Ionic Conduction in Polymer‐Based Solid Electrolytes
Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation batteries. Key issues related to polymer‐based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, a...
Uložené v:
| Vydané v: | Advanced science Ročník 10; číslo 10; s. e2201718 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
John Wiley & Sons, Inc
01.04.2023
John Wiley and Sons Inc Wiley |
| Predmet: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation batteries. Key issues related to polymer‐based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer‐based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li‐ion conductivity of polymer‐based solid electrolytes.
This article reviews the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. |
|---|---|
| AbstractList | Good safety, high interfacial compatibility, low cost, and facile processability make polymer-based solid electrolytes promising materials for next-generation batteries. Key issues related to polymer-based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer-based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer-based solid electrolytes, including solvent-free polymer electrolytes, composite polymer electrolytes, and quasi-solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion-pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li-ion conductivity of polymer-based solid electrolytes.Good safety, high interfacial compatibility, low cost, and facile processability make polymer-based solid electrolytes promising materials for next-generation batteries. Key issues related to polymer-based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer-based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer-based solid electrolytes, including solvent-free polymer electrolytes, composite polymer electrolytes, and quasi-solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion-pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li-ion conductivity of polymer-based solid electrolytes. Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation batteries. Key issues related to polymer‐based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer‐based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li‐ion conductivity of polymer‐based solid electrolytes. This article reviews the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. Good safety, high interfacial compatibility, low cost, and facile processability make polymer-based solid electrolytes promising materials for next-generation batteries. Key issues related to polymer-based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer-based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer-based solid electrolytes, including solvent-free polymer electrolytes, composite polymer electrolytes, and quasi-solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion-pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li-ion conductivity of polymer-based solid electrolytes. Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation batteries. Key issues related to polymer‐based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer‐based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li‐ion conductivity of polymer‐based solid electrolytes. This article reviews the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. Abstract Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation batteries. Key issues related to polymer‐based solid electrolytes, such as synthesis methods, ionic conductivity, and battery architecture, are investigated in past decades. However, mechanistic understanding of the ionic conduction is still lacking, which impedes the design and optimization of polymer‐based solid electrolytes. In this review, the ionic conduction mechanisms and optimization strategies of polymer‐based solid electrolytes, including solvent‐free polymer electrolytes, composite polymer electrolytes, and quasi‐solid/gel polymer electrolytes, are summarized and evaluated. Challenges and strategies for enhancing the ionic conductivity are elaborated, while the ion‐pair dissociation, ion mobility, polymer relaxation, and interactions at polymer/filler interfaces are highlighted. This comprehensive review is especially pertinent for the targeted enhancement of the Li‐ion conductivity of polymer‐based solid electrolytes. |
| Author | Li, Zhuo Li, Hong Zhou, Xiaoyan Gui, Siwei Guo, Xin Wei, Lu Fu, Jialong Yang, Hui |
| AuthorAffiliation | 2 Department of Mechanics School of Aerospace Engineering Huazhong University of Science and Technology Wuhan 430074 P.R. China 3 Institute of Physics Chinese Academy of Sciences Beijing 100190 P.R. China 1 School of Materials Science and Engineering State Key Laboratory of Material Processing and Die & Mould Technology Huazhong University of Science and Technology Wuhan 430074 P.R. China |
| AuthorAffiliation_xml | – name: 1 School of Materials Science and Engineering State Key Laboratory of Material Processing and Die & Mould Technology Huazhong University of Science and Technology Wuhan 430074 P.R. China – name: 2 Department of Mechanics School of Aerospace Engineering Huazhong University of Science and Technology Wuhan 430074 P.R. China – name: 3 Institute of Physics Chinese Academy of Sciences Beijing 100190 P.R. China |
