From Images to Shape Models for Object Detection
We present an object class detection approach which fully integrates the complementary strengths offered by shape matchers. Like an object detector, it can learn class models directly from images, and can localize novel instances in the presence of intra-class variations, clutter, and scale changes....
Uloženo v:
| Vydáno v: | International journal of computer vision Ročník 87; číslo 3; s. 284 - 303 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.05.2010
Springer Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 0920-5691, 1573-1405 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present an object class detection approach which fully integrates the complementary strengths offered by shape matchers. Like an object detector, it can learn class models directly from images, and can localize novel instances in the presence of intra-class variations, clutter, and scale changes. Like a shape matcher, it finds the boundaries of objects, rather than just their bounding-boxes. This is achieved by a novel technique for learning a shape model of an object class given
images
of example instances. Furthermore, we also integrate Hough-style voting with a non-rigid point matching algorithm to localize the model in cluttered images. As demonstrated by an extensive evaluation, our method can localize object boundaries accurately and does not need segmented examples for training (only bounding-boxes). |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0920-5691 1573-1405 |
| DOI: | 10.1007/s11263-009-0270-9 |