
IX1
J.8
J0M
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PQ0
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
RX1
SA0
SUPJJ
TEORI
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~8M
~IA
~KM
~WT
-JH
.Y3
31~
AAHHS
AANHP
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADHSS
ADNMO
ADULT
ADZOD
AEEZP
AEPYG
AEQDE
AEUQT
AFFIJ
AFNWH
AFPWT
AIWBW
AJBDE
AKPMI
ASPBG
AVWKF
AZFZN
CAG
COF
DC7
DOOOF
EQZMY
FEDTE
GTFYD
H13
HF~
HGD
HTVGU
HVGLF
IAG
IEP
ITC
JSODD
KPI
RWI
WRC
AAYXX
AGQPQ
BANNL
CITATION
O8X
NPM
7SN
C1K
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c6029-8ac92f2c4dc63529ba5a3c60452d79a80d43f78b73229fce46c71c31b98d8df03
IEDL.DBID DRFUL
ISICitedReferencesCount 175
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398083700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1402-2001
IngestDate Tue Nov 04 01:35:17 EST 2025
Sun Nov 09 10:46:53 EST 2025
Fri Jul 11 18:25:47 EDT 2025
Tue Oct 07 07:50:27 EDT 2025
Fri Jul 25 10:24:43 EDT 2025
Mon Jul 21 06:08:07 EDT 2025
Sat Nov 29 03:38:09 EST 2025
Tue Nov 18 21:42:01 EST 2025
Wed Jan 22 16:51:11 EST 2025
Thu Jul 03 22:06:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords long-term vegetation dynamics
pseudo-turnover
non-permanent plots
quasi-permanent plots
semi-permanent plots
Environmental change
observer bias
relocation error
vegetation resampling
non-traceable plots
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6029-8ac92f2c4dc63529ba5a3c60452d79a80d43f78b73229fce46c71c31b98d8df03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/avsc.12269
PMID 30245580
PQID 1878007147
PQPubID 946338
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6145442
proquest_miscellaneous_2111744184
proquest_miscellaneous_2020890577
proquest_miscellaneous_1881755163
proquest_journals_1878007147
pubmed_primary_30245580
crossref_citationtrail_10_1111_avsc_12269
crossref_primary_10_1111_avsc_12269
wiley_primary_10_1111_avsc_12269_AVSC12269
jstor_primary_44211484
PublicationCentury 2000
PublicationDate April 2017
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Malden
PublicationTitle Applied vegetation science
PublicationTitleAlternate Appl Veg Sci
PublicationYear 2017
Publisher John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons Ltd
– name: Wiley Subscription Services, Inc
References 2011; 479
2010; 16
1993; 28
2010; 107
2009; 81
1995; 76
1980; 43
2003; 13
1992; 18
2009; 276
2011; 99
2008; 105
2011; 17
2013; 6
2014; 23
1997; 8
2010; 20
1997; 11
2004; 170
2000
1999; 19
2013; 94
2000; 11
2013; 50
2011; 22
2013; 110
2014; 17
2010; 3
2012; 336
2012; 23
2009; 15
1996; 7
2007; 18
2012; 100
2005; 272
2006; 94
2012
2006; 12
1989; 178
2010
2006; 17
1999; 27
2006; 314
2012; 35
2008; 320
2015; 8
2015; 26
1994; 369
1994; 126
2002; 165
2015; 21
1921
1964
2008; 256
2011; 262
2012; 4
e_1_2_8_28_1
Fischer A. (e_1_2_8_21_1) 1999; 19
e_1_2_8_24_1
Legendre P. (e_1_2_8_38_1) 2012
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
Schaminée J.H.J. (e_1_2_8_43_1) 2009; 81
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_57_1
Landolt E. (e_1_2_8_36_1) 2010
Lawesson J.E (e_1_2_8_37_1) 2000
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_39_1
Fischer A. (e_1_2_8_20_1) 1999; 27
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Du Rietz G.E (e_1_2_8_17_1) 1921
Ellenberg H. (e_1_2_8_18_1) 1992; 18
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 165
  start-page: 101
  year: 2002
  end-page: 115
  article-title: Assessing species misidentification rates through quality assurance of vegetation monitoring
  publication-title: Plant Ecology
– volume: 43
  start-page: 103
  year: 1980
  end-page: 122
  article-title: Succession in a south Swedish deciduous wood: a numerical approach
  publication-title: Vegetatio
– volume: 22
  start-page: 582
  year: 2011
  end-page: 597
  article-title: The Global Index of Vegetation‐Plot Databases (GIVD): a new resource for vegetation science
  publication-title: Journal of Vegetation Science
– year: 2012
  publication-title: Numerical ecology
– volume: 126
  start-page: 533
  year: 1994
  end-page: 539
  article-title: Simultaneous eutrophication and acidification of a forest ecosystem in North‐East France
  publication-title: New Phytologist
– volume: 4
  start-page: 255
  year: 2012
  end-page: 264
  article-title: Wisconsin Vegetation Database – plant community survey and resurvey data from the Wisconsin Plant Ecology Laboratory
  publication-title: Biodiversity & Ecology
– volume: 3
  start-page: 1
  year: 2010
  end-page: 8
  article-title: How important is plot relocation accuracy when interpreting re‐visitation studies of vegetation change?
  publication-title: Plant Ecology & Diversity
– volume: 100
  start-page: 352
  year: 2012
  end-page: 365
  article-title: Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests
  publication-title: Journal of Ecology
– volume: 7
  start-page: 147
  year: 1996
  end-page: 156
  article-title: Why do we need permanent plots in the study of long‐term vegetation dynamics?
  publication-title: Journal of Vegetation Science
– volume: 479
  start-page: 517
  year: 2011
  end-page: 520
  article-title: Changes in plant community composition lag behind climate warming in lowland forests
  publication-title: Nature
– volume: 21
  start-page: 322
  year: 2015
  end-page: 330
  article-title: Vegetation resurvey is robust to plot location uncertainty
  publication-title: Diversity and Distributions
– volume: 17
  start-page: 32
  year: 2014
  end-page: 41
  article-title: Assessing vegetation change using vegetation‐plot databases: a risky business
  publication-title: Applied Vegetation Science
– volume: 81
  start-page: 173
  year: 2009
  end-page: 185
  article-title: Vegetation‐plot data and databases in Europe: an overview
  publication-title: Preslia
– volume: 170
  start-page: 243
  year: 2004
  end-page: 265
  article-title: Vegetation of beech forests in the Rychlebske Mountains, Czech Republic, re‐inspected after 60 years with assessment of environmental changes
  publication-title: Plant Ecology
– volume: 94
  start-page: 1687
  year: 2013
  end-page: 1696
  article-title: Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation
  publication-title: Ecology
– volume: 8
  start-page: 855
  year: 1997
  end-page: 864
  article-title: Acidification and eutrophication of deciduous forests in northwestern Germany demonstrated by indicator species analysis
  publication-title: Journal of Vegetation Science
– volume: 105
  start-page: 11823
  year: 2008
  end-page: 22826
  article-title: Rapid shifts in plant distribution with recent climate change
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 35
  start-page: 922
  year: 2012
  end-page: 932
  article-title: Upward shift in elevational plant species ranges in Sikkilsdalen, central Norway
  publication-title: Ecography
– volume: 6
  start-page: 447
  year: 2013
  end-page: 455
  article-title: The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835
  publication-title: Plant Ecology & Diversity
– volume: 107
  start-page: 19362
  year: 2010
  end-page: 19367
  article-title: Ecological contingency in the effects of climatic warming on forest herb communities
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 256
  start-page: 519
  year: 2008
  end-page: 528
  article-title: Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice‐with‐standards forest
  publication-title: Forest Ecology and Management
– volume: 262
  start-page: 1265
  year: 2011
  end-page: 1279
  article-title: Acidification of primeval forests in the Ukraine Carpathians: vegetation and soil changes over six decades
  publication-title: Forest Ecology and Management
– volume: 26
  start-page: 191
  year: 2015
  end-page: 200
  article-title: Observation bias and its causes in botanical surveys on high‐alpine summits
  publication-title: Journal of Vegetation Science
– volume: 336
  start-page: 353
  year: 2012
  end-page: 355
  article-title: Recent plant diversity changes on Europe's mountain summits
  publication-title: Science
– year: 1964
– volume: 17
  start-page: 1089
  year: 2011
  end-page: 1098
  article-title: Spread of common species results in local‐scale floristic homogenization in grassland of Switzerland
  publication-title: Diversity and Distributions
– volume: 76
  start-page: 694
  year: 1995
  end-page: 711
  article-title: Responses of arctic Tundra to experimental and observed changes in climate
  publication-title: Ecology
– volume: 12
  start-page: 686
  year: 2006
  end-page: 702
  article-title: The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic
  publication-title: Global Change Biology
– volume: 28
  start-page: 225
  year: 1993
  end-page: 245
  article-title: Long‐term changes in the field layer of oak and oak–hornbeam forests under the impact of deer and mouflon
  publication-title: Folia Geobotanica et Phytotaxonomica
– volume: 8
  start-page: 49
  year: 2015
  end-page: 60
  article-title: Four decades of vegetation development in a percolation mire complex following intensive drainage and abandonment
  publication-title: Plant Ecology & Diversity
– volume: 314
  start-page: 1261
  year: 2006
  end-page: 1265
  article-title: What is natural? The need for a long‐term perspective in biodiversity conservation
  publication-title: Science
– year: 2000
– year: 1921
– volume: 369
  start-page: 448
  year: 1994
  article-title: Climate effects on mountain plants
  publication-title: Nature
– volume: 11
  start-page: 277
  year: 2000
  end-page: 286
  article-title: Diversity and pH changes after 50 years on the boreal mire Skattlössbergs Stormosse, Central Sweden
  publication-title: Journal of Vegetation Science
– volume: 99
  start-page: 1179
  year: 2011
  end-page: 1189
  article-title: Fine‐scale changes in vegetation composition in a boreal mire over 50 years
  publication-title: Journal of Ecology
– volume: 16
  start-page: 267
  year: 2010
  end-page: 276
  article-title: Half a century of succession in a temperate oakwood: from species‐rich community to mesic forest
  publication-title: Diversity and Distributions
– volume: 23
  start-page: 978
  year: 2012
  end-page: 984
  article-title: Effect of intra‐seasonal variability on vegetation data
  publication-title: Journal of Vegetation Science
– year: 2010
– volume: 276
  start-page: 3539
  year: 2009
  end-page: 3544
  article-title: Taxonomic homogenization of woodland plant communities over 70 years
  publication-title: Proceedings of the Royal Society, Series B: Biological Sciences
– volume: 94
  start-page: 801
  year: 2006
  end-page: 814
  article-title: The Park Grass experiment 1856‐2006: its contribution to ecology
  publication-title: Journal of Ecology
– volume: 272
  start-page: 1427
  year: 2005
  end-page: 1432
  article-title: An ecological ‘footprint’ of climate change
  publication-title: Proceedings of the Royal Society, Series B, Biological Science
– volume: 320
  start-page: 1768
  year: 2008
  end-page: 1771
  article-title: A significant upward shift in plant species optimum elevation during the 20th century
  publication-title: Science
– volume: 20
  start-page: 30
  year: 2010
  end-page: 59
  article-title: Global assessment of nitrogen‐deposition effects on terrestrial plant diversity: a synthesis
  publication-title: Ecological Applications
– volume: 18
  start-page: 1
  year: 1992
  end-page: 258
  article-title: Zeigerwerte von Pflanzen in Mitteleuropa
  publication-title: Scripta Geobotanica
– volume: 11
  start-page: 727
  year: 1997
  end-page: 737
  article-title: Local extinctions of plants in remnants of extensively used calcareous grasslands 1950‐1985
  publication-title: Conservation Biology
– volume: 110
  start-page: 19456
  year: 2013
  end-page: 19459
  article-title: Global meta‐analysis reveals no net change in local‐scale plant biodiversity over time
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 27
  start-page: 53
  year: 1999
  end-page: 64
  article-title: Floristical changes in Central European forest ecosystems during the past decades as an expression of changing site conditions
  publication-title: EFI Proceedings
– volume: 50
  start-page: 79
  year: 2013
  end-page: 87
  article-title: Non‐random extinctions dominate plant community changes in abandoned coppices
  publication-title: Journal of Applied Ecology
– volume: 178
  start-page: 209
  year: 1989
  end-page: 223
  article-title: Inferring pH from diatoms: a comparison of old and new calibration methods
  publication-title: Hydrobiologia
– volume: 21
  start-page: 3726
  year: 2015
  end-page: 3737
  article-title: Drivers of temporal changes in temperate forest plant diversity vary across spatial scales
  publication-title: Global Change Biology
– volume: 13
  start-page: 1
  year: 2003
  end-page: 6
  article-title: Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants
  publication-title: The Holocene
– volume: 17
  start-page: 299
  year: 2006
  end-page: 306
  article-title: Effects of sampling time, species richness and observer on the exhaustiveness of plant censuses
  publication-title: Journal of Vegetation Science
– volume: 19
  start-page: 10
  year: 1999
  end-page: 12
  article-title: Zusammenstellung von Begriffen, die in der Vegetations‐Dauerbeobachtung eine zentrale Rolle spielen
  publication-title: Tuexenia
– volume: 23
  start-page: 876
  year: 2014
  end-page: 884
  article-title: Identifying the driving factors behind observed elevational range shifts on European mountains
  publication-title: Global Ecology and Biogeography
– volume: 15
  start-page: 1676
  year: 2009
  end-page: 1684
  article-title: Arctic alpine vegetation change over 20 years
  publication-title: Global Change Biology
– volume: 17
  start-page: 1871
  year: 2011
  end-page: 1883
  article-title: Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands
  publication-title: Global Change Biology
– volume: 18
  start-page: 413
  year: 2007
  end-page: 422
  article-title: How reliable is the monitoring of permanent vegetation plots? A test with multiple observers
  publication-title: Journal of Vegetation Science
– volume: 94
  start-page: 355
  year: 2006
  end-page: 368
  article-title: Influence of slope and aspect on long‐term vegetation change in British chalk grasslands
  publication-title: Journal of Ecology
– ident: e_1_2_8_58_1
  doi: 10.1126/science.1122667
– ident: e_1_2_8_6_1
  doi: 10.1038/nature10548
– ident: e_1_2_8_26_1
  doi: 10.1073/pnas.1006823107
– volume: 18
  start-page: 1
  year: 1992
  ident: e_1_2_8_18_1
  article-title: Zeigerwerte von Pflanzen in Mitteleuropa
  publication-title: Scripta Geobotanica
– ident: e_1_2_8_10_1
  doi: 10.1111/jvs.12211
– volume: 19
  start-page: 10
  year: 1999
  ident: e_1_2_8_21_1
  article-title: Zusammenstellung von Begriffen, die in der Vegetations‐Dauerbeobachtung eine zentrale Rolle spielen
  publication-title: Tuexenia
– ident: e_1_2_8_25_1
  doi: 10.2307/3236808
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1472-4642.2010.00637.x
– ident: e_1_2_8_11_1
  doi: 10.2307/1939337
– volume-title: Flora Indicativa – Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen
  year: 2010
  ident: e_1_2_8_36_1
– ident: e_1_2_8_35_1
  doi: 10.1111/1365-2664.12010
– volume-title: A concept for vegetation studies and monitoring in the Nordic Countries
  year: 2000
  ident: e_1_2_8_37_1
– ident: e_1_2_8_8_1
  doi: 10.1007/978-3-7091-8110-2
– ident: e_1_2_8_50_1
  doi: 10.1016/j.foreco.2008.04.042
– ident: e_1_2_8_54_1
  doi: 10.1111/j.1654-1103.2007.tb02553.x
– ident: e_1_2_8_56_1
  doi: 10.7809/b-e.00082
– ident: e_1_2_8_46_1
  doi: 10.1111/j.1365-2745.2006.01145.x
– volume-title: Zur methodologischen Grundlage der modernen Pflanzensoziologie
  year: 1921
  ident: e_1_2_8_17_1
– ident: e_1_2_8_22_1
  doi: 10.1046/j.1523-1739.1997.96082.x
– ident: e_1_2_8_42_1
  doi: 10.1080/17550871003706233
– ident: e_1_2_8_60_1
  doi: 10.1080/17550874.2013.764943
– ident: e_1_2_8_27_1
  doi: 10.1023/B:VEGE.0000021681.83068.53
– ident: e_1_2_8_53_1
  doi: 10.1111/j.1365-2745.2011.01928.x
– year: 2012
  ident: e_1_2_8_38_1
  publication-title: Numerical ecology
– ident: e_1_2_8_13_1
  doi: 10.1111/avsc.12050
– ident: e_1_2_8_41_1
  doi: 10.1007/BF00121023
– ident: e_1_2_8_49_1
  doi: 10.1111/j.1469-8137.1994.tb04252.x
– ident: e_1_2_8_32_1
  doi: 10.1191/0959683603hl589ft
– ident: e_1_2_8_57_1
  doi: 10.1098/rspb.2005.3119
– ident: e_1_2_8_7_1
  doi: 10.1890/08-1140.1
– ident: e_1_2_8_23_1
  doi: 10.1038/369448a0
– ident: e_1_2_8_48_1
  doi: 10.1007/BF00006028
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1654-1103.2006.tb02449.x
– ident: e_1_2_8_5_1
  doi: 10.1111/gcb.12993
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1654-1103.2011.01265.x
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1365-2486.2009.01896.x
– ident: e_1_2_8_31_1
  doi: 10.1073/pnas.0802891105
– ident: e_1_2_8_24_1
  doi: 10.1111/geb.12170
– ident: e_1_2_8_51_1
  doi: 10.1111/j.1365-2486.2010.02345.x
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1365-2486.2006.01128.x
– ident: e_1_2_8_52_1
  doi: 10.1073/pnas.1312779110
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1600-0587.2011.07057.x
– ident: e_1_2_8_55_1
  doi: 10.1111/j.1654-1103.2012.01416.x
– ident: e_1_2_8_44_1
  doi: 10.1023/A:1021441331839
– ident: e_1_2_8_9_1
  doi: 10.1111/j.1472-4642.2011.00799.x
– ident: e_1_2_8_30_1
  doi: 10.1098/rspb.2009.0938
– ident: e_1_2_8_45_1
  doi: 10.1016/j.foreco.2011.06.024
– volume: 27
  start-page: 53
  year: 1999
  ident: e_1_2_8_20_1
  article-title: Floristical changes in Central European forest ecosystems during the past decades as an expression of changing site conditions
  publication-title: EFI Proceedings
– ident: e_1_2_8_14_1
  doi: 10.1890/12-1006.1
– ident: e_1_2_8_34_1
  doi: 10.1111/ddi.12299
– ident: e_1_2_8_3_1
  doi: 10.2307/3236314
– ident: e_1_2_8_4_1
  doi: 10.1111/j.1365-2745.2006.01104.x
– ident: e_1_2_8_40_1
  doi: 10.1126/science.1219033
– ident: e_1_2_8_16_1
  doi: 10.2307/3237030
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1365-2745.2011.01847.x
– ident: e_1_2_8_39_1
  doi: 10.1126/science.1156831
– volume: 81
  start-page: 173
  year: 2009
  ident: e_1_2_8_43_1
  article-title: Vegetation‐plot data and databases in Europe: an overview
  publication-title: Preslia
– ident: e_1_2_8_12_1
  doi: 10.1007/BF02853510
– ident: e_1_2_8_33_1
  doi: 10.1080/17550874.2013.862752
SSID ssj0017959
Score 2.5436325
Snippet Background: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation...
Background Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation...
Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and...
Background Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation...
BACKGROUND: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 164
SubjectTerms Bias
data collection
Environmental change
Environmental changes
Environmental effects
Historical account
Long‐term vegetation dynamics
Non‐permanent plots
Non‐traceable plots
Observer bias
Plant communities
Pseudo‐turnover
Quasi‐permanent plots
Relocation
Relocation error
seasonal variation
Seasonal variations
Semi‐permanent plots
SPECIAL FEATURE: VEGETATION RESURVEY
Studies
surveys
uncertainty
Vegetation
Vegetation re‐sampling
Title Resurveying historical vegetation data — opportunities and challenges
URI https://www.jstor.org/stable/44211484
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Favsc.12269
https://www.ncbi.nlm.nih.gov/pubmed/30245580
https://www.proquest.com/docview/1878007147
https://www.proquest.com/docview/1881755163
https://www.proquest.com/docview/2020890577
https://www.proquest.com/docview/2111744184
https://pubmed.ncbi.nlm.nih.gov/PMC6145442
Volume 20
WOSCitedRecordID wos000398083700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1654-109X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017959
  issn: 1402-2001
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BwqEX-qRNechVe2mlrTaOs7YlLpR22wNCFS1ob5HtOAWpyqINuxK3_of-Q34JM84DVgWkilsiTyLbMxN_jme-AXhnCueN14LCynlfaJX0lbGKmBG5G0ruRchyPd6XBwdqPNbfl2CnzYWp-SG6H27kGeF7TQ5ubHXDyc28ch9jRA96GVY4Gm7ag5XPh6Oj_e4Ugepoh-wiSkHG-4aelCJ5rp9eWJDqmMTb0Oa_QZM3wWxYjUaPHzaOJ7DWoFC2W5vNU1jy5TNY_TRBpHjxHL4e-mo2nXvKgGInHY8Im_tfTXAio8BSdvnnL5ucEYCflYGYlZkyZ64tz1K9gKPRl5973_pNwYW-G1IYjDJO84I7kTvEIVxbk5oEm0TKc6mNGuQiKaSyqFauUcli6GTskthqlau8GCTr0CsnpX8FzMa8KIxBjftEGGmV5QhEUyP5oDCJTSN438565ho2ciqK8TtrdyU0L1mYlwjedrJnNQfHrVLrQXmdiBCcNnsigs1Wm1njoFUWK6kIXgkZwZuuGV2LzktM6SczklEIrlJErHfLcCpyqhH03vMe7Abu-0RMXXlZG1HXyYSOvlM1iEAumFcnQPTfiy3l6UmgAUdgleIYI_gQzOueqcl2j3_shavX_yO8AY84gZgQp7QJvfPpzG_Bqpufn1bTbViWY7XduNwVu8AvtQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED7xS4IXxjYYYWzztL1sUlHjOLX9CGwd07pqYoB4ixzHGUgoRQ2txBv_A_8hfwl3ThqoxpDQ3lr5Gjm-u-Zz_N13AB9Nbp1xWhCtnLeEVlFLmVSRMiK3Hcmd8FWuRz3Z76vjY_2r5uZQLUylD9G8cKPM8P_XlOD0QvpelptxabdChA96FubxkgoDfP7Lfvew1xwjUCNtX15ENcj4vdYnJSrP3a-nnkgVKfEhuPk3a_I-mvWPo-6z_7yRFViucSjbrgLnOcy44gUs7AwQK16-hG_7rhwNx45qoNhJoyTCxu5PTU9kRC1lN1fXbHBOEH5UeGlWZoqM2UmDlnIVDrtfD3b3WnXLhZbtEBFGGat5zq3ILCIRrlMTmwiHRMwzqY1qZyLKpUrRsVyjm0XHytBGYapVprK8Ha3BXDEo3DqwNOR5bgz63EXCyFSlHKFobCRv5yZK4wA-TZY9sbUeObXFOEsm-xJal8SvSwAfGtvzSoXjQas1773GRAhO2z0RwObEnUmdomUSKqkIYAkZwPtmGJOLTkxM4QYjslEIr2LErP-24dTmVCPsfeQ6OA3c-YmQpvKqiqJmkhEdfseqHYCciq_GgATAp0eK0xMvBI7QKsZ7DOCzj69HlibZPvq96z9tPMX4HSzuHfzsJb3v_R-vYYkTpPGspU2YuxiO3BtYsOOL03L4ts68W6o9Mr0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21C6p6KS0fbVpKjegFpK02jrO2j3x0acVqhaAgbpHjOAWpyq427Eq99T_wD_klnXGyKSsoUtVbIk8ix-NJnuM3bwA-mtw647QgWjlvC62itjKpImVEbruSO-GzXM_7cjBQFxf6uObmUC5MpQ_R_HCjyPDvawpwN8ryO1FupqX9FCJ80E9hQVAVmRYsHJz0zvrNNgIV0vbpRZSDjOe1PilRef5cPfdFqkiJD8HN-6zJu2jWf456S__5IC_hRY1D2W41cV7BE1csw-LeELHizxU4PHHlZDx1lAPFLhslETZ132t6IiNqKbv9dcOGI4Lwk8JLszJTZMzOCrSUq3DW-_xt_0u7LrnQtl0iwihjNc-5FZlFJMJ1amITYZOIeSa1UZ1MRLlUKTqWa3Sz6FoZ2ihMtcpUlneiNWgVw8K9AZaGPM-NQZ-7SBiZqpQjFI2N5J3cRGkcwPZs2BNb65FTWYwfyWxdQuOS-HEJYKuxHVUqHA9arXnvNSZCcFruiQDWZ-5M6hAtk1BJRQBLyAA2m2YMLtoxMYUbTshGIbyKEbP-3YZTmVONsPeR-2A3cOUnQurK62oWNZ2MaPM7Vp0A5Nz8agxIAHy-pbi69ELgCK1ifMYAdvz8emRokt3z031_9PZfjD_As-ODXtL_Ojh6B885IRpPWlqH1vV44t7Dop1eX5XjjTrwfgPtVjI4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resurveying+historical+vegetation+data+-+opportunities+and+challenges&rft.jtitle=Applied+vegetation+science&rft.au=Kapfer%2C+Jutta&rft.au=Hedl%2C+Radim&rft.au=Jurasinski%2C+Gerald&rft.au=Kopecky%2C+Martin&rft.date=2017-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1402-2001&rft.eissn=1654-109X&rft.volume=20&rft.issue=2&rft.spage=164&rft_id=info:doi/10.1111%2Favsc.12269&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4320906797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1402-2001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1402-2001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1402-2001&client=summon