| Author_xml | – sequence: 1 givenname: Zhuo surname: Li fullname: Li, Zhuo organization: Huazhong University of Science and Technology – sequence: 2 givenname: Jialong surname: Fu fullname: Fu, Jialong organization: Huazhong University of Science and Technology – sequence: 3 givenname: Xiaoyan surname: Zhou fullname: Zhou, Xiaoyan organization: Huazhong University of Science and Technology – sequence: 4 givenname: Siwei surname: Gui fullname: Gui, Siwei organization: Huazhong University of Science and Technology – sequence: 5 givenname: Lu surname: Wei fullname: Wei, Lu organization: Huazhong University of Science and Technology – sequence: 6 givenname: Hui surname: Yang fullname: Yang, Hui organization: Huazhong University of Science and Technology – sequence: 7 givenname: Hong surname: Li fullname: Li, Hong organization: Chinese Academy of Sciences – sequence: 8 givenname: Xin orcidid: 0000-0003-1546-8119 surname: Guo fullname: Guo, Xin email: xguo@hust.edu.cn organization: Huazhong University of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36698303$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1vEzEQhi1URD_olSOKxIVLgr_XPqE2FIhUCaQCV8vrHRdHG7vYu0W58RP6G_klOCSt2kqIky3PM--8nplDtBdTBIReEDwjGNM3trsuM4opxaQh6gk6oESrKVOc792776PjUpYYYyJYw4l6hvaZlFoxzA6QXKQY3GSeYje6IaQ4CXHyOfXrFeTfv25ObYFucpH60E3OenBDrqEBynP01Nu-wPHuPEJf3599mX-cnn_6sJifnE-d0FJPnfSukbRRncXCO9VxT5VXxGJPHWNCA1RLnkgrAFrpQUDLhVfUS0Jah9kRWmx1u2SX5iqHlc1rk2wwfx9SvjQ2D8H1YIhTTtq2bTgojhmzTtYfuo5wrbAlqmq93Wpdje0KOgdxyLZ_IPowEsN3c5muTe11w7HiVeH1TiGnHyOUwaxCcdD3NkIai6GN1FpzrUVFXz1Cl2nMsfaqUlpQwuo0KvXyvqU7L7fzqQDfAi6nUjJ448JgN3OqDkNfrW3cUbPZBHO3CTVt9ijtVvmfCbs6P0MP6__Q5uTdtwtBiGZ_AI3yxSY |
| CitedBy_id | crossref_primary_10_1002_adfm_202512955 crossref_primary_10_1016_j_fub_2025_100053 crossref_primary_10_3390_polym16233280 crossref_primary_10_1002_adfm_202425506 crossref_primary_10_1002_aenm_202402795 crossref_primary_10_1002_anie_202504767 crossref_primary_10_1016_j_cej_2024_151780 crossref_primary_10_1007_s11237_025_09835_x crossref_primary_10_1002_adma_202419782 crossref_primary_10_1002_adfm_202500727 crossref_primary_10_3390_polym16192772 crossref_primary_10_1002_cssc_202400883 crossref_primary_10_1016_j_inoche_2024_113425 crossref_primary_10_1002_aenm_202502284 crossref_primary_10_1039_D5TA00476D crossref_primary_10_1002_adma_202511556 crossref_primary_10_1016_j_jpowsour_2025_237409 crossref_primary_10_1002_aenm_202400808 crossref_primary_10_1002_smll_202504201 crossref_primary_10_1007_s40820_024_01632_w crossref_primary_10_1002_adfm_202504782 crossref_primary_10_1016_j_ensm_2025_104317 crossref_primary_10_1016_j_cej_2025_166779 crossref_primary_10_1002_adfm_202415495 crossref_primary_10_1039_D3PY01265D crossref_primary_10_1002_ange_202408246 crossref_primary_10_1039_D4EE03192J crossref_primary_10_1002_aenm_202401330 crossref_primary_10_1021_acsaem_4c03359 crossref_primary_10_1002_advs_202308318 crossref_primary_10_1002_adfm_202409134 crossref_primary_10_1021_jacs_3c12094 crossref_primary_10_1039_D3QM00736G crossref_primary_10_1007_s42765_024_00508_3 crossref_primary_10_1039_D5RA02218E crossref_primary_10_1002_adfm_202421160 crossref_primary_10_1002_smll_202505097 crossref_primary_10_1002_anie_202418783 crossref_primary_10_1002_ange_202420698 crossref_primary_10_1002_aenm_202405284 crossref_primary_10_1007_s00339_024_07342_9 crossref_primary_10_1002_anie_202411437 crossref_primary_10_1021_acs_jchemed_4c00854 crossref_primary_10_3390_polym16223132 crossref_primary_10_1038_s41598_024_73006_6 crossref_primary_10_1039_D5MH00433K crossref_primary_10_1002_adfm_202312358 crossref_primary_10_1002_batt_202500294 crossref_primary_10_1007_s11426_024_2399_2 crossref_primary_10_1002_adfm_202416808 crossref_primary_10_1016_j_jallcom_2025_180825 crossref_primary_10_1016_j_cej_2023_148510 crossref_primary_10_1016_j_cej_2025_166186 crossref_primary_10_1016_j_nanoen_2024_109620 crossref_primary_10_1039_D5TA02887F crossref_primary_10_1007_s10800_024_02142_8 crossref_primary_10_1002_aenm_202502809 crossref_primary_10_1002_app_56780 crossref_primary_10_1002_smll_202500982 crossref_primary_10_1007_s10008_024_05975_7 crossref_primary_10_1016_j_ceramint_2024_04_070 crossref_primary_10_1007_s12598_024_02710_z crossref_primary_10_1002_anie_202318822 crossref_primary_10_1002_smll_202406357 crossref_primary_10_1002_aenm_202406003 crossref_primary_10_1039_D5TA01706H crossref_primary_10_1021_acsaelm_5c00630 crossref_primary_10_1039_D4EE00357H crossref_primary_10_1002_aenm_202304480 crossref_primary_10_1039_D4EE00822G crossref_primary_10_1021_acsapm_5c00218 crossref_primary_10_1002_pc_29445 crossref_primary_10_3389_fbael_2024_1377192 crossref_primary_10_3390_batteries9090465 crossref_primary_10_1007_s40843_024_2915_3 crossref_primary_10_1002_cssc_202500445 crossref_primary_10_3390_polysaccharides6010005 crossref_primary_10_1002_anie_202408246 crossref_primary_10_1021_acsapm_5c02412 crossref_primary_10_1002_anie_202420001 crossref_primary_10_1002_aenm_202405101 crossref_primary_10_1016_j_greenca_2024_06_002 crossref_primary_10_1002_cssc_202300038 crossref_primary_10_1016_j_est_2025_116967 crossref_primary_10_1016_j_cej_2025_160988 crossref_primary_10_1039_D5TA01448D crossref_primary_10_1039_D3NR01306E crossref_primary_10_1039_D5NR00322A crossref_primary_10_1002_aenm_202402986 crossref_primary_10_1007_s40820_025_01700_9 crossref_primary_10_1016_j_enchem_2025_100169 crossref_primary_10_1021_acs_chemrev_5c00245 crossref_primary_10_1002_ange_202411437 crossref_primary_10_1002_ece2_74 crossref_primary_10_1093_nsr_nwae207 crossref_primary_10_1016_j_jcis_2025_138708 crossref_primary_10_1007_s10854_024_14066_2 crossref_primary_10_1039_D5EE03838C crossref_primary_10_1007_s11581_025_06495_8 crossref_primary_10_3390_polym16030368 crossref_primary_10_1002_ange_202504767 crossref_primary_10_1016_j_cej_2025_166854 crossref_primary_10_1002_anie_202421101 crossref_primary_10_1016_j_molliq_2025_127355 crossref_primary_10_1016_j_etran_2023_100310 crossref_primary_10_1021_acsami_5c03252 crossref_primary_10_1002_smll_202406251 crossref_primary_10_1016_j_ijbiomac_2025_143745 crossref_primary_10_3390_batteries10090316 crossref_primary_10_1557_s43577_023_00607_3 crossref_primary_10_1021_acsaem_4c02993 crossref_primary_10_3390_polym16121707 crossref_primary_10_1016_j_cej_2023_146414 crossref_primary_10_1039_D5SE00187K crossref_primary_10_1149_1945_7111_ad4a0e crossref_primary_10_1039_D3EE02705H crossref_primary_10_1002_ange_202421101 crossref_primary_10_1002_pol_20240378 crossref_primary_10_1016_j_joule_2024_01_027 crossref_primary_10_1002_smll_202411626 crossref_primary_10_1002_adfm_202503696 crossref_primary_10_3390_batteries11020042 crossref_primary_10_1002_adfm_202504306 crossref_primary_10_1002_app_57672 crossref_primary_10_1002_adfm_202403487 crossref_primary_10_1002_batt_202300183 crossref_primary_10_1021_acsaem_5c00693 crossref_primary_10_1002_aenm_202402402 crossref_primary_10_1002_ange_202420001 crossref_primary_10_1021_acs_jpclett_5c02283 crossref_primary_10_1016_j_cej_2024_154796 crossref_primary_10_55959_MSU0579_9384_2_2024_65_6_513_525 crossref_primary_10_26599_NR_2025_94907230 crossref_primary_10_6023_A23070335 crossref_primary_10_1002_batt_202500006 crossref_primary_10_1002_smll_202303344 crossref_primary_10_1039_D5TA04186D crossref_primary_10_1063_5_0201613 crossref_primary_10_1002_mame_202500214 crossref_primary_10_1007_s11814_025_00532_y crossref_primary_10_1002_ange_202423227 crossref_primary_10_1016_j_nanoen_2024_109361 crossref_primary_10_1039_D3QM01111A crossref_primary_10_1021_acs_macromol_5c00806 crossref_primary_10_1002_celc_202400323 crossref_primary_10_1016_j_cej_2024_150298 crossref_primary_10_1016_j_elecom_2025_108046 crossref_primary_10_3390_gels9070585 crossref_primary_10_1002_ange_202318822 crossref_primary_10_1002_smtd_202401912 crossref_primary_10_1016_j_cej_2024_157379 crossref_primary_10_1016_j_ssi_2023_116261 crossref_primary_10_1002_aenm_202400766 crossref_primary_10_1080_1023666X_2024_2362683 crossref_primary_10_1002_adfm_202502741 crossref_primary_10_3390_ma17174344 crossref_primary_10_1016_j_jallcom_2023_172352 crossref_primary_10_1016_j_cej_2025_166014 crossref_primary_10_1002_smll_202308058 crossref_primary_10_1002_anie_202420698 crossref_primary_10_1002_ange_202400477 crossref_primary_10_1016_j_jcis_2023_12_003 crossref_primary_10_1002_anie_202403661 crossref_primary_10_1007_s10008_024_05993_5 crossref_primary_10_1016_j_memsci_2025_124716 crossref_primary_10_1016_j_cej_2024_153448 crossref_primary_10_1016_j_mattod_2024_05_001 crossref_primary_10_1126_sciadv_adu6086 crossref_primary_10_1007_s42247_024_00905_9 crossref_primary_10_1002_smll_202508761 crossref_primary_10_1021_acsami_5c01672 crossref_primary_10_1016_j_jallcom_2025_181405 crossref_primary_10_1021_acsnano_5c04885 crossref_primary_10_1039_D5EB00010F crossref_primary_10_1080_1023666X_2024_2446596 crossref_primary_10_1002_aenm_202500913 crossref_primary_10_1080_14686996_2025_2466417 crossref_primary_10_2478_aei_2024_0014 crossref_primary_10_1021_acssuschemeng_5c03777 crossref_primary_10_1002_smm2_70036 crossref_primary_10_1039_D3QM00840A crossref_primary_10_3390_nano14050433 crossref_primary_10_1002_smll_202504491 crossref_primary_10_1039_D5CP01386K crossref_primary_10_1002_aelm_202400937 crossref_primary_10_1002_ange_202418783 crossref_primary_10_1002_cssc_202501288 crossref_primary_10_1002_wene_544 crossref_primary_10_1021_polymscitech_5c00003 crossref_primary_10_1021_acsami_4c23123 crossref_primary_10_1039_D4SM01297F crossref_primary_10_1002_advs_202510481 crossref_primary_10_1016_j_ceramint_2025_02_020 crossref_primary_10_1002_adfm_202415303 crossref_primary_10_1016_j_jelechem_2024_118135 crossref_primary_10_1002_app_56826 crossref_primary_10_1007_s10965_025_04498_7 crossref_primary_10_1002_smll_202305326 crossref_primary_10_1021_acs_langmuir_5c01650 crossref_primary_10_1016_j_ces_2025_122353 crossref_primary_10_1002_adma_202507809 crossref_primary_10_1039_D5TA01355K crossref_primary_10_1002_adma_202504419 crossref_primary_10_1039_D3QM00784G crossref_primary_10_1002_adfm_202409618 crossref_primary_10_1007_s11581_024_05876_9 crossref_primary_10_1002_cssc_202500044 crossref_primary_10_1016_j_jcis_2024_04_047 crossref_primary_10_3390_polym16233404 crossref_primary_10_1002_chem_202402798 crossref_primary_10_1016_j_pmatsci_2025_101505 crossref_primary_10_1021_acsami_5c05964 crossref_primary_10_1002_anie_202400477 crossref_primary_10_1016_j_est_2024_112110 crossref_primary_10_1016_j_jallcom_2023_173240 crossref_primary_10_1002_cssc_202401139 crossref_primary_10_1002_adma_202307599 crossref_primary_10_1002_cssc_202400963 crossref_primary_10_1002_smll_202504111 crossref_primary_10_1002_adfm_202422162 crossref_primary_10_3103_S0027131424700433 crossref_primary_10_1002_apxr_202400166 crossref_primary_10_1016_j_cej_2023_148452 crossref_primary_10_26599_NR_2025_94907304 crossref_primary_10_1002_aenm_202303206 crossref_primary_10_1360_CSB_2025_0249 crossref_primary_10_1002_ange_202316717 crossref_primary_10_1016_j_memsci_2024_122955 crossref_primary_10_1016_j_est_2024_112368 crossref_primary_10_1002_advs_202306698 crossref_primary_10_1002_ange_202403661 crossref_primary_10_1016_j_est_2024_112363 crossref_primary_10_1039_D3QM00607G crossref_primary_10_1002_adfm_202311633 crossref_primary_10_1002_adfm_202303339 crossref_primary_10_1002_ejic_202500075 crossref_primary_10_1080_17452759_2025_2499480 crossref_primary_10_1007_s11426_025_2593_1 crossref_primary_10_1007_s10800_025_02322_0 crossref_primary_10_1002_adfm_202405951 crossref_primary_10_1002_anie_202316717 crossref_primary_10_1007_s11426_024_2491_9 crossref_primary_10_1088_2634_4386_acf1c6 crossref_primary_10_1039_D5PY00414D crossref_primary_10_1021_acsapm_5c00097 crossref_primary_10_1002_smll_202311811 crossref_primary_10_3390_polym15193907 crossref_primary_10_1021_acs_jpcc_5c03974 crossref_primary_10_1039_D4PY00322E crossref_primary_10_3390_batteries11040153 crossref_primary_10_1016_j_cej_2025_164014 crossref_primary_10_1149_1945_7111_ade634 crossref_primary_10_1002_advs_202505530 crossref_primary_10_1002_anie_202423227 crossref_primary_10_1016_j_nxener_2025_100283 crossref_primary_10_1039_D4NJ04857A crossref_primary_10_1007_s42765_024_00402_y crossref_primary_10_1002_adsu_202400532 crossref_primary_10_1002_advs_202502824 crossref_primary_10_1039_D4QM00428K crossref_primary_10_1039_D5SC01107H crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1002_adfm_202413205 crossref_primary_10_1007_s11814_024_00122_4 crossref_primary_10_1002_adfm_202315777 crossref_primary_10_3390_nano13233027 crossref_primary_10_1016_j_colsurfa_2024_133602 crossref_primary_10_1002_adfm_202415507 crossref_primary_10_1002_est2_506 crossref_primary_10_1021_acs_energyfuels_4c03193 crossref_primary_10_1039_D5TC01125F |
| Cites_doi | 10.1002/aenm.201903939 10.1021/acs.nanolett.8b01111 10.1016/j.ensm.2019.03.004 10.1007/s11426-020-9936-6 10.1016/j.jechem.2020.03.017 10.1021/acsami.9b07830 10.1002/smll.202102039 10.1149/1.2403248 10.1038/natrevmats.2016.103 10.1016/S0013-4686(00)00779-9 10.1149/1.3447750 10.1038/nenergy.2017.35 10.1039/c0cs00081g 10.1016/j.eurpolymj.2005.09.017 10.1016/j.coche.2014.09.002 10.1016/j.electacta.2015.04.039 10.1016/j.joule.2018.03.008 10.1002/adma.201806082 10.1038/s41578-019-0165-5 10.1002/adma.202200945 10.1021/acs.chemrev.9b00427 10.1039/C5TA03471J 10.1039/D2EE01053D 10.1002/anie.201710841 10.1021/cr00083a006 10.1016/j.ensm.2022.06.040 10.1016/S0378-7753(03)00263-5 10.1016/j.nanoen.2019.03.051 10.1021/acs.nanolett.5b00600 10.1021/ma3008509 10.1557/mrs2000.16 10.1016/j.jfluchem.2011.06.041 10.1021/acsenergylett.9b00724 10.1016/j.chempr.2019.05.009 10.1103/PhysRevLett.98.227802 10.1016/j.nanoen.2016.11.045 10.1016/0167-2738(96)00042-2 10.1002/advs.202003675 10.1021/acsaem.8b02008 10.1149/2.0161514jes 10.1016/j.progpolymsci.2021.101453 10.1002/adma.201902029 10.1038/nenergy.2016.42 10.1021/jacs.6b05341 10.1038/nenergy.2016.141 10.1021/jacs.7b06364 10.1016/j.ensm.2018.03.016 10.1038/nmat1513 10.1038/526S96a 10.1002/adfm.200500538 10.1016/j.nanoen.2017.10.021 10.1016/j.ensm.2020.10.018 10.1021/acsami.7b17301 10.1039/D1TA04631D 10.1021/ma900451e 10.1016/S0167-2738(02)00582-9 10.1073/pnas.1600422113 10.1039/C6MH00218H 10.1111/j.1151-2916.1990.tb07576.x 10.1016/S0013-4686(01)00458-3 10.1007/s12274-017-1763-4 10.1021/acsnano.6b06797 10.1021/acs.nanolett.8b01421 10.1016/S0167-577X(00)00322-0 10.1002/polb.23404 10.1039/C9TA09969G 10.1149/1.1615352 10.1016/S1359-0286(99)00052-2 10.1002/aenm.201501082 10.1016/j.mattod.2021.08.005 10.1557/PROC-135-351 10.1038/nmat3602 10.1039/C8TA10124H 10.1021/acsami.7b03806 10.1016/j.chempr.2018.11.013 10.1126/science.1212741 10.1016/j.jsamd.2018.01.002 10.1016/j.chempr.2018.12.002 10.1016/j.jpowsour.2015.04.044 10.1021/ma052277v 10.1021/ma502578s 10.1002/adma.201807789 10.1002/polb.1994.090321309 10.1002/bbpc.19920960202 10.1038/s41565-019-0604-x 10.1016/0167-2738(83)90068-1 10.1002/adma.201905219 10.1016/S0167-2738(00)00329-5 10.1021/cr030203g 10.1016/j.jpowsour.2015.09.111 10.1021/acsaem.8b01850 10.1038/nature03190 10.1038/35104644 10.1016/j.electacta.2015.01.167 10.1016/j.ensm.2020.11.030 10.1016/j.ensm.2017.06.017 10.1016/0167-2738(93)90270-D 10.1002/adfm.200601070 10.1021/ma2001096 10.1016/j.memsci.2019.03.048 10.1038/19730 10.1039/D0CS00305K 10.1295/polymj.15.175 10.1007/s10800-006-9190-3 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I 10.1002/aenm.201804004 10.1016/j.mattod.2018.01.001 10.1002/advs.201800559 10.1021/acsami.8b17279 10.1021/ja029326t 10.1016/j.nanoen.2020.104786 10.1002/advs.201600377 10.1039/C6CS00491A 10.1016/j.jpowsour.2010.01.076 10.1016/j.nanoen.2017.12.037 10.1016/0167-2738(88)90314-1 10.1021/jp972727o 10.1016/j.nanoen.2016.09.002 10.1038/srep06272 10.1016/0167-2738(83)90083-8 10.1021/acs.nanolett.5b04117 10.1063/1.3622671 10.1002/advs.202003370 10.1039/C6TA02621D 10.1073/pnas.1708489114 10.1038/451652a 10.1039/ft9938903187 10.1002/anie.201914478 10.1021/acs.nanolett.8b00659 10.1016/0022-3697(85)90172-6 10.1149/1.1390455 10.1002/aenm.201702184 10.1021/acs.jpcc.6b11136 10.1021/acs.chemrev.5b00563 10.1063/1.1749319 10.1016/j.nanoen.2017.01.028 10.1038/s41565-019-0465-3 10.1002/adma.201701169 10.1016/j.jpowsour.2014.10.078 10.1016/j.electacta.2016.06.025 10.1002/anie.202107648 10.1002/anie.201607539 10.1038/28818 10.1016/j.ensm.2020.04.015 10.1002/adfm.202007598 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1002/advs.202201718 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_1c8c6abb74e84033ac6303cd14980a18 PMC10074084 36698303 10_1002_advs_202201718 ADVS5119 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: Grant#12172143 – fundername: China Postdoctoral Science Foundation funderid: 2020M682403 – fundername: National Natural Science Foundation of China and the Israeli Science Foundation funderid: 51961145302 – fundername: China Postdoctoral Science Foundation grantid: 2020M682403 – fundername: National Natural Science Foundation of China grantid: Grant#12172143 – fundername: National Natural Science Foundation of China and the Israeli Science Foundation grantid: 51961145302 – fundername: ; grantid: 2020M682403 – fundername: ; grantid: Grant#12172143 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION EJD IGS PHGZM PHGZT NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c5969-c6fc76278da05fc8d4f28f81a0f2c3359ee374f16a5eeb6fe5eb45f82f611bc03 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 455 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920586200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Tue Oct 14 19:00:29 EDT 2025 Tue Nov 04 02:07:05 EST 2025 Thu Sep 04 16:48:42 EDT 2025 Sat Jul 26 02:36:55 EDT 2025 Wed Feb 19 02:04:32 EST 2025 Tue Nov 18 21:49:00 EST 2025 Sat Nov 29 07:21:50 EST 2025 Wed Jan 22 16:22:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | composite polymer electrolyte interfacial interaction solid-state batteries ionic conduction polymer electrolyte |
| Language | English |
| License | Attribution 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5969-c6fc76278da05fc8d4f28f81a0f2c3359ee374f16a5eeb6fe5eb45f82f611bc03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-1546-8119 |
| OpenAccessLink | https://www.proquest.com/docview/2795213153?pq-origsite=%requestingapplication% |
| PMID | 36698303 |
| PQID | 2795213153 |
| PQPubID | 4365299 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1c8c6abb74e84033ac6303cd14980a18 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10074084 proquest_miscellaneous_2769994995 proquest_journals_2795213153 pubmed_primary_36698303 crossref_citationtrail_10_1002_advs_202201718 crossref_primary_10_1002_advs_202201718 wiley_primary_10_1002_advs_202201718_ADVS5119 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 1986; 72 2000; 135 2019; 11 1988; 28–30 2006; 39 2006; 36 2019; 14 2001; 48 2016; 301 1983; 15 2001; 46 2003; 156 1983; 11 2011; 110 2018; 46 2018; 5 2003 2005; 125 433 2022; 34 1988; 88 1933; 1 2016 2018 2017; 113 21 2 2011 2001 2008; 334 414 451 2019; 7 1986; 90 2019; 9 2019; 4 1998 1999; 394 4 2016 2016 2017 2020 2015; 1 1 2 15 526 2019; 5 2019; 31 2019; 2 1973; 120 2016 2018; 210 18 2016; 10 1983 1998; 9–10 10 2007; 98 2016; 16 2021; 51 2015 2016; 274 28 2019; 582 2011; 132 2018; 18 2006; 42 2020 2020 2016; 32 120 4 2020; 31 2007 2012; 17 45 2005; 4 1996; 85 2022; 15 1998 2001; 102 46 2021; 60 2018; 10 2020; 29 2017; 41 2009 2019; 42 19 2017; 4 2015 2021; 287 64 1993; 60 2016 2018; 3 3 2017; 46 2021; 122 2017; 9 2019 2018; 60 15 1992; 96 2021; 36 2020; 8 2020; 7 2015; 48 2017; 31 2020; 5 2010 2015 2017 2017; 195 3 2 33 2013; 12 2020; 50 2003; 6 2010; 157 1988; 135 2020; 49 2016; 116 2011; 25 2017; 121 2014; 52 1994; 32 2015; 162 1990; 73 2021; 9 2021; 8 2015; 15 1993; 89 2015; 5 2004; 104 2017 2018 2019 2019; 29 2 5 5 2000; 25 2015; 169 2017 2020; 139 59 2022; 51 2006; 16 2011; 40 2015; 7 2019 2017; 11 114 1985; 46 2016; 55 2014 2020; 4 10 2020; 73 2001; 4 2003; 119–121 2015; 158 2017; 10 2021; 17 2021 2018; 34 8 2011; 44 2016; 138 1999; 398 2018; 57 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_1_3 Angell C. A. (e_1_2_8_49_1) 1986; 72 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_64_2 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_113_2 e_1_2_8_19_1 e_1_2_8_34_2 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_15_2 e_1_2_8_91_1 Maier J. (e_1_2_8_101_1) 1986; 90 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_105_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_105_3 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_2_3 e_1_2_8_110_1 e_1_2_8_6_2 e_1_2_8_2_5 e_1_2_8_6_1 e_1_2_8_6_4 e_1_2_8_6_3 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_2 e_1_2_8_86_2 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_94_2 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_2 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_3_3 e_1_2_8_111_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_66_2 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_78_2 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_4_3 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_39_1 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_104_2 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_92_2 e_1_2_8_104_1 |
| References_xml | – volume: 119–121 start-page: 415 year: 2003 publication-title: J. Power Sources – volume: 158 start-page: 152 year: 2015 publication-title: Electrochim. Acta – volume: 34 8 start-page: 515 year: 2021 2018 publication-title: Energy Storage Mater. Adv. Energy Mater. – volume: 2 start-page: 1734 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 5 start-page: 2326 year: 2019 publication-title: Chem – volume: 7 start-page: 2653 year: 2019 publication-title: J. Mater. Chem. A – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 18 start-page: 6113 year: 2018 publication-title: Nano Lett. – volume: 116 start-page: 140 year: 2016 publication-title: Chem. Rev. – volume: 110 year: 2011 publication-title: J. Appl. Phys. – volume: 11 114 year: 2019 2017 publication-title: ACS Appl. Mater. Interfaces Proc. Natl. Acad. Sci. U. S. A. – volume: 51 start-page: 449 year: 2021 publication-title: Mater. Today – volume: 169 start-page: 334 year: 2015 publication-title: Electrochim. Acta – volume: 102 46 start-page: 352 1737 year: 1998 2001 publication-title: J. Phys. Chem. B Electrochim. Acta – volume: 1 start-page: 466 year: 1933 publication-title: J. Chem. Phys. – volume: 3 3 start-page: 487 1 year: 2016 2018 publication-title: Mater. Horiz. J. Sci.: Adv. Mater. Devices – volume: 18 start-page: 3104 year: 2018 publication-title: Nano Lett. – volume: 12 start-page: 452 year: 2013 publication-title: Nat. Mater. – volume: 274 28 start-page: 458 447 year: 2015 2016 publication-title: J. Power Sources Nano Energy – volume: 195 3 2 33 start-page: 4554 363 year: 2010 2015 2017 2017 publication-title: J. Power Sources J. Mater. Chem. A Nat. Rev. Mater. Nano Energy – volume: 138 start-page: 9385 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 60 15 start-page: 205 46 year: 2019 2018 publication-title: Nano Energy Energy Storage Mater. – volume: 36 start-page: 1091 year: 2006 publication-title: J. Appl. Electrochem. – volume: 57 start-page: 2096 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 89 start-page: 3187 year: 1993 publication-title: J. Chem. Soc., Faraday Trans. – volume: 162 year: 2015 publication-title: J. Electrochem. Soc. – volume: 73 start-page: 2187 year: 1990 publication-title: J. Am. Ceram. Soc. – volume: 121 start-page: 2563 year: 2017 publication-title: J. Phys. Chem. C – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 85 start-page: 67 year: 1996 publication-title: Solid State Ionics – volume: 16 start-page: 525 year: 2006 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 459 year: 2016 publication-title: Nano Lett. – volume: 113 21 2 start-page: 7094 594 year: 2016 2018 2017 publication-title: Proc. Natl. Acad. Sci. U. S. A. Mater. Today Nat. Energy – volume: 46 start-page: 797 year: 2017 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 4139 year: 2017 publication-title: Nano Res. – volume: 11 start-page: 91 year: 1983 publication-title: Solid State Ionics – volume: 25 start-page: 31 year: 2011 publication-title: MRS Bull. – volume: 156 start-page: 141 year: 2003 publication-title: Solid State Ionics – volume: 96 start-page: 111 year: 1992 publication-title: Phys. Chem. – volume: 334 414 451 start-page: 928 359 652 year: 2011 2001 2008 publication-title: Science Nature Nature – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 17 year: 2021 publication-title: Small – volume: 157 start-page: A972 year: 2010 publication-title: J. Electrochem. Soc. – volume: 44 start-page: 4410 year: 2011 publication-title: Macromolecules – volume: 49 start-page: 8790 year: 2020 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 784 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 2221 year: 1994 publication-title: J. Polym. Sci.: Polym. Phys. – volume: 394 4 start-page: 456 479 year: 1998 1999 publication-title: Nature Curr. Opin. Solid State Mater. Sci. – volume: 46 start-page: 176 year: 2018 publication-title: Nano Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 40 start-page: 2525 year: 2011 publication-title: Chem. Soc. Rev. – volume: 104 start-page: 4303 year: 2004 publication-title: Chem. Rev. – volume: 2 start-page: 1452 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 51 start-page: 443 year: 2022 publication-title: Energy Storage Mater. – volume: 1 1 2 15 526 start-page: 94 S96 year: 2016 2016 2017 2020 2015 publication-title: Nat. Energy Nat. Energy Nat. Rev. Mater. Nat. Nanotechnol. Nature – volume: 125 433 start-page: 4619 47 year: 2003 2005 publication-title: J. Am. Chem. Soc. Nature – volume: 4 start-page: A148 year: 2001 publication-title: Electrochem. Solid‐State Lett. – volume: 48 start-page: 331 year: 2001 publication-title: Mater. Lett. – volume: 135 start-page: 351 year: 1988 publication-title: MRS Online Proc. Libr. – volume: 36 start-page: 10 year: 2021 publication-title: Energy Storage Mater. – volume: 39 start-page: 1620 year: 2006 publication-title: Macromolecules – volume: 132 start-page: 1213 year: 2011 publication-title: J. Fluorine Chem. – volume: 4 10 start-page: 6272 year: 2014 2020 publication-title: Sci. Rep. Adv. Energy Mater. – volume: 46 start-page: 309 year: 1985 publication-title: J. Phys. Chem. Solids – volume: 5 start-page: 229 year: 2020 publication-title: Nat. Rev. Mater. – volume: 29 start-page: 149 year: 2020 publication-title: Energy Storage Mater. – volume: 210 18 start-page: 905 3829 year: 2016 2018 publication-title: Electrochim. Acta Nano Lett. – volume: 48 start-page: 2773 year: 2015 publication-title: Macromolecules – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 135 start-page: 47 year: 2000 publication-title: Solid State Ionics – volume: 4 start-page: 1265 year: 2019 publication-title: ACS Energy Lett. – volume: 15 start-page: 175 year: 1983 publication-title: Polym. J. – volume: 10 year: 2016 publication-title: ACS Nano – volume: 582 start-page: 37 year: 2019 publication-title: J. Membr. Sci. – volume: 14 start-page: 705 year: 2019 publication-title: Nat. Nanotechnol. – volume: 46 start-page: 2457 year: 2001 publication-title: Electrochim. Acta – volume: 10 start-page: 4113 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 85 year: 2018 publication-title: Energy Storage Mater. – volume: 28–30 start-page: 975 year: 1988 publication-title: Solid State Ionics – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 29 2 5 5 start-page: 833 74 753 year: 2017 2018 2019 2019 publication-title: Adv. Mater. Joule Chem Chem – volume: 32 120 4 start-page: 4257 year: 2020 2020 2016 publication-title: Adv. Mater. Chem. Rev. J. Mater. Chem. A – volume: 15 start-page: 2740 year: 2015 publication-title: Nano Lett. – volume: 139 59 start-page: 4131 year: 2017 2020 publication-title: J. Am. Chem. Soc. Angew.Chem., Int.Ed. – volume: 42 start-page: 21 year: 2006 publication-title: Eur. Polym. J. – volume: 52 start-page: 1 year: 2014 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 41 start-page: 646 year: 2017 publication-title: Nano Energy – volume: 8 start-page: 3892 year: 2020 publication-title: J. Mater. Chem. A – volume: 17 45 start-page: 2800 6068 year: 2007 2012 publication-title: Adv. Funct. Mater. Macromolecules – volume: 4 start-page: 806 year: 2005 publication-title: Nat. Mater. – volume: 90 start-page: 26 year: 1986 publication-title: Phys. Chem. – volume: 6 start-page: E40 year: 2003 publication-title: Electrochem. Solid‐State Lett. – volume: 287 64 start-page: 164 673 year: 2015 2021 publication-title: J. Power Sources Sci. China: Chem. – volume: 15 start-page: 3379 year: 2022 publication-title: Energy Environ. Sci. – volume: 301 start-page: 47 year: 2016 publication-title: J. Power Sources – volume: 72 start-page: 18 year: 1986 publication-title: Solid State Ionics – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9–10 10 start-page: 745 439 year: 1983 1998 publication-title: Solid State Ionics Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 73 year: 2020 publication-title: Nano Energy – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 60 start-page: 31 year: 1993 publication-title: Solid State Ionics – volume: 398 start-page: 792 year: 1999 publication-title: Nature – volume: 122 year: 2021 publication-title: Prog. Polym. Sci. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 50 start-page: 154 year: 2020 publication-title: J. Energy Chem. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 42 19 start-page: 4632 401 year: 2009 2019 publication-title: Macromolecules Energy Storage Mater. – volume: 120 start-page: 1289 year: 1973 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 113 year: 2015 publication-title: Curr. Opin. Chem. Eng. – volume: 31 start-page: 478 year: 2017 publication-title: Nano Energy – volume: 25 start-page: 31 year: 2000 publication-title: MRS Bull. – volume: 88 start-page: 109 year: 1988 publication-title: Chem. Rev. – ident: e_1_2_8_14_2 doi: 10.1002/aenm.201903939 – ident: e_1_2_8_16_2 doi: 10.1021/acs.nanolett.8b01111 – ident: e_1_2_8_66_2 doi: 10.1016/j.ensm.2019.03.004 – ident: e_1_2_8_104_2 doi: 10.1007/s11426-020-9936-6 – ident: e_1_2_8_112_1 doi: 10.1016/j.jechem.2020.03.017 – ident: e_1_2_8_78_1 doi: 10.1021/acsami.9b07830 – ident: e_1_2_8_96_1 doi: 10.1002/smll.202102039 – ident: e_1_2_8_98_1 doi: 10.1149/1.2403248 – ident: e_1_2_8_2_3 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_8_92_2 doi: 10.1016/S0013-4686(00)00779-9 – ident: e_1_2_8_25_1 doi: 10.1149/1.3447750 – ident: e_1_2_8_105_3 doi: 10.1038/nenergy.2017.35 – ident: e_1_2_8_57_1 doi: 10.1039/c0cs00081g – ident: e_1_2_8_40_1 doi: 10.1016/j.eurpolymj.2005.09.017 – ident: e_1_2_8_38_1 doi: 10.1016/j.coche.2014.09.002 – ident: e_1_2_8_73_1 doi: 10.1016/j.electacta.2015.04.039 – ident: e_1_2_8_3_2 doi: 10.1016/j.joule.2018.03.008 – ident: e_1_2_8_23_1 doi: 10.1002/adma.201806082 – ident: e_1_2_8_5_1 doi: 10.1038/s41578-019-0165-5 – ident: e_1_2_8_114_1 doi: 10.1002/adma.202200945 – ident: e_1_2_8_4_2 doi: 10.1021/acs.chemrev.9b00427 – ident: e_1_2_8_6_2 doi: 10.1039/C5TA03471J – ident: e_1_2_8_118_1 doi: 10.1039/D2EE01053D – ident: e_1_2_8_19_1 doi: 10.1002/anie.201710841 – ident: e_1_2_8_50_1 doi: 10.1021/cr00083a006 – ident: e_1_2_8_119_1 doi: 10.1016/j.ensm.2022.06.040 – ident: e_1_2_8_33_1 doi: 10.1016/S0378-7753(03)00263-5 – ident: e_1_2_8_15_1 doi: 10.1016/j.nanoen.2019.03.051 – ident: e_1_2_8_79_1 doi: 10.1021/acs.nanolett.5b00600 – ident: e_1_2_8_64_2 doi: 10.1021/ma3008509 – ident: e_1_2_8_48_1 doi: 10.1557/mrs2000.16 – ident: e_1_2_8_61_1 doi: 10.1016/j.jfluchem.2011.06.041 – ident: e_1_2_8_115_1 doi: 10.1021/acsenergylett.9b00724 – ident: e_1_2_8_7_1 doi: 10.1016/j.chempr.2019.05.009 – ident: e_1_2_8_41_1 doi: 10.1103/PhysRevLett.98.227802 – ident: e_1_2_8_76_1 doi: 10.1016/j.nanoen.2016.11.045 – ident: e_1_2_8_91_1 doi: 10.1016/0167-2738(96)00042-2 – ident: e_1_2_8_6_3 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_8_37_1 doi: 10.1002/advs.202003675 – ident: e_1_2_8_110_1 doi: 10.1021/acsaem.8b02008 – ident: e_1_2_8_43_1 doi: 10.1149/2.0161514jes – ident: e_1_2_8_67_1 doi: 10.1016/j.progpolymsci.2021.101453 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201902029 – ident: e_1_2_8_2_1 doi: 10.1038/nenergy.2016.42 – ident: e_1_2_8_68_1 doi: 10.1021/jacs.6b05341 – ident: e_1_2_8_2_2 doi: 10.1038/nenergy.2016.141 – ident: e_1_2_8_94_1 doi: 10.1021/jacs.7b06364 – ident: e_1_2_8_15_2 doi: 10.1016/j.ensm.2018.03.016 – ident: e_1_2_8_103_1 doi: 10.1038/nmat1513 – ident: e_1_2_8_2_5 doi: 10.1038/526S96a – ident: e_1_2_8_102_1 doi: 10.1002/adfm.200500538 – ident: e_1_2_8_20_1 doi: 10.1016/j.nanoen.2017.10.021 – ident: e_1_2_8_113_1 doi: 10.1016/j.ensm.2020.10.018 – ident: e_1_2_8_107_1 doi: 10.1021/acsami.7b17301 – ident: e_1_2_8_90_1 doi: 10.1039/D1TA04631D – ident: e_1_2_8_66_1 doi: 10.1021/ma900451e – ident: e_1_2_8_72_1 doi: 10.1016/S0167-2738(02)00582-9 – ident: e_1_2_8_105_1 doi: 10.1073/pnas.1600422113 – ident: e_1_2_8_58_1 doi: 10.1039/C6MH00218H – ident: e_1_2_8_59_1 doi: 10.1111/j.1151-2916.1990.tb07576.x – ident: e_1_2_8_83_1 doi: 10.1016/S0013-4686(01)00458-3 – ident: e_1_2_8_26_1 doi: 10.1007/s12274-017-1763-4 – ident: e_1_2_8_89_1 doi: 10.1021/acsnano.6b06797 – ident: e_1_2_8_75_1 doi: 10.1021/acs.nanolett.8b01421 – ident: e_1_2_8_39_1 doi: 10.1016/S0167-577X(00)00322-0 – ident: e_1_2_8_42_1 doi: 10.1002/polb.23404 – ident: e_1_2_8_65_1 doi: 10.1039/C9TA09969G – ident: e_1_2_8_87_1 doi: 10.1149/1.1615352 – ident: e_1_2_8_71_2 doi: 10.1016/S1359-0286(99)00052-2 – ident: e_1_2_8_32_1 doi: 10.1002/aenm.201501082 – ident: e_1_2_8_53_1 doi: 10.1016/j.mattod.2021.08.005 – ident: e_1_2_8_63_1 doi: 10.1557/PROC-135-351 – ident: e_1_2_8_70_1 doi: 10.1038/nmat3602 – ident: e_1_2_8_81_1 doi: 10.1039/C8TA10124H – ident: e_1_2_8_93_1 doi: 10.1021/acsami.7b03806 – ident: e_1_2_8_3_4 doi: 10.1016/j.chempr.2018.11.013 – volume: 72 start-page: 18 year: 1986 ident: e_1_2_8_49_1 publication-title: Solid State Ionics – ident: e_1_2_8_1_1 doi: 10.1126/science.1212741 – ident: e_1_2_8_58_2 doi: 10.1016/j.jsamd.2018.01.002 – ident: e_1_2_8_9_1 doi: 10.1557/mrs2000.16 – ident: e_1_2_8_3_3 doi: 10.1016/j.chempr.2018.12.002 – ident: e_1_2_8_104_1 doi: 10.1016/j.jpowsour.2015.04.044 – ident: e_1_2_8_12_1 doi: 10.1021/ma052277v – ident: e_1_2_8_11_1 doi: 10.1021/ma502578s – ident: e_1_2_8_80_1 doi: 10.1002/adma.201807789 – ident: e_1_2_8_30_1 doi: 10.1002/polb.1994.090321309 – ident: e_1_2_8_100_1 doi: 10.1002/bbpc.19920960202 – ident: e_1_2_8_2_4 doi: 10.1038/s41565-019-0604-x – ident: e_1_2_8_46_1 doi: 10.1016/0167-2738(83)90068-1 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201905219 – ident: e_1_2_8_95_1 doi: 10.1016/S0167-2738(00)00329-5 – ident: e_1_2_8_55_1 doi: 10.1021/cr030203g – ident: e_1_2_8_77_1 doi: 10.1016/j.jpowsour.2015.09.111 – ident: e_1_2_8_106_1 doi: 10.1021/acsaem.8b01850 – ident: e_1_2_8_44_2 doi: 10.1038/nature03190 – ident: e_1_2_8_1_2 doi: 10.1038/35104644 – ident: e_1_2_8_36_1 doi: 10.1016/j.electacta.2015.01.167 – ident: e_1_2_8_47_1 doi: 10.1016/j.ensm.2020.11.030 – ident: e_1_2_8_21_1 doi: 10.1016/j.ensm.2017.06.017 – ident: e_1_2_8_62_1 doi: 10.1016/0167-2738(93)90270-D – ident: e_1_2_8_64_1 doi: 10.1002/adfm.200601070 – ident: e_1_2_8_51_1 doi: 10.1021/ma2001096 – ident: e_1_2_8_27_1 doi: 10.1016/j.memsci.2019.03.048 – ident: e_1_2_8_45_1 doi: 10.1038/19730 – ident: e_1_2_8_84_1 doi: 10.1039/D0CS00305K – ident: e_1_2_8_60_1 doi: 10.1295/polymj.15.175 – ident: e_1_2_8_31_1 doi: 10.1007/s10800-006-9190-3 – ident: e_1_2_8_34_2 doi: 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I – ident: e_1_2_8_109_1 doi: 10.1002/aenm.201804004 – ident: e_1_2_8_105_2 doi: 10.1016/j.mattod.2018.01.001 – ident: e_1_2_8_82_1 doi: 10.1002/advs.201800559 – ident: e_1_2_8_10_1 doi: 10.1021/acsami.8b17279 – ident: e_1_2_8_44_1 doi: 10.1021/ja029326t – ident: e_1_2_8_18_1 doi: 10.1016/j.nanoen.2020.104786 – ident: e_1_2_8_29_1 doi: 10.1002/advs.201600377 – ident: e_1_2_8_52_1 doi: 10.1039/C6CS00491A – ident: e_1_2_8_6_1 doi: 10.1016/j.jpowsour.2010.01.076 – ident: e_1_2_8_108_1 doi: 10.1016/j.nanoen.2017.12.037 – ident: e_1_2_8_24_1 doi: 10.1016/0167-2738(88)90314-1 – ident: e_1_2_8_92_1 doi: 10.1021/jp972727o – ident: e_1_2_8_86_2 doi: 10.1016/j.nanoen.2016.09.002 – ident: e_1_2_8_14_1 doi: 10.1038/srep06272 – ident: e_1_2_8_34_1 doi: 10.1016/0167-2738(83)90083-8 – ident: e_1_2_8_88_1 doi: 10.1021/acs.nanolett.5b04117 – ident: e_1_2_8_74_1 doi: 10.1063/1.3622671 – ident: e_1_2_8_28_1 doi: 10.1002/advs.202003370 – ident: e_1_2_8_4_3 doi: 10.1039/C6TA02621D – ident: e_1_2_8_78_2 doi: 10.1073/pnas.1708489114 – ident: e_1_2_8_1_3 doi: 10.1038/451652a – ident: e_1_2_8_35_1 doi: 10.1039/ft9938903187 – ident: e_1_2_8_94_2 doi: 10.1002/anie.201914478 – ident: e_1_2_8_97_1 doi: 10.1021/acs.nanolett.8b00659 – ident: e_1_2_8_99_1 doi: 10.1016/0022-3697(85)90172-6 – ident: e_1_2_8_111_1 doi: 10.1002/anie.201710841 – ident: e_1_2_8_22_1 doi: 10.1149/1.1390455 – ident: e_1_2_8_113_2 doi: 10.1002/aenm.201702184 – ident: e_1_2_8_85_1 doi: 10.1021/acs.jpcc.6b11136 – ident: e_1_2_8_8_1 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_8_56_1 doi: 10.1063/1.1749319 – ident: e_1_2_8_6_4 doi: 10.1016/j.nanoen.2017.01.028 – ident: e_1_2_8_69_1 doi: 10.1038/s41565-019-0465-3 – ident: e_1_2_8_3_1 doi: 10.1002/adma.201701169 – ident: e_1_2_8_86_1 doi: 10.1016/j.jpowsour.2014.10.078 – ident: e_1_2_8_16_1 doi: 10.1016/j.electacta.2016.06.025 – ident: e_1_2_8_116_1 doi: 10.1002/anie.202107648 – volume: 90 start-page: 26 year: 1986 ident: e_1_2_8_101_1 publication-title: Phys. Chem. – ident: e_1_2_8_13_1 doi: 10.1002/anie.201607539 – ident: e_1_2_8_71_1 doi: 10.1038/28818 – ident: e_1_2_8_117_1 doi: 10.1016/j.ensm.2020.04.015 – ident: e_1_2_8_54_1 doi: 10.1002/adfm.202007598 |
| SSID | ssj0001537418 |
| Score | 2.6769426 |
| SecondaryResourceType | review_article |
| Snippet | Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for next‐generation... Good safety, high interfacial compatibility, low cost, and facile processability make polymer-based solid electrolytes promising materials for next-generation... Abstract Good safety, high interfacial compatibility, low cost, and facile processability make polymer‐based solid electrolytes promising materials for... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2201718 |
| SubjectTerms | composite polymer electrolyte Conductivity Electrolytes Energy interfacial interaction ionic conduction Ions Lithium Oxygen polymer electrolyte Polymers Review Reviews solid‐state batteries |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1K6CGX0rRp6iYtLhTaHExkSZalYxMS2ksIpIXcjKwPurC1y-YDcstP6G_sL-mM5TW7JCWXXu3BEk8z1hs0egPwARMc6So6H6yVL6SPrrCRscJyqwJJ3Enjh2YT9empvrgwZyutvqgmLMkDJ-AOSqedsm1by4C5iBDWKfzrOo_MXjNbDtd8kfWsJFPpfrAgWZalSiPjB9bfkDo35yQQo9d2oUGs_yGGeb9QcpXADjvQyXN4NlLH_HOa8hY8Cd0L2BqD8zL_NCpI778E9ZUEb_OjvvNJHDafdflZP7_9GRZ_7n4f4s7l8_N-PvP5cWqDM79FyrkN30-Ovx19KcYGCYWrjDKFo4s6itfaW0a1WF5GrqMuLYvcCVGZEBCGWCpbhdCqGKrQyipqHlVZto6JV7DR9V14DTmy1-iN8iHqVmoRtbE-hpJFZ6xw0mdQLAFr3KgeTk0s5k3SPeYNAdxMAGfwcbL_lXQz_ml5SPhPVqR3PTxAL2hGL2ge84IM9par14xBiEPUBsmJQF_I4P30GsOHzkRsF_prslFIkTHtqzLYSYs9zUQoZTQOk4Fec4O1qa6_6WY_Boluqj2RTEuEbfCYRzBokIOc04num_8Bxi5s4pdFqi_ag42rxXV4C0_dzdXscvFuCJS_aaAW3g priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5B4cAFWn5TCgoSEnCI6tiOYx_bqhVcqpUKUm-R4x9YaUnQblupNx6BZ-RJOpNk00aAEOIaj2xnMhN_Y4-_AXiNAY50BZ0Plspn0keX2chYZrlVgSjupPFdsYny-FifnprZjVv8PT_EuOFGntH9r8nBbb3avSYNtf6C6LY5J8YXfRvu5LnQVLyBy9n1LkshiJ6FKsxhdJ0JLeWauZHx3WkXk5WpI_D_Her8NXnyJqjtVqWjB___Pptwf0Ck6V5vQltwKzQPYWvw-VX6diCmfvcI1Afi0U0P2sb3nLPpvEln7eLya1j-_P5jHxdEn560i7lPD_vqOotLRLKP4dPR4ceD99lQdyFzhVEmc3T_R_FSe8soxcvLyHXUuWWROyEKEwJqNebKFiHUKoYi1LKImkeV57Vj4glsNG0TnkGKoDh6o3yIupZaRG2sjyFn0RkrnPQJZGudV24gJafaGIuqp1PmFamlGtWSwJtR_ltPx_FHyX36hKMU0Wh3D9rl52rwyip32ilb16UMGOgKYZ3CJd15DBs1s9TJztoAqsG3cYjSIOYRaFoJvBqb0SvpqMU2oT0nGYXIG6PJIoGnvb2MMxFKGY3DJKAnljSZ6rSlmX_pmL8ppUUyLVFtnSn9RQcVQpsTOije_kf553APH4o-Q2kHNs6W5-EF3HUXZ_PV8mXnYldqpigq priority: 102 providerName: Wiley-Blackwell |
| Title | Ionic Conduction in Polymer‐Based Solid Electrolytes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202201718 https://www.ncbi.nlm.nih.gov/pubmed/36698303 https://www.proquest.com/docview/2795213153 https://www.proquest.com/docview/2769994995 https://pubmed.ncbi.nlm.nih.gov/PMC10074084 https://doaj.org/article/1c8c6abb74e84033ac6303cd14980a18 |
| Volume | 10 |
| WOSCitedRecordID | wos000920586200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Research Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYlgMXYHkWlipISMAh2sR2HPuE6KoretgSsSDKKXL8gEolWdrdlfbfM5O4gYrXgYulxJP4MZ7M2DP5hpBnsMHhJkP_YC5szK03sfZJEmuqhUOIO65sm2win8_lYqGKcOC2CWGV229i-6G2jcEz8kOaK9A0DAT01dm3GLNGoXc1pNDYI0NEKuMDMpxM58W7H6csGUN4li1aY0IPtb1ElG5KEShG7mijFrT_d5bmrwGTPxuyrSY6vvW_Y7hNbgYbNHrdLZp9cs3Vd8h-kPJN9CJAUb-8S_gMkXOjo6a2HcpstKyjolldfXXreAIK0EanzWppo2mXTWd1BZbrPfLhePr-6E0c8izEJlNCxQb_9xE0l1YnGNJluafSy1QnnhrGMuUczKJPhc6cq4R3mat45iX1Ik0rk7D7ZFA3tXtIIjCCvVXCOi8rLpmXSlvv0sQbpZnhdkTi7XyXJoCQYy6MVdnBJ9MS-VP2_BmR5z39WQe_8UfKCbKvp0LY7PZGs_5cBiksUyON0FWVcwcbW8a0EaDCjYVtokw0vuRgy7gyyDI00XNtRJ721SCF6FrRtWsukEaApQ27x2xEHnRrpe8JE0JJaGZE5M4q2unqbk29_NIifWMIC08kh2lrF9w_5qAEU-YUHcOP_j6Ox-QGPMO6AKQDMjhfX7gn5Lq5PF9u1mOyR3kBZb6Q4yBP4_aoAsoT-rYtoX5YzE6KT3D1cTb_DmULLC0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJcgPJcKBAkEHCImtiO1zkgREurrtquVmqRyik4fsBKS1J226L9U_xGZvKCFa9TD1xjx3Hsz-MZz_gbgKdo4AiTkH9wIG0orDeh9lEUaqalI4o7kdoq2cRgNFLHx-l4Bb61d2EorLKViZWgtqWhM_INNkhxp-G4QF-ffAkpaxR5V9sUGjUs9tziK5ps81fDtzi_zxjb2T7a2g2brAKhSVKZhoZut0g2UFZHFMBkhWfKq1hHnhnOk9Q57KGPpU6cy6V3ictF4hXzMo5zE3Fs9xKsCgS76sHqeHgwfv_jVCfhRAfTskNGbEPbc2IFZ4yIadTS7lclCfidZvtrgObPinO18-1c_9_G7AZca3Ts4E29KNZgxRU3Ya2RYvPgRUO1_fIWiCExAwdbZWFrFt1gUgTjcrr47GbhJm7wNjgspxMbbNfZgqYL1Mxvw7sL6f0d6BVl4e5BgEq-t6m0zqtcKO5Vqq13ceRNqrkRtg9hO7-ZaUjWKdfHNKvpoVlGeMg6PPTheVf_pKYX-WPNTYJLV4towasH5exj1kiZLDbKSJ3nA-HQcOdcG4kqirFoBqtIUyPrLVCyRlbhJzqU9OFJV4xShlxHunDlGdWRaEmgdZz04W6Nza4nXMpU4Wf6oJZQu9TV5ZJi8qliMqcQHREpgcNWAfwfY5ChqnZIju_7f_-Px3Bl9-hgP9sfjvYewFV8n9fBVuvQO52duYdw2ZyfTuazR836DeDDRcP_O4epg3Y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXoDwXCgQJBByiTWzHcQ4I0ZdYFVYrFaTeUscPWGlJym5btH-NX8dMXrDideqBa-w4jv15POMZfwPwBA0cYRLyD6bShsJ6E2ofRaFmWjqiuBOZrZNNpOOxOjzMJmvwrbsLQ2GVnUysBbWtDJ2RD1ma4U7DcYEOfRsWMdnZe3X8JaQMUuRp7dJpNBDZd8uvaL4tXo52cK6fMra3-377TdhmGAhNksksNHTTRbJUWR1RMJMVnimvYh15ZjhPMuewtz6WOnGukN4lrhCJV8zLOC5MxLHdC3AxFUlCq-sdm_w430k4EcN0PJERG2p7RvzgjBFFjVrZB-t0Ab_TcX8N1fxZha73wL1r__PoXYerreYdvG6WygasufIGbLSybRE8bwm4X9wEMSK-4GC7Km3DrRtMy2BSzZaf3Tzcwm3fBgfVbGqD3SaH0GyJ-vot-HAuvb8N62VVursQoOrvbSat86oQinuVaetdHHmTaW6EHUDYzXVuWup1ygAyyxvSaJYTNvIeGwN41tc_bkhH_lhzi6DT1yKy8PpBNf-Yt7Inj40yUhdFKhya85xrI1FxMRaNYxVpamSzA03eSjD8RI-YATzui1H2kENJl646pToS7Qu0mZMB3Glw2veES5kp_MwA1AqCV7q6WlJOP9X85hS4IyIlcNhqsP9jDHJU4A7IHX7v7__xCC4j5vO3o_H-fbiCr_MmAmsT1k_mp-4BXDJnJ9PF_GG9kAM4Om_sfweR4oq0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+Conduction+in+Polymer-Based+Solid+Electrolytes&rft.jtitle=Advanced+science&rft.au=Li%2C+Zhuo&rft.au=Fu%2C+Jialong&rft.au=Zhou%2C+Xiaoyan&rft.au=Gui%2C+Siwei&rft.date=2023-04-01&rft.eissn=2198-3844&rft.volume=10&rft.issue=10&rft.spage=e2201718&rft_id=info:doi/10.1002%2Fadvs.202201718&rft_id=info%3Apmid%2F36698303&rft.externalDocID=36698303 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |