Ionic Conduction in Polymer‐Based Solid Electrolytes

Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation batteries. Key issues related to polymer‐based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced science Ročník 10; číslo 10; s. e2201718 - n/a
Hlavní autoři: Li, Zhuo, Fu, Jialong, Zhou, Xiaoyan, Gui, Siwei, Wei, Lu, Yang, Hui, Li, Hong, Guo, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany John Wiley & Sons, Inc 01.04.2023
John Wiley and Sons Inc
Wiley
Témata:
ISSN:2198-3844, 2198-3844
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation batteries. Key issues related to polymer‐based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer‐based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li‐ion conductivity of polymer‐based solid electrolytes. This article reviews the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted.
AbstractList Good safety, high interfacial compatibility, low cost, and facile processability make polymer-based solid electrolytes promising materials for next-generation batteries. Key issues related to polymer-based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer-based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer-based solid electrolytes, including solvent-free polymer electrolytes, composite polymer electrolytes, and quasi-solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion-pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li-ion conductivity of polymer-based solid electrolytes.Good safety, high interfacial compatibility, low cost, and facile processability make polymer-based solid electrolytes promising materials for next-generation batteries. Key issues related to polymer-based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer-based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer-based solid electrolytes, including solvent-free polymer electrolytes, composite polymer electrolytes, and quasi-solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion-pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li-ion conductivity of polymer-based solid electrolytes.
Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation batteries. Key issues related to polymer‐based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer‐based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li‐ion conductivity of polymer‐based solid electrolytes. This article reviews the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted.
Good safety, high interfacial compatibility, low cost, and facile processability make polymer-based solid electrolytes promising materials for next-generation batteries. Key issues related to polymer-based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer-based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer-based solid electrolytes, including solvent-free polymer electrolytes, composite polymer electrolytes, and quasi-solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion-pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li-ion conductivity of polymer-based solid electrolytes.
Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation batteries. Key issues related to polymer‐based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer‐based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li‐ion conductivity of polymer‐based solid electrolytes. This article reviews the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted.
Abstract Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation batteries. Key issues related to polymer‐based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer‐based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li‐ion conductivity of polymer‐based solid electrolytes.
Author Li, Zhuo
Li, Hong
Zhou, Xiaoyan
Gui, Siwei
Guo, Xin
Wei, Lu
Fu, Jialong
Yang, Hui
AuthorAffiliation 2 Department of Mechanics School of Aerospace Engineering Huazhong University of Science and Technology Wuhan 430074 P.R. China
3 Institute of Physics Chinese Academy of Sciences Beijing 100190 P.R. China
1 School of Materials Science and Engineering State Key Laboratory of Material Processing and Die & Mould Technology Huazhong University of Science and Technology Wuhan 430074 P.R. China
AuthorAffiliation_xml – name: 1 School of Materials Science and Engineering State Key Laboratory of Material Processing and Die & Mould Technology Huazhong University of Science and Technology Wuhan 430074 P.R. China
– name: 2 Department of Mechanics School of Aerospace Engineering Huazhong University of Science and Technology Wuhan 430074 P.R. China
– name: 3 Institute of Physics Chinese Academy of Sciences Beijing 100190 P.R. China
Author_xml – sequence: 1
  givenname: Zhuo
  surname: Li
  fullname: Li, Zhuo
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Jialong
  surname: Fu
  fullname: Fu, Jialong
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Xiaoyan
  surname: Zhou
  fullname: Zhou, Xiaoyan
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Siwei
  surname: Gui
  fullname: Gui, Siwei
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Lu
  surname: Wei
  fullname: Wei, Lu
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Hui
  surname: Yang
  fullname: Yang, Hui
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: Hong
  surname: Li
  fullname: Li, Hong
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Xin
  orcidid: 0000-0003-1546-8119
  surname: Guo
  fullname: Guo, Xin
  email: xguo@hust.edu.cn
  organization: Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36698303$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URD_olSOKxIVLgr_XPqE2FIhUCaQCV8vrHRdHG7vYu0W58RP6G_klOCSt2kqIky3PM--8nplDtBdTBIReEDwjGNM3trsuM4opxaQh6gk6oESrKVOc792776PjUpYYYyJYw4l6hvaZlFoxzA6QXKQY3GSeYje6IaQ4CXHyOfXrFeTfv25ObYFucpH60E3OenBDrqEBynP01Nu-wPHuPEJf3599mX-cnn_6sJifnE-d0FJPnfSukbRRncXCO9VxT5VXxGJPHWNCA1RLnkgrAFrpQUDLhVfUS0Jah9kRWmx1u2SX5iqHlc1rk2wwfx9SvjQ2D8H1YIhTTtq2bTgojhmzTtYfuo5wrbAlqmq93Wpdje0KOgdxyLZ_IPowEsN3c5muTe11w7HiVeH1TiGnHyOUwaxCcdD3NkIai6GN1FpzrUVFXz1Cl2nMsfaqUlpQwuo0KvXyvqU7L7fzqQDfAi6nUjJ448JgN3OqDkNfrW3cUbPZBHO3CTVt9ijtVvmfCbs6P0MP6__Q5uTdtwtBiGZ_AI3yxSY
CitedBy_id crossref_primary_10_1002_adfm_202512955
crossref_primary_10_1016_j_fub_2025_100053
crossref_primary_10_3390_polym16233280
crossref_primary_10_1002_adfm_202425506
crossref_primary_10_1002_aenm_202402795
crossref_primary_10_1002_anie_202504767
crossref_primary_10_1016_j_cej_2024_151780
crossref_primary_10_1007_s11237_025_09835_x
crossref_primary_10_1002_adma_202419782
crossref_primary_10_1002_adfm_202500727
crossref_primary_10_3390_polym16192772
crossref_primary_10_1002_cssc_202400883
crossref_primary_10_1016_j_inoche_2024_113425
crossref_primary_10_1002_aenm_202502284
crossref_primary_10_1039_D5TA00476D
crossref_primary_10_1002_adma_202511556
crossref_primary_10_1016_j_jpowsour_2025_237409
crossref_primary_10_1002_aenm_202400808
crossref_primary_10_1002_smll_202504201
crossref_primary_10_1007_s40820_024_01632_w
crossref_primary_10_1002_adfm_202504782
crossref_primary_10_1016_j_ensm_2025_104317
crossref_primary_10_1016_j_cej_2025_166779
crossref_primary_10_1002_adfm_202415495
crossref_primary_10_1039_D3PY01265D
crossref_primary_10_1002_ange_202408246
crossref_primary_10_1039_D4EE03192J
crossref_primary_10_1002_aenm_202401330
crossref_primary_10_1021_acsaem_4c03359
crossref_primary_10_1002_advs_202308318
crossref_primary_10_1002_adfm_202409134
crossref_primary_10_1021_jacs_3c12094
crossref_primary_10_1039_D3QM00736G
crossref_primary_10_1007_s42765_024_00508_3
crossref_primary_10_1039_D5RA02218E
crossref_primary_10_1002_adfm_202421160
crossref_primary_10_1002_smll_202505097
crossref_primary_10_1002_anie_202418783
crossref_primary_10_1002_ange_202420698
crossref_primary_10_1002_aenm_202405284
crossref_primary_10_1007_s00339_024_07342_9
crossref_primary_10_1002_anie_202411437
crossref_primary_10_1021_acs_jchemed_4c00854
crossref_primary_10_3390_polym16223132
crossref_primary_10_1038_s41598_024_73006_6
crossref_primary_10_1039_D5MH00433K
crossref_primary_10_1002_adfm_202312358
crossref_primary_10_1002_batt_202500294
crossref_primary_10_1007_s11426_024_2399_2
crossref_primary_10_1002_adfm_202416808
crossref_primary_10_1016_j_jallcom_2025_180825
crossref_primary_10_1016_j_cej_2023_148510
crossref_primary_10_1016_j_cej_2025_166186
crossref_primary_10_1016_j_nanoen_2024_109620
crossref_primary_10_1039_D5TA02887F
crossref_primary_10_1007_s10800_024_02142_8
crossref_primary_10_1002_aenm_202502809
crossref_primary_10_1002_app_56780
crossref_primary_10_1002_smll_202500982
crossref_primary_10_1007_s10008_024_05975_7
crossref_primary_10_1016_j_ceramint_2024_04_070
crossref_primary_10_1007_s12598_024_02710_z
crossref_primary_10_1002_anie_202318822
crossref_primary_10_1002_smll_202406357
crossref_primary_10_1002_aenm_202406003
crossref_primary_10_1039_D5TA01706H
crossref_primary_10_1021_acsaelm_5c00630
crossref_primary_10_1039_D4EE00357H
crossref_primary_10_1002_aenm_202304480
crossref_primary_10_1039_D4EE00822G
crossref_primary_10_1021_acsapm_5c00218
crossref_primary_10_1002_pc_29445
crossref_primary_10_3389_fbael_2024_1377192
crossref_primary_10_3390_batteries9090465
crossref_primary_10_1007_s40843_024_2915_3
crossref_primary_10_1002_cssc_202500445
crossref_primary_10_3390_polysaccharides6010005
crossref_primary_10_1002_anie_202408246
crossref_primary_10_1021_acsapm_5c02412
crossref_primary_10_1002_anie_202420001
crossref_primary_10_1002_aenm_202405101
crossref_primary_10_1016_j_greenca_2024_06_002
crossref_primary_10_1002_cssc_202300038
crossref_primary_10_1016_j_est_2025_116967
crossref_primary_10_1016_j_cej_2025_160988
crossref_primary_10_1039_D5TA01448D
crossref_primary_10_1039_D3NR01306E
crossref_primary_10_1039_D5NR00322A
crossref_primary_10_1002_aenm_202402986
crossref_primary_10_1007_s40820_025_01700_9
crossref_primary_10_1016_j_enchem_2025_100169
crossref_primary_10_1021_acs_chemrev_5c00245
crossref_primary_10_1002_ange_202411437
crossref_primary_10_1002_ece2_74
crossref_primary_10_1093_nsr_nwae207
crossref_primary_10_1016_j_jcis_2025_138708
crossref_primary_10_1007_s10854_024_14066_2
crossref_primary_10_1039_D5EE03838C
crossref_primary_10_1007_s11581_025_06495_8
crossref_primary_10_3390_polym16030368
crossref_primary_10_1002_ange_202504767
crossref_primary_10_1016_j_cej_2025_166854
crossref_primary_10_1002_anie_202421101
crossref_primary_10_1016_j_molliq_2025_127355
crossref_primary_10_1016_j_etran_2023_100310
crossref_primary_10_1021_acsami_5c03252
crossref_primary_10_1002_smll_202406251
crossref_primary_10_1016_j_ijbiomac_2025_143745
crossref_primary_10_3390_batteries10090316
crossref_primary_10_1557_s43577_023_00607_3
crossref_primary_10_1021_acsaem_4c02993
crossref_primary_10_3390_polym16121707
crossref_primary_10_1016_j_cej_2023_146414
crossref_primary_10_1039_D5SE00187K
crossref_primary_10_1149_1945_7111_ad4a0e
crossref_primary_10_1039_D3EE02705H
crossref_primary_10_1002_ange_202421101
crossref_primary_10_1002_pol_20240378
crossref_primary_10_1016_j_joule_2024_01_027
crossref_primary_10_1002_smll_202411626
crossref_primary_10_1002_adfm_202503696
crossref_primary_10_3390_batteries11020042
crossref_primary_10_1002_adfm_202504306
crossref_primary_10_1002_app_57672
crossref_primary_10_1002_adfm_202403487
crossref_primary_10_1002_batt_202300183
crossref_primary_10_1021_acsaem_5c00693
crossref_primary_10_1002_aenm_202402402
crossref_primary_10_1002_ange_202420001
crossref_primary_10_1021_acs_jpclett_5c02283
crossref_primary_10_1016_j_cej_2024_154796
crossref_primary_10_55959_MSU0579_9384_2_2024_65_6_513_525
crossref_primary_10_26599_NR_2025_94907230
crossref_primary_10_6023_A23070335
crossref_primary_10_1002_batt_202500006
crossref_primary_10_1002_smll_202303344
crossref_primary_10_1039_D5TA04186D
crossref_primary_10_1063_5_0201613
crossref_primary_10_1002_mame_202500214
crossref_primary_10_1007_s11814_025_00532_y
crossref_primary_10_1002_ange_202423227
crossref_primary_10_1016_j_nanoen_2024_109361
crossref_primary_10_1039_D3QM01111A
crossref_primary_10_1021_acs_macromol_5c00806
crossref_primary_10_1002_celc_202400323
crossref_primary_10_1016_j_cej_2024_150298
crossref_primary_10_1016_j_elecom_2025_108046
crossref_primary_10_3390_gels9070585
crossref_primary_10_1002_ange_202318822
crossref_primary_10_1002_smtd_202401912
crossref_primary_10_1016_j_cej_2024_157379
crossref_primary_10_1016_j_ssi_2023_116261
crossref_primary_10_1002_aenm_202400766
crossref_primary_10_1080_1023666X_2024_2362683
crossref_primary_10_1002_adfm_202502741
crossref_primary_10_3390_ma17174344
crossref_primary_10_1016_j_jallcom_2023_172352
crossref_primary_10_1016_j_cej_2025_166014
crossref_primary_10_1002_smll_202308058
crossref_primary_10_1002_anie_202420698
crossref_primary_10_1002_ange_202400477
crossref_primary_10_1016_j_jcis_2023_12_003
crossref_primary_10_1002_anie_202403661
crossref_primary_10_1007_s10008_024_05993_5
crossref_primary_10_1016_j_memsci_2025_124716
crossref_primary_10_1016_j_cej_2024_153448
crossref_primary_10_1016_j_mattod_2024_05_001
crossref_primary_10_1126_sciadv_adu6086
crossref_primary_10_1007_s42247_024_00905_9
crossref_primary_10_1002_smll_202508761
crossref_primary_10_1021_acsami_5c01672
crossref_primary_10_1016_j_jallcom_2025_181405
crossref_primary_10_1021_acsnano_5c04885
crossref_primary_10_1039_D5EB00010F
crossref_primary_10_1080_1023666X_2024_2446596
crossref_primary_10_1002_aenm_202500913
crossref_primary_10_1080_14686996_2025_2466417
crossref_primary_10_2478_aei_2024_0014
crossref_primary_10_1021_acssuschemeng_5c03777
crossref_primary_10_1002_smm2_70036
crossref_primary_10_1039_D3QM00840A
crossref_primary_10_3390_nano14050433
crossref_primary_10_1002_smll_202504491
crossref_primary_10_1039_D5CP01386K
crossref_primary_10_1002_aelm_202400937
crossref_primary_10_1002_ange_202418783
crossref_primary_10_1002_cssc_202501288
crossref_primary_10_1002_wene_544
crossref_primary_10_1021_polymscitech_5c00003
crossref_primary_10_1021_acsami_4c23123
crossref_primary_10_1039_D4SM01297F
crossref_primary_10_1002_advs_202510481
crossref_primary_10_1016_j_ceramint_2025_02_020
crossref_primary_10_1002_adfm_202415303
crossref_primary_10_1016_j_jelechem_2024_118135
crossref_primary_10_1002_app_56826
crossref_primary_10_1007_s10965_025_04498_7
crossref_primary_10_1002_smll_202305326
crossref_primary_10_1021_acs_langmuir_5c01650
crossref_primary_10_1016_j_ces_2025_122353
crossref_primary_10_1002_adma_202507809
crossref_primary_10_1039_D5TA01355K
crossref_primary_10_1002_adma_202504419
crossref_primary_10_1039_D3QM00784G
crossref_primary_10_1002_adfm_202409618
crossref_primary_10_1007_s11581_024_05876_9
crossref_primary_10_1002_cssc_202500044
crossref_primary_10_1016_j_jcis_2024_04_047
crossref_primary_10_3390_polym16233404
crossref_primary_10_1002_chem_202402798
crossref_primary_10_1016_j_pmatsci_2025_101505
crossref_primary_10_1021_acsami_5c05964
crossref_primary_10_1002_anie_202400477
crossref_primary_10_1016_j_est_2024_112110
crossref_primary_10_1016_j_jallcom_2023_173240
crossref_primary_10_1002_cssc_202401139
crossref_primary_10_1002_adma_202307599
crossref_primary_10_1002_cssc_202400963
crossref_primary_10_1002_smll_202504111
crossref_primary_10_1002_adfm_202422162
crossref_primary_10_3103_S0027131424700433
crossref_primary_10_1002_apxr_202400166
crossref_primary_10_1016_j_cej_2023_148452
crossref_primary_10_26599_NR_2025_94907304
crossref_primary_10_1002_aenm_202303206
crossref_primary_10_1360_CSB_2025_0249
crossref_primary_10_1002_ange_202316717
crossref_primary_10_1016_j_memsci_2024_122955
crossref_primary_10_1016_j_est_2024_112368
crossref_primary_10_1002_advs_202306698
crossref_primary_10_1002_ange_202403661
crossref_primary_10_1016_j_est_2024_112363
crossref_primary_10_1039_D3QM00607G
crossref_primary_10_1002_adfm_202311633
crossref_primary_10_1002_adfm_202303339
crossref_primary_10_1002_ejic_202500075
crossref_primary_10_1080_17452759_2025_2499480
crossref_primary_10_1007_s11426_025_2593_1
crossref_primary_10_1007_s10800_025_02322_0
crossref_primary_10_1002_adfm_202405951
crossref_primary_10_1002_anie_202316717
crossref_primary_10_1007_s11426_024_2491_9
crossref_primary_10_1088_2634_4386_acf1c6
crossref_primary_10_1039_D5PY00414D
crossref_primary_10_1021_acsapm_5c00097
crossref_primary_10_1002_smll_202311811
crossref_primary_10_3390_polym15193907
crossref_primary_10_1021_acs_jpcc_5c03974
crossref_primary_10_1039_D4PY00322E
crossref_primary_10_3390_batteries11040153
crossref_primary_10_1016_j_cej_2025_164014
crossref_primary_10_1149_1945_7111_ade634
crossref_primary_10_1002_advs_202505530
crossref_primary_10_1002_anie_202423227
crossref_primary_10_1016_j_nxener_2025_100283
crossref_primary_10_1039_D4NJ04857A
crossref_primary_10_1007_s42765_024_00402_y
crossref_primary_10_1002_adsu_202400532
crossref_primary_10_1002_advs_202502824
crossref_primary_10_1039_D4QM00428K
crossref_primary_10_1039_D5SC01107H
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1002_adfm_202413205
crossref_primary_10_1007_s11814_024_00122_4
crossref_primary_10_1002_adfm_202315777
crossref_primary_10_3390_nano13233027
crossref_primary_10_1016_j_colsurfa_2024_133602
crossref_primary_10_1002_adfm_202415507
crossref_primary_10_1002_est2_506
crossref_primary_10_1021_acs_energyfuels_4c03193
crossref_primary_10_1039_D5TC01125F
Cites_doi 10.1002/aenm.201903939
10.1021/acs.nanolett.8b01111
10.1016/j.ensm.2019.03.004
10.1007/s11426-020-9936-6
10.1016/j.jechem.2020.03.017
10.1021/acsami.9b07830
10.1002/smll.202102039
10.1149/1.2403248
10.1038/natrevmats.2016.103
10.1016/S0013-4686(00)00779-9
10.1149/1.3447750
10.1038/nenergy.2017.35
10.1039/c0cs00081g
10.1016/j.eurpolymj.2005.09.017
10.1016/j.coche.2014.09.002
10.1016/j.electacta.2015.04.039
10.1016/j.joule.2018.03.008
10.1002/adma.201806082
10.1038/s41578-019-0165-5
10.1002/adma.202200945
10.1021/acs.chemrev.9b00427
10.1039/C5TA03471J
10.1039/D2EE01053D
10.1002/anie.201710841
10.1021/cr00083a006
10.1016/j.ensm.2022.06.040
10.1016/S0378-7753(03)00263-5
10.1016/j.nanoen.2019.03.051
10.1021/acs.nanolett.5b00600
10.1021/ma3008509
10.1557/mrs2000.16
10.1016/j.jfluchem.2011.06.041
10.1021/acsenergylett.9b00724
10.1016/j.chempr.2019.05.009
10.1103/PhysRevLett.98.227802
10.1016/j.nanoen.2016.11.045
10.1016/0167-2738(96)00042-2
10.1002/advs.202003675
10.1021/acsaem.8b02008
10.1149/2.0161514jes
10.1016/j.progpolymsci.2021.101453
10.1002/adma.201902029
10.1038/nenergy.2016.42
10.1021/jacs.6b05341
10.1038/nenergy.2016.141
10.1021/jacs.7b06364
10.1016/j.ensm.2018.03.016
10.1038/nmat1513
10.1038/526S96a
10.1002/adfm.200500538
10.1016/j.nanoen.2017.10.021
10.1016/j.ensm.2020.10.018
10.1021/acsami.7b17301
10.1039/D1TA04631D
10.1021/ma900451e
10.1016/S0167-2738(02)00582-9
10.1073/pnas.1600422113
10.1039/C6MH00218H
10.1111/j.1151-2916.1990.tb07576.x
10.1016/S0013-4686(01)00458-3
10.1007/s12274-017-1763-4
10.1021/acsnano.6b06797
10.1021/acs.nanolett.8b01421
10.1016/S0167-577X(00)00322-0
10.1002/polb.23404
10.1039/C9TA09969G
10.1149/1.1615352
10.1016/S1359-0286(99)00052-2
10.1002/aenm.201501082
10.1016/j.mattod.2021.08.005
10.1557/PROC-135-351
10.1038/nmat3602
10.1039/C8TA10124H
10.1021/acsami.7b03806
10.1016/j.chempr.2018.11.013
10.1126/science.1212741
10.1016/j.jsamd.2018.01.002
10.1016/j.chempr.2018.12.002
10.1016/j.jpowsour.2015.04.044
10.1021/ma052277v
10.1021/ma502578s
10.1002/adma.201807789
10.1002/polb.1994.090321309
10.1002/bbpc.19920960202
10.1038/s41565-019-0604-x
10.1016/0167-2738(83)90068-1
10.1002/adma.201905219
10.1016/S0167-2738(00)00329-5
10.1021/cr030203g
10.1016/j.jpowsour.2015.09.111
10.1021/acsaem.8b01850
10.1038/nature03190
10.1038/35104644
10.1016/j.electacta.2015.01.167
10.1016/j.ensm.2020.11.030
10.1016/j.ensm.2017.06.017
10.1016/0167-2738(93)90270-D
10.1002/adfm.200601070
10.1021/ma2001096
10.1016/j.memsci.2019.03.048
10.1038/19730
10.1039/D0CS00305K
10.1295/polymj.15.175
10.1007/s10800-006-9190-3
10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
10.1002/aenm.201804004
10.1016/j.mattod.2018.01.001
10.1002/advs.201800559
10.1021/acsami.8b17279
10.1021/ja029326t
10.1016/j.nanoen.2020.104786
10.1002/advs.201600377
10.1039/C6CS00491A
10.1016/j.jpowsour.2010.01.076
10.1016/j.nanoen.2017.12.037
10.1016/0167-2738(88)90314-1
10.1021/jp972727o
10.1016/j.nanoen.2016.09.002
10.1038/srep06272
10.1016/0167-2738(83)90083-8
10.1021/acs.nanolett.5b04117
10.1063/1.3622671
10.1002/advs.202003370
10.1039/C6TA02621D
10.1073/pnas.1708489114
10.1038/451652a
10.1039/ft9938903187
10.1002/anie.201914478
10.1021/acs.nanolett.8b00659
10.1016/0022-3697(85)90172-6
10.1149/1.1390455
10.1002/aenm.201702184
10.1021/acs.jpcc.6b11136
10.1021/acs.chemrev.5b00563
10.1063/1.1749319
10.1016/j.nanoen.2017.01.028
10.1038/s41565-019-0465-3
10.1002/adma.201701169
10.1016/j.jpowsour.2014.10.078
10.1016/j.electacta.2016.06.025
10.1002/anie.202107648
10.1002/anie.201607539
10.1038/28818
10.1016/j.ensm.2020.04.015
10.1002/adfm.202007598
ContentType Journal Article
Copyright 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202201718
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_1c8c6abb74e84033ac6303cd14980a18
PMC10074084
36698303
10_1002_advs_202201718
ADVS5119
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: Grant#12172143
– fundername: China Postdoctoral Science Foundation
  funderid: 2020M682403
– fundername: National Natural Science Foundation of China and the Israeli Science Foundation
  funderid: 51961145302
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M682403
– fundername: National Natural Science Foundation of China
  grantid: Grant#12172143
– fundername: National Natural Science Foundation of China and the Israeli Science Foundation
  grantid: 51961145302
– fundername: ;
  grantid: 2020M682403
– fundername: ;
  grantid: Grant#12172143
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5969-c6fc76278da05fc8d4f28f81a0f2c3359ee374f16a5eeb6fe5eb45f82f611bc03
IEDL.DBID DOA
ISICitedReferencesCount 455
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920586200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Tue Oct 14 19:00:29 EDT 2025
Tue Nov 04 02:07:05 EST 2025
Thu Sep 04 16:48:42 EDT 2025
Sat Jul 26 02:36:55 EDT 2025
Wed Feb 19 02:04:32 EST 2025
Tue Nov 18 21:49:00 EST 2025
Sat Nov 29 07:21:50 EST 2025
Wed Jan 22 16:22:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords composite polymer electrolyte
interfacial interaction
solid-state batteries
ionic conduction
polymer electrolyte
Language English
License Attribution
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5969-c6fc76278da05fc8d4f28f81a0f2c3359ee374f16a5eeb6fe5eb45f82f611bc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1546-8119
OpenAccessLink https://doaj.org/article/1c8c6abb74e84033ac6303cd14980a18
PMID 36698303
PQID 2795213153
PQPubID 4365299
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_1c8c6abb74e84033ac6303cd14980a18
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10074084
proquest_miscellaneous_2769994995
proquest_journals_2795213153
pubmed_primary_36698303
crossref_citationtrail_10_1002_advs_202201718
crossref_primary_10_1002_advs_202201718
wiley_primary_10_1002_advs_202201718_ADVS5119
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 1986; 72
2000; 135
2019; 11
1988; 28–30
2006; 39
2006; 36
2019; 14
2001; 48
2016; 301
1983; 15
2001; 46
2003; 156
1983; 11
2011; 110
2018; 46
2018; 5
2003 2005; 125 433
2022; 34
1988; 88
1933; 1
2016 2018 2017; 113 21 2
2011 2001 2008; 334 414 451
2019; 7
1986; 90
2019; 9
2019; 4
1998 1999; 394 4
2016 2016 2017 2020 2015; 1 1 2 15 526
2019; 5
2019; 31
2019; 2
1973; 120
2016 2018; 210 18
2016; 10
1983 1998; 9–10 10
2007; 98
2016; 16
2021; 51
2015 2016; 274 28
2019; 582
2011; 132
2018; 18
2006; 42
2020 2020 2016; 32 120 4
2020; 31
2007 2012; 17 45
2005; 4
1996; 85
2022; 15
1998 2001; 102 46
2021; 60
2018; 10
2020; 29
2017; 41
2009 2019; 42 19
2017; 4
2015 2021; 287 64
1993; 60
2016 2018; 3 3
2017; 46
2021; 122
2017; 9
2019 2018; 60 15
1992; 96
2021; 36
2020; 8
2020; 7
2015; 48
2017; 31
2020; 5
2010 2015 2017 2017; 195 3 2 33
2013; 12
2020; 50
2003; 6
2010; 157
1988; 135
2020; 49
2016; 116
2011; 25
2017; 121
2014; 52
1994; 32
2015; 162
1990; 73
2021; 9
2021; 8
2015; 15
1993; 89
2015; 5
2004; 104
2017 2018 2019 2019; 29 2 5 5
2000; 25
2015; 169
2017 2020; 139 59
2022; 51
2006; 16
2011; 40
2015; 7
2019 2017; 11 114
1985; 46
2016; 55
2014 2020; 4 10
2020; 73
2001; 4
2003; 119–121
2015; 158
2017; 10
2021; 17
2021 2018; 34 8
2011; 44
2016; 138
1999; 398
2018; 57
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_1_3
Angell C. A. (e_1_2_8_49_1) 1986; 72
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_64_2
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_113_2
e_1_2_8_19_1
e_1_2_8_34_2
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_15_2
e_1_2_8_91_1
Maier J. (e_1_2_8_101_1) 1986; 90
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_105_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_105_3
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_2_3
e_1_2_8_110_1
e_1_2_8_6_2
e_1_2_8_2_5
e_1_2_8_6_1
e_1_2_8_6_4
e_1_2_8_6_3
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_2
e_1_2_8_86_2
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_94_2
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_2
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_3_3
e_1_2_8_111_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_66_2
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_78_2
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_4_3
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_39_1
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_104_2
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_92_2
e_1_2_8_104_1
References_xml – volume: 119–121
  start-page: 415
  year: 2003
  publication-title: J. Power Sources
– volume: 158
  start-page: 152
  year: 2015
  publication-title: Electrochim. Acta
– volume: 34 8
  start-page: 515
  year: 2021 2018
  publication-title: Energy Storage Mater. Adv. Energy Mater.
– volume: 2
  start-page: 1734
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 5
  start-page: 2326
  year: 2019
  publication-title: Chem
– volume: 7
  start-page: 2653
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 18
  start-page: 6113
  year: 2018
  publication-title: Nano Lett.
– volume: 116
  start-page: 140
  year: 2016
  publication-title: Chem. Rev.
– volume: 110
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 11 114
  year: 2019 2017
  publication-title: ACS Appl. Mater. Interfaces Proc. Natl. Acad. Sci. U. S. A.
– volume: 51
  start-page: 449
  year: 2021
  publication-title: Mater. Today
– volume: 169
  start-page: 334
  year: 2015
  publication-title: Electrochim. Acta
– volume: 102 46
  start-page: 352 1737
  year: 1998 2001
  publication-title: J. Phys. Chem. B Electrochim. Acta
– volume: 1
  start-page: 466
  year: 1933
  publication-title: J. Chem. Phys.
– volume: 3 3
  start-page: 487 1
  year: 2016 2018
  publication-title: Mater. Horiz. J. Sci.: Adv. Mater. Devices
– volume: 18
  start-page: 3104
  year: 2018
  publication-title: Nano Lett.
– volume: 12
  start-page: 452
  year: 2013
  publication-title: Nat. Mater.
– volume: 274 28
  start-page: 458 447
  year: 2015 2016
  publication-title: J. Power Sources Nano Energy
– volume: 195 3 2 33
  start-page: 4554 363
  year: 2010 2015 2017 2017
  publication-title: J. Power Sources J. Mater. Chem. A Nat. Rev. Mater. Nano Energy
– volume: 138
  start-page: 9385
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 60 15
  start-page: 205 46
  year: 2019 2018
  publication-title: Nano Energy Energy Storage Mater.
– volume: 36
  start-page: 1091
  year: 2006
  publication-title: J. Appl. Electrochem.
– volume: 57
  start-page: 2096
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 89
  start-page: 3187
  year: 1993
  publication-title: J. Chem. Soc., Faraday Trans.
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 73
  start-page: 2187
  year: 1990
  publication-title: J. Am. Ceram. Soc.
– volume: 121
  start-page: 2563
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 85
  start-page: 67
  year: 1996
  publication-title: Solid State Ionics
– volume: 16
  start-page: 525
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 459
  year: 2016
  publication-title: Nano Lett.
– volume: 113 21 2
  start-page: 7094 594
  year: 2016 2018 2017
  publication-title: Proc. Natl. Acad. Sci. U. S. A. Mater. Today Nat. Energy
– volume: 46
  start-page: 797
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 4139
  year: 2017
  publication-title: Nano Res.
– volume: 11
  start-page: 91
  year: 1983
  publication-title: Solid State Ionics
– volume: 25
  start-page: 31
  year: 2011
  publication-title: MRS Bull.
– volume: 156
  start-page: 141
  year: 2003
  publication-title: Solid State Ionics
– volume: 96
  start-page: 111
  year: 1992
  publication-title: Phys. Chem.
– volume: 334 414 451
  start-page: 928 359 652
  year: 2011 2001 2008
  publication-title: Science Nature Nature
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 157
  start-page: A972
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 44
  start-page: 4410
  year: 2011
  publication-title: Macromolecules
– volume: 49
  start-page: 8790
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 784
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 2221
  year: 1994
  publication-title: J. Polym. Sci.: Polym. Phys.
– volume: 394 4
  start-page: 456 479
  year: 1998 1999
  publication-title: Nature Curr. Opin. Solid State Mater. Sci.
– volume: 46
  start-page: 176
  year: 2018
  publication-title: Nano Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 40
  start-page: 2525
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 104
  start-page: 4303
  year: 2004
  publication-title: Chem. Rev.
– volume: 2
  start-page: 1452
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 51
  start-page: 443
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 1 1 2 15 526
  start-page: 94 S96
  year: 2016 2016 2017 2020 2015
  publication-title: Nat. Energy Nat. Energy Nat. Rev. Mater. Nat. Nanotechnol. Nature
– volume: 125 433
  start-page: 4619 47
  year: 2003 2005
  publication-title: J. Am. Chem. Soc. Nature
– volume: 4
  start-page: A148
  year: 2001
  publication-title: Electrochem. Solid‐State Lett.
– volume: 48
  start-page: 331
  year: 2001
  publication-title: Mater. Lett.
– volume: 135
  start-page: 351
  year: 1988
  publication-title: MRS Online Proc. Libr.
– volume: 36
  start-page: 10
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 39
  start-page: 1620
  year: 2006
  publication-title: Macromolecules
– volume: 132
  start-page: 1213
  year: 2011
  publication-title: J. Fluorine Chem.
– volume: 4 10
  start-page: 6272
  year: 2014 2020
  publication-title: Sci. Rep. Adv. Energy Mater.
– volume: 46
  start-page: 309
  year: 1985
  publication-title: J. Phys. Chem. Solids
– volume: 5
  start-page: 229
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 29
  start-page: 149
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 210 18
  start-page: 905 3829
  year: 2016 2018
  publication-title: Electrochim. Acta Nano Lett.
– volume: 48
  start-page: 2773
  year: 2015
  publication-title: Macromolecules
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 135
  start-page: 47
  year: 2000
  publication-title: Solid State Ionics
– volume: 4
  start-page: 1265
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 15
  start-page: 175
  year: 1983
  publication-title: Polym. J.
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 582
  start-page: 37
  year: 2019
  publication-title: J. Membr. Sci.
– volume: 14
  start-page: 705
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 46
  start-page: 2457
  year: 2001
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 4113
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 85
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 28–30
  start-page: 975
  year: 1988
  publication-title: Solid State Ionics
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 29 2 5 5
  start-page: 833 74 753
  year: 2017 2018 2019 2019
  publication-title: Adv. Mater. Joule Chem Chem
– volume: 32 120 4
  start-page: 4257
  year: 2020 2020 2016
  publication-title: Adv. Mater. Chem. Rev. J. Mater. Chem. A
– volume: 15
  start-page: 2740
  year: 2015
  publication-title: Nano Lett.
– volume: 139 59
  start-page: 4131
  year: 2017 2020
  publication-title: J. Am. Chem. Soc. Angew.Chem., Int.Ed.
– volume: 42
  start-page: 21
  year: 2006
  publication-title: Eur. Polym. J.
– volume: 52
  start-page: 1
  year: 2014
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 41
  start-page: 646
  year: 2017
  publication-title: Nano Energy
– volume: 8
  start-page: 3892
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 17 45
  start-page: 2800 6068
  year: 2007 2012
  publication-title: Adv. Funct. Mater. Macromolecules
– volume: 4
  start-page: 806
  year: 2005
  publication-title: Nat. Mater.
– volume: 90
  start-page: 26
  year: 1986
  publication-title: Phys. Chem.
– volume: 6
  start-page: E40
  year: 2003
  publication-title: Electrochem. Solid‐State Lett.
– volume: 287 64
  start-page: 164 673
  year: 2015 2021
  publication-title: J. Power Sources Sci. China: Chem.
– volume: 15
  start-page: 3379
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 301
  start-page: 47
  year: 2016
  publication-title: J. Power Sources
– volume: 72
  start-page: 18
  year: 1986
  publication-title: Solid State Ionics
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9–10 10
  start-page: 745 439
  year: 1983 1998
  publication-title: Solid State Ionics Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 60
  start-page: 31
  year: 1993
  publication-title: Solid State Ionics
– volume: 398
  start-page: 792
  year: 1999
  publication-title: Nature
– volume: 122
  year: 2021
  publication-title: Prog. Polym. Sci.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 50
  start-page: 154
  year: 2020
  publication-title: J. Energy Chem.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 42 19
  start-page: 4632 401
  year: 2009 2019
  publication-title: Macromolecules Energy Storage Mater.
– volume: 120
  start-page: 1289
  year: 1973
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 113
  year: 2015
  publication-title: Curr. Opin. Chem. Eng.
– volume: 31
  start-page: 478
  year: 2017
  publication-title: Nano Energy
– volume: 25
  start-page: 31
  year: 2000
  publication-title: MRS Bull.
– volume: 88
  start-page: 109
  year: 1988
  publication-title: Chem. Rev.
– ident: e_1_2_8_14_2
  doi: 10.1002/aenm.201903939
– ident: e_1_2_8_16_2
  doi: 10.1021/acs.nanolett.8b01111
– ident: e_1_2_8_66_2
  doi: 10.1016/j.ensm.2019.03.004
– ident: e_1_2_8_104_2
  doi: 10.1007/s11426-020-9936-6
– ident: e_1_2_8_112_1
  doi: 10.1016/j.jechem.2020.03.017
– ident: e_1_2_8_78_1
  doi: 10.1021/acsami.9b07830
– ident: e_1_2_8_96_1
  doi: 10.1002/smll.202102039
– ident: e_1_2_8_98_1
  doi: 10.1149/1.2403248
– ident: e_1_2_8_2_3
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_8_92_2
  doi: 10.1016/S0013-4686(00)00779-9
– ident: e_1_2_8_25_1
  doi: 10.1149/1.3447750
– ident: e_1_2_8_105_3
  doi: 10.1038/nenergy.2017.35
– ident: e_1_2_8_57_1
  doi: 10.1039/c0cs00081g
– ident: e_1_2_8_40_1
  doi: 10.1016/j.eurpolymj.2005.09.017
– ident: e_1_2_8_38_1
  doi: 10.1016/j.coche.2014.09.002
– ident: e_1_2_8_73_1
  doi: 10.1016/j.electacta.2015.04.039
– ident: e_1_2_8_3_2
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201806082
– ident: e_1_2_8_5_1
  doi: 10.1038/s41578-019-0165-5
– ident: e_1_2_8_114_1
  doi: 10.1002/adma.202200945
– ident: e_1_2_8_4_2
  doi: 10.1021/acs.chemrev.9b00427
– ident: e_1_2_8_6_2
  doi: 10.1039/C5TA03471J
– ident: e_1_2_8_118_1
  doi: 10.1039/D2EE01053D
– ident: e_1_2_8_19_1
  doi: 10.1002/anie.201710841
– ident: e_1_2_8_50_1
  doi: 10.1021/cr00083a006
– ident: e_1_2_8_119_1
  doi: 10.1016/j.ensm.2022.06.040
– ident: e_1_2_8_33_1
  doi: 10.1016/S0378-7753(03)00263-5
– ident: e_1_2_8_15_1
  doi: 10.1016/j.nanoen.2019.03.051
– ident: e_1_2_8_79_1
  doi: 10.1021/acs.nanolett.5b00600
– ident: e_1_2_8_64_2
  doi: 10.1021/ma3008509
– ident: e_1_2_8_48_1
  doi: 10.1557/mrs2000.16
– ident: e_1_2_8_61_1
  doi: 10.1016/j.jfluchem.2011.06.041
– ident: e_1_2_8_115_1
  doi: 10.1021/acsenergylett.9b00724
– ident: e_1_2_8_7_1
  doi: 10.1016/j.chempr.2019.05.009
– ident: e_1_2_8_41_1
  doi: 10.1103/PhysRevLett.98.227802
– ident: e_1_2_8_76_1
  doi: 10.1016/j.nanoen.2016.11.045
– ident: e_1_2_8_91_1
  doi: 10.1016/0167-2738(96)00042-2
– ident: e_1_2_8_6_3
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_8_37_1
  doi: 10.1002/advs.202003675
– ident: e_1_2_8_110_1
  doi: 10.1021/acsaem.8b02008
– ident: e_1_2_8_43_1
  doi: 10.1149/2.0161514jes
– ident: e_1_2_8_67_1
  doi: 10.1016/j.progpolymsci.2021.101453
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201902029
– ident: e_1_2_8_2_1
  doi: 10.1038/nenergy.2016.42
– ident: e_1_2_8_68_1
  doi: 10.1021/jacs.6b05341
– ident: e_1_2_8_2_2
  doi: 10.1038/nenergy.2016.141
– ident: e_1_2_8_94_1
  doi: 10.1021/jacs.7b06364
– ident: e_1_2_8_15_2
  doi: 10.1016/j.ensm.2018.03.016
– ident: e_1_2_8_103_1
  doi: 10.1038/nmat1513
– ident: e_1_2_8_2_5
  doi: 10.1038/526S96a
– ident: e_1_2_8_102_1
  doi: 10.1002/adfm.200500538
– ident: e_1_2_8_20_1
  doi: 10.1016/j.nanoen.2017.10.021
– ident: e_1_2_8_113_1
  doi: 10.1016/j.ensm.2020.10.018
– ident: e_1_2_8_107_1
  doi: 10.1021/acsami.7b17301
– ident: e_1_2_8_90_1
  doi: 10.1039/D1TA04631D
– ident: e_1_2_8_66_1
  doi: 10.1021/ma900451e
– ident: e_1_2_8_72_1
  doi: 10.1016/S0167-2738(02)00582-9
– ident: e_1_2_8_105_1
  doi: 10.1073/pnas.1600422113
– ident: e_1_2_8_58_1
  doi: 10.1039/C6MH00218H
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1151-2916.1990.tb07576.x
– ident: e_1_2_8_83_1
  doi: 10.1016/S0013-4686(01)00458-3
– ident: e_1_2_8_26_1
  doi: 10.1007/s12274-017-1763-4
– ident: e_1_2_8_89_1
  doi: 10.1021/acsnano.6b06797
– ident: e_1_2_8_75_1
  doi: 10.1021/acs.nanolett.8b01421
– ident: e_1_2_8_39_1
  doi: 10.1016/S0167-577X(00)00322-0
– ident: e_1_2_8_42_1
  doi: 10.1002/polb.23404
– ident: e_1_2_8_65_1
  doi: 10.1039/C9TA09969G
– ident: e_1_2_8_87_1
  doi: 10.1149/1.1615352
– ident: e_1_2_8_71_2
  doi: 10.1016/S1359-0286(99)00052-2
– ident: e_1_2_8_32_1
  doi: 10.1002/aenm.201501082
– ident: e_1_2_8_53_1
  doi: 10.1016/j.mattod.2021.08.005
– ident: e_1_2_8_63_1
  doi: 10.1557/PROC-135-351
– ident: e_1_2_8_70_1
  doi: 10.1038/nmat3602
– ident: e_1_2_8_81_1
  doi: 10.1039/C8TA10124H
– ident: e_1_2_8_93_1
  doi: 10.1021/acsami.7b03806
– ident: e_1_2_8_3_4
  doi: 10.1016/j.chempr.2018.11.013
– volume: 72
  start-page: 18
  year: 1986
  ident: e_1_2_8_49_1
  publication-title: Solid State Ionics
– ident: e_1_2_8_1_1
  doi: 10.1126/science.1212741
– ident: e_1_2_8_58_2
  doi: 10.1016/j.jsamd.2018.01.002
– ident: e_1_2_8_9_1
  doi: 10.1557/mrs2000.16
– ident: e_1_2_8_3_3
  doi: 10.1016/j.chempr.2018.12.002
– ident: e_1_2_8_104_1
  doi: 10.1016/j.jpowsour.2015.04.044
– ident: e_1_2_8_12_1
  doi: 10.1021/ma052277v
– ident: e_1_2_8_11_1
  doi: 10.1021/ma502578s
– ident: e_1_2_8_80_1
  doi: 10.1002/adma.201807789
– ident: e_1_2_8_30_1
  doi: 10.1002/polb.1994.090321309
– ident: e_1_2_8_100_1
  doi: 10.1002/bbpc.19920960202
– ident: e_1_2_8_2_4
  doi: 10.1038/s41565-019-0604-x
– ident: e_1_2_8_46_1
  doi: 10.1016/0167-2738(83)90068-1
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201905219
– ident: e_1_2_8_95_1
  doi: 10.1016/S0167-2738(00)00329-5
– ident: e_1_2_8_55_1
  doi: 10.1021/cr030203g
– ident: e_1_2_8_77_1
  doi: 10.1016/j.jpowsour.2015.09.111
– ident: e_1_2_8_106_1
  doi: 10.1021/acsaem.8b01850
– ident: e_1_2_8_44_2
  doi: 10.1038/nature03190
– ident: e_1_2_8_1_2
  doi: 10.1038/35104644
– ident: e_1_2_8_36_1
  doi: 10.1016/j.electacta.2015.01.167
– ident: e_1_2_8_47_1
  doi: 10.1016/j.ensm.2020.11.030
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ensm.2017.06.017
– ident: e_1_2_8_62_1
  doi: 10.1016/0167-2738(93)90270-D
– ident: e_1_2_8_64_1
  doi: 10.1002/adfm.200601070
– ident: e_1_2_8_51_1
  doi: 10.1021/ma2001096
– ident: e_1_2_8_27_1
  doi: 10.1016/j.memsci.2019.03.048
– ident: e_1_2_8_45_1
  doi: 10.1038/19730
– ident: e_1_2_8_84_1
  doi: 10.1039/D0CS00305K
– ident: e_1_2_8_60_1
  doi: 10.1295/polymj.15.175
– ident: e_1_2_8_31_1
  doi: 10.1007/s10800-006-9190-3
– ident: e_1_2_8_34_2
  doi: 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
– ident: e_1_2_8_109_1
  doi: 10.1002/aenm.201804004
– ident: e_1_2_8_105_2
  doi: 10.1016/j.mattod.2018.01.001
– ident: e_1_2_8_82_1
  doi: 10.1002/advs.201800559
– ident: e_1_2_8_10_1
  doi: 10.1021/acsami.8b17279
– ident: e_1_2_8_44_1
  doi: 10.1021/ja029326t
– ident: e_1_2_8_18_1
  doi: 10.1016/j.nanoen.2020.104786
– ident: e_1_2_8_29_1
  doi: 10.1002/advs.201600377
– ident: e_1_2_8_52_1
  doi: 10.1039/C6CS00491A
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jpowsour.2010.01.076
– ident: e_1_2_8_108_1
  doi: 10.1016/j.nanoen.2017.12.037
– ident: e_1_2_8_24_1
  doi: 10.1016/0167-2738(88)90314-1
– ident: e_1_2_8_92_1
  doi: 10.1021/jp972727o
– ident: e_1_2_8_86_2
  doi: 10.1016/j.nanoen.2016.09.002
– ident: e_1_2_8_14_1
  doi: 10.1038/srep06272
– ident: e_1_2_8_34_1
  doi: 10.1016/0167-2738(83)90083-8
– ident: e_1_2_8_88_1
  doi: 10.1021/acs.nanolett.5b04117
– ident: e_1_2_8_74_1
  doi: 10.1063/1.3622671
– ident: e_1_2_8_28_1
  doi: 10.1002/advs.202003370
– ident: e_1_2_8_4_3
  doi: 10.1039/C6TA02621D
– ident: e_1_2_8_78_2
  doi: 10.1073/pnas.1708489114
– ident: e_1_2_8_1_3
  doi: 10.1038/451652a
– ident: e_1_2_8_35_1
  doi: 10.1039/ft9938903187
– ident: e_1_2_8_94_2
  doi: 10.1002/anie.201914478
– ident: e_1_2_8_97_1
  doi: 10.1021/acs.nanolett.8b00659
– ident: e_1_2_8_99_1
  doi: 10.1016/0022-3697(85)90172-6
– ident: e_1_2_8_111_1
  doi: 10.1002/anie.201710841
– ident: e_1_2_8_22_1
  doi: 10.1149/1.1390455
– ident: e_1_2_8_113_2
  doi: 10.1002/aenm.201702184
– ident: e_1_2_8_85_1
  doi: 10.1021/acs.jpcc.6b11136
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_8_56_1
  doi: 10.1063/1.1749319
– ident: e_1_2_8_6_4
  doi: 10.1016/j.nanoen.2017.01.028
– ident: e_1_2_8_69_1
  doi: 10.1038/s41565-019-0465-3
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.201701169
– ident: e_1_2_8_86_1
  doi: 10.1016/j.jpowsour.2014.10.078
– ident: e_1_2_8_16_1
  doi: 10.1016/j.electacta.2016.06.025
– ident: e_1_2_8_116_1
  doi: 10.1002/anie.202107648
– volume: 90
  start-page: 26
  year: 1986
  ident: e_1_2_8_101_1
  publication-title: Phys. Chem.
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.201607539
– ident: e_1_2_8_71_1
  doi: 10.1038/28818
– ident: e_1_2_8_117_1
  doi: 10.1016/j.ensm.2020.04.015
– ident: e_1_2_8_54_1
  doi: 10.1002/adfm.202007598
SSID ssj0001537418
Score 2.6769426
SecondaryResourceType review_article
Snippet Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation...
Good safety, high interfacial compatibility, low cost, and facile processability make polymer-based solid electrolytes promising materials for next-generation...
Abstract Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2201718
SubjectTerms composite polymer electrolyte
Conductivity
Electrolytes
Energy
interfacial interaction
ionic conduction
Ions
Lithium
Oxygen
polymer electrolyte
Polymers
Review
Reviews
solid‐state batteries
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMXoDwDBQUJCThYjRPbcU6IrbaCy2pFQeotsh0bVlqSsttW6r9nJvEGVrwOXGPHjufhmbEn3wC8kEqj0ZCKhcw7DFCcZ6YyhhH2XECTaEvu-mIT5XyuT0-rRTxw28S0yu2e2G_UTefojPwwLyu0NAUq6Juzb4yqRtHtaiyhcR32CKlMTGBvOpsvPvw4ZZEFwbNs0Rqz_NA0l4TSnecEFKN3rFEP2v87T_PXhMmfHdneEh3f_t813IFb0QdN3w5Csw_XfHsX9qOWb9JXEYr69T0Q7wk5Nz3q2mZAmU2XbbroVldf_ZpN0QA26Um3WjbpbKims7pCz_U-fDqefTx6x2KdBeZkpSrm6H8flZe6MRmldDUi5DpobrKQu6KQlfdIxcCVkd5bFbz0Vsig86A4ty4rHsCk7Vr_CFJRYbhtuBWhtMKj88dlsD6g2xYsx8ESYFt61y6CkFMtjFU9wCfnNfGnHvmTwMux_9kAv_HHnlNi39iLYLP7B936cx21sOZOO2WsLYXHwLYojFNowl2DYaLODA1ysGVcHXUZpxi5lsDzsRm1kK5WTOu7C-qj0NPG6FEm8HCQlfFLCqUqjdMkoHekaOdTd1va5Zce6ZtSWESmBZKtF7h_0KBGV-aELoYf_30dT-AmvlMMCUgHMDlfX_incMNdni8362dRh74D9VYj4w
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cAFWp4pBQUJCThEjZ9xjm3VCi7VSgWpt8h2bFhpSdBuW6k3fgK_kV_SmSSbNgKEENd4ZDuTmcw3fnwD8Fppg0FD6SzmwWOC4kNmS2sz4p6LGBJdwXxXbKI4Pjanp-Xsxi3-nh9iXHAjz-j-1-Tg1q12r0lDbX1BdNucE-OLuQ13GBOGijdwObteZVGC6Fmowhxm15kwUq6ZG3O-O-1iEpk6Av_foc5fD0_eBLVdVDp68P_vswn3B0Sa7vUmtAW3QvMQtgafX6VvB2Lqd49AfyAe3fSgbeqeczadN-msXVx-Dcuf33_sY0Cs05N2Ma_Tw766zuISkexj-HR0-PHgfTbUXci8KnWZebr_o3lhapvTEa9aRm6iYTaP3AuhyhBQq5Fpq0JwOgYVnFTR8KgZcz4XT2CjaZvwDFJZYvptmZOxcDIgGGQquhARxkXHsLMEsrXOKz-QklNtjEXV0ynzitRSjWpJ4M0o_62n4_ij5D59wlGKaLS7B-3yczV4ZcW88do6V8iAia4Q1msM6b7GtNHkljrZWRtANfg2DlGUiHkEmlYCr8Zm9EraarFNaM9JRiPyxmxSJfC0t5dxJkLr0uAwCZiJJU2mOm1p5l865m860iJzI1FtnSn9RQcVQpsT2ije_kf553APH4r-hNIObJwtz8MLuOsvzuar5cvOxa4A0ZInNA
  priority: 102
  providerName: Wiley-Blackwell
Title Ionic Conduction in Polymer‐Based Solid Electrolytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202201718
https://www.ncbi.nlm.nih.gov/pubmed/36698303
https://www.proquest.com/docview/2795213153
https://www.proquest.com/docview/2769994995
https://pubmed.ncbi.nlm.nih.gov/PMC10074084
https://doaj.org/article/1c8c6abb74e84033ac6303cd14980a18
Volume 10
WOSCitedRecordID wos000920586200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1By4ELonymlFWQkIBD1NhOHOfIVluxhy4RBbGcItux1ZWWBG0_pN76E_iN_BLGdjbaFaBeuFhKbCXWyzjzRh6_AXidc4FOI-eJTY3GAEWbRJZSJk57zqJLVAXRvthEMZuJ-bysNkp9uZywIA8cgDskWmgulSoyg7EIY1Jz_OvqBpm9SCXxx3yR9WwEU-F8MHOyLGuVxpQeyubKqXNT6gRixJYX8mL9f2OYfyZKbhJY74GOH8KDnjrG78OU9-COaR_BXr84z-O3vYL0u8fAp07wNj7q2iaIw8aLNq665fV3s_p183OMnquJT7vlooknoQzO8hop5xP4cjz5fPQh6QskJDoveZlod1CH00I0MnW5WE1mqbCCyNRSzVheGoMwWMJlbozi1uRGZbkV1HJClE7ZU9hpu9Y8hzgrMU6WRGW2UJlB1kZyq4xFvmUVwYdFkKwBq3WvHu6KWCzroHtMawdwPQAcwZth_I-gm_HPkWOH_zDK6V37G2gFdW8F9W1WEMHB-uvV_SLEVxQlkhOGthDBq6Ebl4_bE5Gt6S7dGI4UGcO-PIJn4WMPM2GclwJfE4HYMoOtqW73tIszL9Htck-yVGQIm7eYWzCokYOcuh3d_f8Bxgu4j09mIb_oAHYuVpfmJdzTVxeL89UI7tKswraYixHsjiez6tPILx5sT-hH32L_bjU9qb7h1dfp7DdSJx3h
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUyS4AGUNFAgSCDhETbzFOSBES6uO2o5GapHKKdiODSMNSZlpi-ZP8Rt5zgYjtlMPXGPHcezPb7GfvwfwlAuJSoOLyMXWoINibKQypSLPPedQJeo0MXWyiXQ0ksfH2XgFvnV3YXxYZScTa0FdVMbvkW-QNENNQ3GBvj75EvmsUf50tUuh0cBizy6-oss2fzV8i_P7jJCd7aOt3ajNKhAZnoksMv52iyCpLFTsA5gK5oh0MlGxI4ZSnllLU-YSobi1WjjLrWbcSeJEkmgTU2z3EqwyBLscwOp4eDB-_2NXh1NPB9OxQ8ZkQxXnnhWcEE9MI5e0X50k4HeW7a8Bmj8bzrXm27n-v43ZDbjW2tjhm2ZRrMGKLW_CWivF5uGLlmr75S1gQ88MHG5VZdGw6IaTMhxX08VnO4s2UcEX4WE1nRThdpMtaLpAy_w2vLuQ3t-BQVmV9h6ELGMiU4lmLtXMonGbcKetQ7PU6QQbCyDq5jc3Lcm6z_UxzRt6aJJ7POQ9HgJ43tc_aehF_lhz08Olr-VpwesH1exj3kqZPDHSCKV1yiw67pQqI9BEMQW6wTJWvpH1Dih5K6vwEz1KAnjSF6OU8UdHqrTVma8j0JNA75gHcLfBZt8TKkQm8TMByCXULnV1uaScfKqZzH2IDoslw2GrAf6PMcjRVDv0B9_3__4fj-HK7tHBfr4_HO09gKv4Pm2CrdZhcDo7sw_hsjk_ncxnj9r1G8KHi4b_d6AlgoA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXoDwDBYIEAg7RJo7tOAeE6GPFqrBaqSD1ljqO3a60JGW3Ldq_xq9jJi9Y8Tr1wDV2HMf-PA97_A3AMyEVKg0hAxdagw6KsYFOtQ6Ie86hSsyTyNTJJpLxWB0cpJM1-NbdhaGwyk4m1oK6qAztkQ9YkqKmiXGBDlwbFjHZGb45-RJQBik6ae3SaTQQ2bPLr-i-LV6PdnCunzM23P24_S5oMwwERqQyDQzddJEsUYUOKZip4I4ppyIdOmbiWKTWxgl3kdTC2lw6K2zOhVPMySjKTRhju5fgcsKFoNX1gU1-7O-ImIhhOp7IkA10cU784IwRRY1a0YN1uoDf2bi_hmr-bELXOnB4438evZtwvbW8_bfNUtmANVvego1Wti38ly0B96vbwEfEF-xvV2XRcOv609KfVLPlZzsPtlDtF_5-NZsW_m6TQ2i2RHv9Dny6kN7fhfWyKu198HnKZaqjnLsk5xZN3ki43Do0Vl0eYWMeBN1cZ6alXqcMILOsIY1mGWEj67HhwYu-_klDOvLHmlsEnb4WkYXXD6r5UdbKniwyykid5wm36M7HsTYSDRdToHOsQk2NbHagyVoJhp_oEePB074YZQ8dKOnSVmdUR6J_gT6z8OBeg9O-J7GUqcLPeKBWELzS1dWScnpc85tT4A4PFcdhq8H-jzHI0IDbp-PwB3__jydwFTGfvR-N9x7CNXw9biKwNmH9dH5mH8EVc346Xcwf1wvZh8OLxv53rraJvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+Conduction+in+Polymer-Based+Solid+Electrolytes&rft.jtitle=Advanced+science&rft.au=Li%2C+Zhuo&rft.au=Fu%2C+Jialong&rft.au=Zhou%2C+Xiaoyan&rft.au=Gui%2C+Siwei&rft.date=2023-04-01&rft.eissn=2198-3844&rft.volume=10&rft.issue=10&rft.spage=e2201718&rft_id=info:doi/10.1002%2Fadvs.202201718&rft_id=info%3Apmid%2F36698303&rft.externalDocID=36698303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon