changing global carbon cycle: linking plant-soil carbon dynamics to global consequences
1. Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell '' Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the...
Saved in:
| Published in: | The Journal of ecology Vol. 97; no. 5; pp. 840 - 850 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.09.2009
Blackwell Publishing Blackwell Publishing Ltd Blackwell |
| Subjects: | |
| ISSN: | 0022-0477, 1365-2745 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | 1. Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell '' Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). 2. Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. 3. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO₂, land cover, species composition and/or N deposition. Inclusion of these processes in climate-C cycle models would improve their capacity to simulate recent and future climatic change. 4. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. 5. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. 6. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem-climate feedbacks provides a strong foundation for policies to mitigate climate change. 7. Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models. |
|---|---|
| AbstractList | Summary1.Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition).2.Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs.3.Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO2, land cover, species composition and-or N deposition. Inclusion of these processes in climate-C cycle models would improve their capacity to simulate recent and future climatic change.4.Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale.5.Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems.6.Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem-climate feedbacks provides a strong foundation for policies to mitigate climate change.7.Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models. 1. Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). 2. Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. 3. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO2, land cover, species composition and/or N deposition. Inclusion of these processes in climate–C cycle models would improve their capacity to simulate recent and future climatic change. 4. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. 5. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. 6. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem–climate feedbacks provides a strong foundation for policies to mitigate climate change. 7. Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models. Most current climate - carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO..., land cover, species composition and/or N deposition. Inclusion of these processes in climate - C cycle models would improve their capacity to simulate recent and future climatic change. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem - climate feedbacks provides a strong foundation for policies to mitigate climate change. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models. (ProQuest: ... denotes formulae/symbols omitted.) 1. Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell '' Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). 2. Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. 3. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO₂, land cover, species composition and/or N deposition. Inclusion of these processes in climate-C cycle models would improve their capacity to simulate recent and future climatic change. 4. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. 5. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. 6. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem-climate feedbacks provides a strong foundation for policies to mitigate climate change. 7. Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models. Summary 1. Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). 2. Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell‐Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. 3. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO2, land cover, species composition and/or N deposition. Inclusion of these processes in climate–C cycle models would improve their capacity to simulate recent and future climatic change. 4. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below‐ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. 5. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. 6. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non‐steady‐state conditions. An integrated understanding of multiple ecosystem–climate feedbacks provides a strong foundation for policies to mitigate climate change. 7. Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models. 1. Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). 2. Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell‐Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. 3. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO 2 , land cover, species composition and/or N deposition. Inclusion of these processes in climate–C cycle models would improve their capacity to simulate recent and future climatic change. 4. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below‐ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. 5. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. 6. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non‐steady‐state conditions. An integrated understanding of multiple ecosystem–climate feedbacks provides a strong foundation for policies to mitigate climate change. 7. Synthesis . Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models. |
| Author | Ruess, Roger W Kielland, Knut David McGuire, A McFarland, Jack Stuart Chapin III, F Euskirchen, Eugenie S |
| Author_xml | – sequence: 1 fullname: Stuart Chapin III, F – sequence: 2 fullname: McFarland, Jack – sequence: 3 fullname: David McGuire, A – sequence: 4 fullname: Euskirchen, Eugenie S – sequence: 5 fullname: Ruess, Roger W – sequence: 6 fullname: Kielland, Knut |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21831230$$DView record in Pascal Francis |
| BookMark | eNqNkV1rFDEYhYNUcFv9CeIg6N2M-c5EUJClflHwQouXIclk1qzZZE1msfvvzThlhd7Y3CRwnnPevJxzcBZTdAA0CHaonlfbDhHOWiwo6zCEsoOIYdndPACrk3AGVhBi3EIqxCNwXsoWQsgFgyvw3f7QcePjptmEZHRorM4mxcYebXCvm-Djz1ncBx2ntiR_AoZj1DtvSzOlkzXF4n4dXLSuPAYPRx2Ke3J7X4Dr95ff1h_bqy8fPq3fXbWWSSpbagQWmGtOGCfOMDJqaBEeLMFG4tFKqwdDB2pgP7KeyYFqI8kwYuy0M9CQC_Byyd3nVEeXSe18sS7U_7p0KIrWZCEl-y-IoZAcMVTB53fAbTrkWJeoTN_3gjFaoRe3kC5WhzHraH1R--x3Oh8VRj1BmMDK9Qtncyolu_GEIKjm_tRWzTWpuSY196f-9qduqvXtHav1k558ilPWPtwn4M0S8NsHd7z3YPX5cj2_qv_p4t-WKeV_uwnBKBa86s8WfdRJ6U2u-19_xRARiDjnUGLyB-4XyQc |
| CODEN | JECOAB |
| CitedBy_id | crossref_primary_10_3390_w15183246 crossref_primary_10_1111_ele_13193 crossref_primary_10_1016_j_foreco_2020_118592 crossref_primary_10_1126_science_aap7325 crossref_primary_10_1111_j_1365_2389_2010_01314_x crossref_primary_10_1007_s10533_014_0063_2 crossref_primary_10_1007_s13595_016_0551_8 crossref_primary_10_1016_j_soilbio_2017_07_026 crossref_primary_10_1111_j_1365_2486_2011_02585_x crossref_primary_10_1111_nph_12333 crossref_primary_10_1007_s00442_012_2584_5 crossref_primary_10_1016_j_pedsph_2024_01_006 crossref_primary_10_1002_eco_70033 crossref_primary_10_1016_j_geoderma_2016_01_041 crossref_primary_10_1016_j_scitotenv_2024_171439 crossref_primary_10_7717_peerj_13960 crossref_primary_10_1002_ldr_4819 crossref_primary_10_1016_j_scitotenv_2024_173632 crossref_primary_10_1890_10_1011_1 crossref_primary_10_1007_s11273_017_9585_4 crossref_primary_10_1016_j_catena_2022_106308 crossref_primary_10_1111_gcb_14511 crossref_primary_10_1111_gcb_13424 crossref_primary_10_1016_j_foreco_2016_06_007 crossref_primary_10_5194_bg_8_3457_2011 crossref_primary_10_1016_j_scitotenv_2019_135341 crossref_primary_10_1016_j_soilbio_2012_02_032 crossref_primary_10_1111_1365_2745_12247 crossref_primary_10_1111_1365_2745_12484 crossref_primary_10_1016_j_ppees_2016_08_001 crossref_primary_10_3389_ffgc_2025_1602557 crossref_primary_10_5194_soil_2_175_2016 crossref_primary_10_1890_ES14_00301_1 crossref_primary_10_5194_bg_12_457_2015 crossref_primary_10_1002_ecs2_2687 crossref_primary_10_1016_j_catena_2023_107389 crossref_primary_10_3389_ffgc_2023_1152142 crossref_primary_10_1007_s11442_017_1361_0 crossref_primary_10_1007_s11104_022_05441_1 crossref_primary_10_1016_j_cosust_2011_08_013 crossref_primary_10_1016_j_atmosenv_2019_05_026 crossref_primary_10_1016_j_agee_2012_06_010 crossref_primary_10_1002_ldr_2982 crossref_primary_10_1093_treephys_tps057 crossref_primary_10_1038_s41598_023_34753_0 crossref_primary_10_1016_j_agee_2011_04_003 crossref_primary_10_1007_s10725_024_01232_z crossref_primary_10_1016_j_aiia_2024_12_004 crossref_primary_10_1111_gcb_15624 crossref_primary_10_1890_10_0631_1 crossref_primary_10_1007_s00374_012_0680_7 crossref_primary_10_1111_j_1365_2745_2009_01545_x crossref_primary_10_3390_biology12070909 crossref_primary_10_1007_s11104_010_0298_1 crossref_primary_10_1007_s10530_020_02244_2 crossref_primary_10_1111_1365_2745_12383 crossref_primary_10_1111_2041_210X_12138 crossref_primary_10_1111_j_1365_2486_2010_02363_x crossref_primary_10_1002_ecs2_3872 crossref_primary_10_1016_j_foreco_2017_09_023 crossref_primary_10_1038_srep22411 crossref_primary_10_1371_journal_pone_0057127 crossref_primary_10_3389_fmicb_2025_1608399 crossref_primary_10_1038_s41598_017_15296_7 crossref_primary_10_3390_f13020284 crossref_primary_10_1007_s13157_023_01722_2 crossref_primary_10_37501_soilsa_156097 crossref_primary_10_1007_s13157_016_0844_6 crossref_primary_10_1016_j_apsoil_2016_06_002 crossref_primary_10_1111_gcb_12549 crossref_primary_10_1007_s10021_019_00440_3 crossref_primary_10_1038_s41467_023_37164_x crossref_primary_10_1016_j_soilbio_2015_10_006 crossref_primary_10_1111_1365_2745_12054 crossref_primary_10_3390_ijerph182111617 crossref_primary_10_1007_s00374_025_01931_3 crossref_primary_10_1007_s44378_024_00023_2 crossref_primary_10_1016_j_rama_2016_05_002 crossref_primary_10_1007_s11104_011_0853_4 crossref_primary_10_1002_ecs2_2655 crossref_primary_10_1007_s10533_020_00728_w crossref_primary_10_3390_soilsystems5010007 crossref_primary_10_1002_ecs2_3849 crossref_primary_10_1016_j_soilbio_2021_108229 crossref_primary_10_1093_femsec_fiw169 crossref_primary_10_12677_HJSS_2019_72019 crossref_primary_10_1016_j_catena_2023_107188 crossref_primary_10_1016_j_scitotenv_2022_157111 crossref_primary_10_1016_j_agwat_2021_107404 crossref_primary_10_1080_13416979_2018_1483129 crossref_primary_10_5194_bg_16_2857_2019 crossref_primary_10_1007_s11104_019_04410_5 crossref_primary_10_1080_11956860_2020_1772613 crossref_primary_10_1016_j_scowo_2024_100038 crossref_primary_10_1371_journal_pclm_0000320 crossref_primary_10_1111_j_1365_2486_2012_02654_x crossref_primary_10_1002_ece3_4215 crossref_primary_10_1016_j_still_2023_105898 crossref_primary_10_1111_2041_210X_12963 crossref_primary_10_1093_rpd_ncac146 crossref_primary_10_3390_agriculture14112065 crossref_primary_10_1111_nph_13447 crossref_primary_10_1371_journal_pone_0112810 crossref_primary_10_1111_ppl_13498 crossref_primary_10_1111_gcb_13887 crossref_primary_10_1111_1365_2745_12629 crossref_primary_10_1002_eco_1508 crossref_primary_10_1016_j_soilbio_2018_01_019 crossref_primary_10_1016_j_landusepol_2009_09_016 crossref_primary_10_1016_j_soilbio_2024_109315 crossref_primary_10_1002_ecy_2660 crossref_primary_10_1007_s00442_012_2576_5 crossref_primary_10_1016_j_soilbio_2023_108964 crossref_primary_10_1139_X10_074 crossref_primary_10_3390_d16080506 crossref_primary_10_1111_j_1461_0248_2012_01826_x crossref_primary_10_1371_journal_pone_0096299 crossref_primary_10_1007_s10661_018_6887_9 crossref_primary_10_1002_2012GB004536 crossref_primary_10_1007_s10021_015_9900_y crossref_primary_10_1002_ece3_710 crossref_primary_10_1002_2014JG002710 crossref_primary_10_1007_s42729_022_00794_z crossref_primary_10_3389_fevo_2023_1178660 crossref_primary_10_5194_bg_10_3931_2013 crossref_primary_10_1016_j_soilbio_2014_03_006 crossref_primary_10_1002_ecm_1396 crossref_primary_10_1657_1938_4246_44_3_319 crossref_primary_10_3390_rs10071071 crossref_primary_10_1016_j_soilbio_2018_11_009 crossref_primary_10_1016_j_catena_2024_108102 crossref_primary_10_1016_j_jenvman_2024_120556 crossref_primary_10_1111_gcb_16659 crossref_primary_10_1002_ecs2_1507 crossref_primary_10_1139_X09_209 crossref_primary_10_1111_nph_12285 crossref_primary_10_1134_S1064229320020052 crossref_primary_10_3390_f9060322 crossref_primary_10_1016_j_soilbio_2018_11_018 crossref_primary_10_1111_geb_12172 crossref_primary_10_3389_fmicb_2023_1152187 crossref_primary_10_3389_fmicb_2023_1233815 crossref_primary_10_1016_j_rse_2016_04_010 crossref_primary_10_1007_s10661_019_7914_1 crossref_primary_10_3390_f8060220 crossref_primary_10_1016_j_chnaes_2015_07_002 crossref_primary_10_1111_j_1461_0248_2010_01482_x crossref_primary_10_1016_j_geoderma_2024_117143 crossref_primary_10_1007_s11104_016_3006_y crossref_primary_10_1007_s00442_011_2030_0 crossref_primary_10_1016_j_soilbio_2015_02_025 crossref_primary_10_1007_s11104_012_1350_0 crossref_primary_10_1007_s42532_022_00133_7 crossref_primary_10_1016_j_soilbio_2019_107520 crossref_primary_10_3390_agriculture12070923 crossref_primary_10_1093_treephys_tpr129 crossref_primary_10_1111_gcb_12079 crossref_primary_10_1111_1462_2920_13141 crossref_primary_10_1007_s11104_012_1482_2 crossref_primary_10_1007_s11104_021_05224_0 crossref_primary_10_1017_sus_2024_27 crossref_primary_10_1007_s11104_020_04718_7 crossref_primary_10_1016_j_srs_2025_100269 crossref_primary_10_3389_fenvs_2022_846045 crossref_primary_10_1016_j_soilbio_2015_02_032 crossref_primary_10_1002_ecs2_3472 crossref_primary_10_1080_15230430_2017_1420283 crossref_primary_10_1007_s10533_017_0415_9 crossref_primary_10_1038_ismej_2015_38 crossref_primary_10_1093_treephys_tpr134 crossref_primary_10_1371_journal_pone_0109063 crossref_primary_10_1007_s10533_010_9496_4 crossref_primary_10_1007_s11104_013_1701_5 crossref_primary_10_1016_j_resconrec_2017_02_019 crossref_primary_10_1890_ES12_00196_1 crossref_primary_10_1016_j_soilbio_2012_02_001 crossref_primary_10_1007_s11104_023_06030_6 crossref_primary_10_1093_treephys_tpaa051 crossref_primary_10_1038_s41558_025_02270_9 crossref_primary_10_1038_s41558_024_02147_3 crossref_primary_10_1016_j_agrformet_2025_110682 crossref_primary_10_11922_11_6035_csd_2023_0065_zh crossref_primary_10_5194_bg_12_2737_2015 crossref_primary_10_1002_jid_3810 crossref_primary_10_1016_j_agee_2012_09_001 crossref_primary_10_1007_s10021_018_0245_1 crossref_primary_10_1038_s41586_024_07274_7 crossref_primary_10_1016_j_pedobi_2015_10_003 crossref_primary_10_1111_1365_2435_13208 crossref_primary_10_1111_gcb_12144 crossref_primary_10_5194_bg_10_7053_2013 crossref_primary_10_1186_s13021_015_0041_6 crossref_primary_10_3390_earth4030036 crossref_primary_10_3390_agriculture14101786 crossref_primary_10_1007_s10113_014_0739_0 crossref_primary_10_1007_s10533_011_9635_6 crossref_primary_10_1038_ismej_2015_254 crossref_primary_10_1007_s00468_021_02182_z crossref_primary_10_3389_fmicb_2014_00720 crossref_primary_10_1111_gcb_12494 crossref_primary_10_1111_gcb_17268 crossref_primary_10_1002_ldr_4293 crossref_primary_10_1007_s11104_015_2750_8 crossref_primary_10_1016_j_catena_2019_104338 crossref_primary_10_1016_j_agee_2015_05_008 crossref_primary_10_1016_j_geoderma_2012_10_018 crossref_primary_10_1890_13_1942_1 crossref_primary_10_1016_j_agee_2017_01_033 crossref_primary_10_1111_gcb_12609 crossref_primary_10_1111_1365_2745_12910 crossref_primary_10_1016_j_scitotenv_2017_10_215 crossref_primary_10_1371_journal_pone_0149902 crossref_primary_10_1111_1752_1688_12881 crossref_primary_10_1111_j_1461_0248_2010_01465_x crossref_primary_10_1007_s11676_019_01013_9 crossref_primary_10_1021_acs_est_5c03106 crossref_primary_10_1007_s11356_016_7474_7 crossref_primary_10_3389_fmicb_2015_00817 crossref_primary_10_1007_s00442_015_3427_y crossref_primary_10_1080_00380768_2013_772495 crossref_primary_10_1016_j_foreco_2013_05_016 crossref_primary_10_1111_nph_14379 crossref_primary_10_1111_gcb_12277 crossref_primary_10_1007_s11104_013_1630_3 crossref_primary_10_1007_s11104_015_2664_5 crossref_primary_10_1016_j_geoderma_2022_116067 crossref_primary_10_1080_00380768_2011_589363 crossref_primary_10_1007_s00376_012_1252_3 crossref_primary_10_1088_1748_9326_8_3_034034 crossref_primary_10_1111_gcb_12392 crossref_primary_10_3389_fmicb_2014_00261 crossref_primary_10_1029_2020JG005666 |
| Cites_doi | 10.1023/A:1004417419288 10.1126/science.1074153 10.1016/j.soilbio.2005.08.020 10.1126/science.1155121 10.1073/pnas.0935903100 10.1111/j.1365-2486.2004.00866.x 10.1046/j.1365-2486.1998.00128.x 10.1111/j.1469-8137.2006.01712.x 10.1007/s10021-009-9237-5 10.1093/icb/8.1.19 10.1029/2005GL023646 10.1890/05-0755 10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2 10.1016/j.apsoil.2007.05.002 10.2307/2261479 10.1111/j.1365-2486.2008.01600.x 10.1111/j.1365-2486.2004.00816.x 10.1016/S0038-0717(00)00084-5 10.1007/s00442-007-0804-1 10.1029/2001GB001840 10.1007/s10021-002-0227-0 10.1007/978-3-642-80913-2_12 10.1038/nature03138 10.1016/j.soilbio.2009.03.001 10.1890/04-1254 10.1890/03-8002 10.1073/pnas.0608998104 10.1029/97GB00059 10.1093/aob/mcg041 10.1890/1051-0761(1997)007[0444:RONLET]2.0.CO;2 10.1073/pnas.0702737104 10.1007/s10533-004-1773-7 10.1016/j.soilbio.2004.04.023 10.1128/AEM.02188-07 10.1111/j.1469-8137.2005.01571.x 10.1890/070062 10.1146/annurev.energy.32.053006.141119 10.1029/2008GL037014 10.1007/978-0-387-76570-9_16 10.1175/2008JCLI2038.1 10.1111/j.1574-6941.2007.00337.x 10.1890/02-4032 10.1111/j.1461-0248.2008.01219.x 10.1111/j.1365-2486.2007.01420.x 10.1038/nature02887 10.1029/2006GL025677 10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2 10.1007/s10021-007-9037-8 10.1007/s004420000615 10.1029/2006GB002868 10.1111/j.1365-2486.2004.00878.x 10.1890/02-5291 10.1146/annurev.es.26.110195.002353 10.1007/3-540-29449-X_1 10.1029/2008JG000728 10.1016/j.soilbio.2007.03.024 10.1111/j.1744-7909.2008.00750.x 10.1111/j.1365-2435.2008.01479.x 10.1038/nature06777 10.1007/s11104-006-9162-8 10.1126/science.277.5325.504 10.1111/j.1365-2486.2006.01210.x 10.1038/nature04486 10.1007/s00442-003-1419-9 10.1016/j.agee.2006.01.004 10.1890/080005 10.1007/s10021-005-0105-7 10.1007/s10021-002-0130-8 10.1038/35081058 10.1111/j.1365-2745.2008.01453.x 10.1029/2002GL016848 10.1016/j.agrformet.2007.09.006 10.1046/j.1365-2486.2001.00412.x 10.1890/1051-0761(2002)012[0937:NEPACM]2.0.CO;2 10.1111/j.1365-2486.2007.01450.x 10.1890/1051-0761(2007)017[0203:NEOCAC]2.0.CO;2 10.1890/08-0806.1 10.1007/s004420100693 10.1029/2000GB001298 10.1016/S0038-0717(01)00175-4 10.1038/nature03226 10.1046/j.1469-8137.2002.00417.x 10.1007/BF00000940 10.1139/x06-217 10.1890/06-1847.1 10.1038/415381a 10.1111/j.1461-0248.2008.01164.x 10.1175/JCLI3800.1 10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2 10.1007/s00374-005-0049-2 10.1029/2008GB003250 10.1139/b04-123 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 10.1111/j.1365-2486.2007.01415.x 10.1046/j.1365-2486.2003.00629.x 10.1023/A:1019637807021 10.1034/j.1600-0889.1992.t01-1-00001.x 10.1111/j.1365-2486.2007.01383.x 10.1073/pnas.0509478102 10.2136/sssaj1999.03615995006300020008x 10.1038/nature05040 10.1038/377199a0 10.2134/agronmonogr22 10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2 10.1890/03-4037 |
| ContentType | Journal Article |
| Copyright | Copyright 2009 British Ecological Society 2009 The Authors. Journal compilation © 2009 British Ecological Society 2009 INIST-CNRS Copyright Blackwell Publishing Ltd. Sep 2009 |
| Copyright_xml | – notice: Copyright 2009 British Ecological Society – notice: 2009 The Authors. Journal compilation © 2009 British Ecological Society – notice: 2009 INIST-CNRS – notice: Copyright Blackwell Publishing Ltd. Sep 2009 |
| DBID | FBQ AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7TV 7U6 7S9 L.6 |
| DOI | 10.1111/j.1365-2745.2009.01529.x |
| DatabaseName | AGRIS CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Pollution Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts Pollution Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology Botany |
| EISSN | 1365-2745 |
| EndPage | 850 |
| ExternalDocumentID | 1834946221 21831230 10_1111_j_1365_2745_2009_01529_x JEC1529 27754276 US201301666092 |
| Genre | reviewArticle |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29K 2AX 2WC 3-9 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHKG AAISJ AAJUZ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABEFU ABEML ABHUG ABJNI ABLJU ABPFR ABPLY ABPPZ ABPTK ABPVW ABTAH ABTLG ABWRO ABYAD ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACNCT ACPOU ACPRK ACSCC ACSTJ ACTWD ACUBG ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFDAS AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFXHP AFZJQ AGJLS AGUYK AIAGR AIHXQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CUYZI CWIXF D-E D-F D-I DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU E3Z EAU EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH Y6R YF5 YQT YXE YZZ ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AAYCA ABAWQ ABPQH ABSQW ABXSQ ACHIC ACHJO ADMHG AEFGJ AEYWJ AFWVQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM HGLYW IPSME OIG AAYXX ABUFD AGHNM CITATION O8X IQODW 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7TV 7U6 7S9 L.6 |
| ID | FETCH-LOGICAL-c5949-4b72726a63563eb53fa0c12dc32b92fc9cadb4d4b08f5859d4ab93df22eaeb0b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 264 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268928200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-0477 |
| IngestDate | Thu Oct 02 10:29:32 EDT 2025 Tue Oct 07 09:53:09 EDT 2025 Mon Nov 10 03:12:40 EST 2025 Mon Jul 21 09:15:42 EDT 2025 Sat Nov 29 04:58:52 EST 2025 Tue Nov 18 22:06:20 EST 2025 Wed Jan 22 16:43:44 EST 2025 Thu Jul 03 21:12:02 EDT 2025 Wed Dec 27 19:21:32 EST 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | heterotrophic respiration Root Heterotrophy soil carbon Net primary production Decomposition Vegetation dynamics Net production roots Symbiont Carbon Dynamical climatology Carbon cycle Climate change Soils Ecosystem Mycorrhiza net ecosystem production mycorrhizas Respiration |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5949-4b72726a63563eb53fa0c12dc32b92fc9cadb4d4b08f5859d4ab93df22eaeb0b3 |
| Notes | http://dx.doi.org/10.1111/j.1365-2745.2009.01529.x ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2745.2009.01529.x |
| PQID | 208887554 |
| PQPubID | 37508 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_46357995 proquest_miscellaneous_20796151 proquest_journals_208887554 pascalfrancis_primary_21831230 crossref_primary_10_1111_j_1365_2745_2009_01529_x crossref_citationtrail_10_1111_j_1365_2745_2009_01529_x wiley_primary_10_1111_j_1365_2745_2009_01529_x_JEC1529 jstor_primary_27754276 fao_agris_US201301666092 |
| PublicationCentury | 2000 |
| PublicationDate | September 2009 |
| PublicationDateYYYYMMDD | 2009-09-01 |
| PublicationDate_xml | – month: 09 year: 2009 text: September 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | The Journal of ecology |
| PublicationYear | 2009 |
| Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Blackwell Publishing Ltd Blackwell |
| Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell Publishing Ltd – name: Blackwell |
| References | 1995; 31 2007; 104 1968; 8 2002; 154 2006; 33 2006; 38 2002; 12 1975 1995; 377 2009; 114 1999; 207 1997; 7 2009; 12 2009; 97 1995; 26 2005; 102 2004; 36 2005; 73 2006; 440 2008; 21 2008; 22 1982 2007; 61 2009; 19 2001; 51 2001; 411 2006; 169 2006; 443 2007; 17 2002; 5 2002; 415 2005; 86 2007; 290 2008; 50 2006; 115 2007; 10 2003; 30 2007; 13 2004; 431 2006; 42 2002; 242 2007; 154 2000; 81 1996; 84 2007; 88 1998; 4 2003; 100 2005; 11 2007; 39 2009; 41 2000; 50 2003; 17 2008; 6 2008; 148 2008; 74 2007; 32 1992; 44B 2007; 37 2004; 74 1997; 227 2004; 138 1997; 94 2003; 91 1997; 11 2001 2003; 6 2003; 9 2005; 32 2001; 15 2007; 21 2003; 84 2009; 23 2004; 85 2004; 82 2006; 12 2005; 433 2002; 34 2006; 9 2002; 298 2008; 14 2008 2007 2006; 19 2006 2005 2008; 11 1999; 63 2008; 320 2003; 74 2001; 126 2001; 128 2001; 127 2004; 10 2009; 36 2001; 7 2006; 87 2000; 32 2004; 14 2008; 452 1998; 35 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 Blagodatskaya E.V. (e_1_2_7_6_1) 1998; 35 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 IPCC (e_1_2_7_51_1) 2007 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 Prentice I.C. (e_1_2_7_81_1) 2001 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 Callaghan T.V. (e_1_2_7_14_1) 2005 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
| References_xml | – volume: 13 start-page: 2425 year: 2007 end-page: 2438 article-title: Energy feedbacks to the climate system due to reduced high latitude snow cover during 20th century warming publication-title: Global Change Biology – volume: 443 start-page: 71 year: 2006 end-page: 75 article-title: Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming publication-title: Nature – volume: 100 start-page: 5852 year: 2003 end-page: 5857 article-title: Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000 publication-title: Proceedings of the National Academy of Sciences, USA – volume: 30 start-page: 1414 year: 2003 article-title: Factors controlling large scale variations in methane emissions from wetlands publication-title: Geophysical Research Letters – volume: 39 start-page: 2103 year: 2007 end-page: 2110 article-title: Rhizospheric influence on soil respiration and decomposition in a temperate Norway spruce stand publication-title: Soil Biology and Biochemistry – volume: 73 start-page: 555 year: 2005 end-page: 566 article-title: Implications of soil organic carbon and the biogeochemistry of iron and aluminum on soil phosphorus distribution in flooded forests of the lower Orinoco River, Venezuela publication-title: Biogeochemistry – volume: 12 start-page: 489 year: 2009 end-page: 502 article-title: Disease‐mediated declines in N‐fixation inputs by to early‐successional floodplains in interior and south‐central Alaska publication-title: Ecosystems – volume: 433 start-page: 298 year: 2005 end-page: 301 article-title: Long‐term sensitivity of soil carbon turnover to warming publication-title: Nature – volume: 86 start-page: 320 year: 2005 end-page: 326 article-title: Litter quality and the temperature sensitivity of decomposition publication-title: Ecology – volume: 7 start-page: 737 year: 1997 end-page: 750 article-title: Human alteration of the global nitrogen cycle: Sources and consequences publication-title: Ecological Applications – volume: 9 start-page: 479 year: 2003 end-page: 492 article-title: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future publication-title: Global Change Biology – volume: 14 start-page: 460 year: 2004 end-page: 475 article-title: Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine publication-title: Ecological Applications – volume: 50 start-page: 871 year: 2000 end-page: 882 article-title: Global warming and terrestrial ecosystems: A conceptual framework for analysis publication-title: BioScience – volume: 9 start-page: 1041 year: 2006 end-page: 1050 article-title: Reconciling carbon‐cycle concepts, terminology, and methods publication-title: Ecosystems – volume: 97 start-page: 48 year: 2009 end-page: 56 article-title: Linkages between plant functional composition, fine root processes and potential soil mineralization rates publication-title: Journal of Ecology – volume: 37 start-page: 93 year: 2007 end-page: 102 article-title: Biomass partitioning in red pine ( ) along a chronosequence in the Upper Peninsula of Michigan publication-title: Canadian Journal of Forest Research – volume: 154 start-page: 791 year: 2002 end-page: 795 article-title: Extramatrical ectomycorrhizal mycelium contributes one‐third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil publication-title: New Phytologist – volume: 11 start-page: 167 year: 2005 end-page: 181 article-title: The response of heterotrophic CO flux to soil warming publication-title: Global Change Biology – start-page: 341 year: 2008 end-page: 360 – volume: 94 start-page: 13730 year: 1997 end-page: 13734 article-title: From tropics to tundra: Global convergence in plant functioning publication-title: Proceedings of the National Academy of Sciences, USA – volume: 104 start-page: 6550 year: 2007 end-page: 6555 article-title: Combined climate and carbon‐cycle effects of large‐scale deforestation publication-title: Proceedings of the National Academy of Sciences, USA – volume: 128 start-page: 305 year: 2001 end-page: 316 article-title: The unexpected versatility of plants: Organic nitrogen use and availability in terrestrial ecosystems publication-title: Oecologia – volume: 17 start-page: 1001 issue: 1 year: 2003 article-title: The isotopic composition of carbon dioxide from a boreal forest fire: Inferring carbon loss from measurements and modeling publication-title: Global Biogeochemical Cycles – volume: 19 start-page: 1022 year: 2009 end-page: 1043 article-title: Changes in vegetation in northern Alaska under scenarios of climate change, 2003‐2100: Implications for climate feedbacks publication-title: Ecological Applications – volume: 242 start-page: 83 year: 2002 end-page: 92 article-title: Litter quality in a north European transect vs. carbon storage potential publication-title: Plant and Soil – volume: 81 start-page: 1867 year: 2000 end-page: 1877 article-title: Nutrient regulation of decomposition in Hawaiian montane forests: Do the same nutrients limit production and decomposition? publication-title: Ecology – volume: 38 start-page: 425 year: 2006 end-page: 448 article-title: Sources of CO efflux from soil and review of partitioning methods publication-title: Soil Biology & Biochemistry – volume: 32 start-page: 1 year: 2007 end-page: 29 article-title: Feedbacks of terrestrial ecosystems to climate change publication-title: Annual Review of Environment and Resources – volume: 82 start-page: 1243 year: 2004 end-page: 1263 article-title: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes publication-title: Canadian Journal of Botany – volume: 22 start-page: 941 year: 2008 end-page: 954 article-title: Below‐ground carbon flux and partitioning: Global patterns and response to temperature publication-title: Functional Ecology – volume: 10 start-page: 1756 year: 2004 end-page: 1766 article-title: A global relationship between the heterotrophic and autotrophic components of soil respiration? publication-title: Global Change Biology – volume: 11 start-page: 173 year: 1997 end-page: 189 article-title: Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration publication-title: Global Biogeochemical Cycles – volume: 26 start-page: 473 year: 1995 end-page: 503 article-title: The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide publication-title: Annual Review of Ecology and Systematics – volume: 12 start-page: 937 year: 2002 end-page: 947 article-title: Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems publication-title: Ecological Applications – volume: 74 start-page: 393 year: 2004 end-page: 414 article-title: An experimental test of the causes of forest growth decline with stand age publication-title: Ecological Monographs – volume: 51 start-page: 180 year: 2001 end-page: 198 article-title: Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects and management strategies publication-title: BioScience – year: 2007 – volume: 6 start-page: 524 year: 2003 end-page: 539 article-title: Regime shifts in the Sahara and Sahel: Interactions between ecological and climatic systems in Northern Africa publication-title: Ecosystems – volume: 36 start-page: L05501 year: 2009 article-title: Characteristics of organic soil in black spruce forests: Implications for the application of land surface and ecosystem models in cold regions publication-title: Geophysical Research Letters – volume: 34 start-page: 209 year: 2002 end-page: 219 article-title: Soil amino acid turnover dominates the nitrogen flux in permafrost‐dominated taiga forest soils publication-title: Soil Biology and Biochemistry – volume: 6 start-page: 313 year: 2008 end-page: 320 article-title: Changing feedbacks in the earth‐climate system publication-title: Frontiers in Ecology and the Environment – volume: 11 start-page: 516 year: 2008 end-page: 531 article-title: Plant functional traits and soil carbon sequestration in contrasting biomes publication-title: Ecology Letters – volume: 207 start-page: 77 year: 1999 end-page: 86 article-title: Predominance of ecophysiological over environmental controls over CO flux in a Minnesota grassland publication-title: Plant and Soil – volume: 227 start-page: 504 year: 1997 end-page: 509 article-title: Agricultural intensification and ecosystem properties publication-title: Science – volume: 148 start-page: 135 year: 2008 end-page: 143 article-title: Soil respiration fluxes in relation to photosynthetic activity in broad‐leaf and needle‐leaf forest stands publication-title: Agricultural and Forest Meteorology – volume: 5 start-page: 487 year: 2002 end-page: 499 article-title: Total belowground carbon allocation in a fast‐growing plantation estimated using a carbon balance approach publication-title: Ecosystems – volume: 415 start-page: 381 year: 2002 end-page: 382 article-title: Nitrogen cycle: Natural organic tendency publication-title: Nature – volume: 298 start-page: 2173 year: 2002 end-page: 2176 article-title: Soil warming and carbon‐cycle feedbacks to the climate system publication-title: Science – volume: 35 start-page: 955 year: 1998 end-page: 963 article-title: Comparison of fungal/bacterial ratios in a pH gradient using physiological and PLFA‐based techiques publication-title: Soil Biology and Biochemistry – volume: 21 year: 2007 article-title: Inclusion of carbon‐nitrogen feedback fundamentally changes response of land carbon model to CO fertilization and climate variability publication-title: Global Biogeochemical Cycles – volume: 87 start-page: 563 year: 2006 end-page: 569 article-title: Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies publication-title: Ecology – volume: 433 start-page: 57 year: 2005 end-page: 59 article-title: Similar response of labile and resistant soil organic matter pools to changes in temperature publication-title: Nature – volume: 114 start-page: G02006 year: 2009 article-title: Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem publication-title: Journal of Geophysical Research- Biogeosciences – volume: 61 start-page: 295 year: 2007 end-page: 304 article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure publication-title: Fems Microbiology Ecology – volume: 8 start-page: 19 year: 1968 end-page: 30 article-title: Primary production in terrestrial communities publication-title: American Zoologist – volume: 14 start-page: 1503 year: 2008 end-page: 1516 article-title: Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation publication-title: Global Change Biology – volume: 21 start-page: 3776 year: 2008 end-page: 3796 article-title: Consequences of considering carbon/nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle publication-title: Journal of Climate – volume: 13 start-page: 2018 year: 2007 end-page: 2035 article-title: Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture publication-title: Global Change Biology – volume: 37 start-page: 95 year: 2007 end-page: 105 article-title: Priming effects in a Chernozem induced by glucose and N in relation to microbial growth strategies publication-title: Applied Soil Ecology – volume: 88 start-page: 2105 year: 2007 end-page: 2113 article-title: Microbial nitrogen limitation increases decomposition publication-title: Ecology – volume: 74 start-page: 738 year: 2008 end-page: 744 article-title: Root exudates regulate soil fungal community composition and diversty publication-title: Applied and Environmental Microbiology – volume: 440 start-page: 165 year: 2006 end-page: 173 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 102 start-page: 18052 year: 2005 end-page: 18056 article-title: Forest response to elevated CO is conserved across a broad range of productivity publication-title: Proceedings of the National Academy of Sciences, USA – volume: 91 start-page: 455 year: 2003 end-page: 463 article-title: Effects of plant traits on ecosystem and regional processes: A conceptual framework for predicting the consequences of global change publication-title: Annals of Botany – volume: 115 start-page: 174 year: 2006 end-page: 182 article-title: Changes in intrasystem N cycling from N ‐fixing shrub encroachment in grassland: Multiple positive feedbacks publication-title: Agriculture, Ecosystems and Environment – volume: 17 start-page: 203 year: 2007 end-page: 212 article-title: Net emissions of CH and CO in Alaska: Implications for the region’s greenhouse gas budget publication-title: Ecological Applications – volume: 154 start-page: 327 year: 2007 end-page: 338 article-title: The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem publication-title: Oecologia – volume: 19 start-page: 3337 year: 2006 end-page: 3353 article-title: Climate‐carbon cycle feedback analysis: Results from the C MIP model intercomparison publication-title: Journal of Climate – volume: 15 start-page: 183 year: 2001 end-page: 206 article-title: Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO , climate and land‐use effects with four process‐based ecosystem models publication-title: Global Biogeochemical Cycles – volume: 33 start-page: L13703 year: 2006 article-title: Recent changes in the fire regime across the North American boreal region: Spatial and temporal patterns of burning across Canada and Alaska publication-title: Geophysical Research Letters – volume: 431 start-page: 440 year: 2004 end-page: 443 article-title: Ecosystem carbon storage in arctic tundra reduced by long‐term nutrient fertilization publication-title: Nature – volume: 23 year: 2009 article-title: Soil organic nitrogen mineralization across a global latitudinal gradient publication-title: Global Biogeochemical Cycles – volume: 138 start-page: 275 year: 2004 end-page: 284 article-title: Microbial community utilization of recalcitrant and simple carbon compounds: Impact of oak‐woodland plant communities publication-title: Oecologia – volume: 84 start-page: 573 year: 1996 end-page: 582 article-title: An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types publication-title: Journal of Ecology – volume: 6 start-page: 439 year: 2008 end-page: 447 article-title: Putting people on the map: Anthropogenic biomes of the world publication-title: Frontiers in Ecology and the Environment – year: 1982 – volume: 4 start-page: 217 year: 1998 end-page: 227 article-title: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest publication-title: Global Change Biology – volume: 377 start-page: 199 year: 1995 end-page: 200 article-title: New cog in the nitrogen cycle publication-title: Nature – volume: 169 start-page: 27 year: 2006 end-page: 34 article-title: Plants actively control nitrogen cycling: Uncorking the microbial bottleneck publication-title: New Phytologist – start-page: 243 year: 2005 end-page: 352 – volume: 10 start-page: 1 year: 2004 end-page: 26 article-title: Carbon cycling and storage in world forests: Biome patterns related to forest age publication-title: Global Change Biology – volume: 85 start-page: 591 year: 2004 end-page: 602 article-title: Nitrogen mineralization: Challenges of a changing paradigm publication-title: Ecology – volume: 127 start-page: 153 year: 2001 end-page: 165 article-title: Elevated CO , litter chemistry, and decomposition: A synthesis publication-title: Oecologia – volume: 50 start-page: 1467 year: 2008 end-page: 1483 article-title: Adjustment of forest ecosystem root respiration as temperature warms publication-title: Journal of Integrative Plant Biology – volume: 104 start-page: 10288 year: 2007 end-page: 10293 article-title: Contributions to accelerating atmospheric CO growth from economic activity, carbon intensity, and efficiency of natural sinks publication-title: Proceedings of the National Academy of Sciences, USA – volume: 126 start-page: 543 year: 2001 end-page: 562 article-title: A meta‐analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming publication-title: Oecologia – volume: 63 start-page: 307 year: 1999 end-page: 319 article-title: Statistical analysis of published carbon‐13 CPMAS NMR spectra of soil organic matter publication-title: Soil Science Society of America Journal – volume: 74 start-page: 643 year: 2003 end-page: 652 article-title: Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska publication-title: Ecological Monographs – volume: 84 start-page: 1165 year: 2003 end-page: 1170 article-title: Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation publication-title: Ecology – volume: 411 start-page: 789 year: 2001 end-page: 792 article-title: Large‐scale forest girdling shows that current photosynthesis drives soil respiration publication-title: Nature – volume: 13 start-page: 1786 year: 2007 end-page: 1797 article-title: Forest soil CO flux: Uncovering the contribution and environmental responses of ectomycorrhizas publication-title: Global Change Biology – volume: 290 start-page: 293 year: 2007 end-page: 305 article-title: Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature publication-title: Plant and Soil – start-page: 237 year: 1975 end-page: 263 – volume: 12 start-page: 1733 year: 2006 end-page: 1747 article-title: Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna publication-title: Global Change Biology – volume: 32 year: 2005 article-title: Observed and predicted responses of plant growth to climate across Canada publication-title: Geophysical Research Letters – volume: 10 start-page: 360 year: 2007 end-page: 368 article-title: Rapid organic nitrogen cycling in taiga forest ecosystems publication-title: Ecosystems – start-page: 183 year: 2001 end-page: 237 – start-page: 1 year: 2006 end-page: 22 – volume: 452 start-page: 987 year: 2008 end-page: 990 article-title: Mountain pine beetle and forest carbon feedback to climate change publication-title: Nature – volume: 13 start-page: 2089 year: 2007 end-page: 2109 article-title: Carbon allocation in forest ecosystems publication-title: Global Change Biology – volume: 42 start-page: 542 year: 2006 end-page: 549 article-title: Soil microbial biomass activation by trace amounts of readily available substrate publication-title: Biology and Fertility of Soils – volume: 44B start-page: 81 year: 1992 end-page: 99 article-title: The global carbon dioxide flux in soil respiration and its relationship to climate publication-title: Tellus – volume: 31 start-page: 85 year: 1995 end-page: 98 article-title: Landscape patterns of free amino acids in arctic tundra soils publication-title: Biogeochemistry – volume: 440 start-page: 922 year: 2006 end-page: 925 article-title: Nitrogen limitation constrains sustainability of ecosystem response to CO publication-title: Nature – volume: 7 start-page: 269 year: 2001 end-page: 278 article-title: Productivity overshadows temperature in determining soil and ecosystem respiration across European forests publication-title: Global Change Biology – volume: 36 start-page: 1443 year: 2004 end-page: 1451 article-title: Microbial community response to nitrogen deposition in northern forest ecosystems publication-title: Soil Biology and Biochemistry – volume: 320 start-page: 1444 year: 2008 end-page: 1449 article-title: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests publication-title: Science – volume: 32 start-page: 1485 year: 2000 end-page: 1498 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biology and Biochemistry – volume: 41 start-page: 1210 year: 2009 end-page: 1220 article-title: Soil amino acid composition across a boreal forest successional sequence publication-title: Soil Biology and Biochemistry – ident: e_1_2_7_26_1 doi: 10.1023/A:1004417419288 – ident: e_1_2_7_75_1 doi: 10.1126/science.1074153 – ident: e_1_2_7_61_1 doi: 10.1016/j.soilbio.2005.08.020 – ident: e_1_2_7_8_1 doi: 10.1126/science.1155121 – ident: e_1_2_7_24_1 doi: 10.1073/pnas.0935903100 – ident: e_1_2_7_80_1 doi: 10.1111/j.1365-2486.2004.00866.x – ident: e_1_2_7_29_1 doi: 10.1046/j.1365-2486.1998.00128.x – ident: e_1_2_7_85_1 doi: 10.1111/j.1469-8137.2006.01712.x – ident: e_1_2_7_88_1 doi: 10.1007/s10021-009-9237-5 – ident: e_1_2_7_107_1 doi: 10.1093/icb/8.1.19 – ident: e_1_2_7_12_1 doi: 10.1029/2005GL023646 – ident: e_1_2_7_46_1 doi: 10.1890/05-0755 – ident: e_1_2_7_47_1 doi: 10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2 – ident: e_1_2_7_7_1 doi: 10.1016/j.apsoil.2007.05.002 – volume-title: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_7_51_1 – ident: e_1_2_7_25_1 doi: 10.2307/2261479 – ident: e_1_2_7_101_1 doi: 10.1111/j.1365-2486.2008.01600.x – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-2486.2004.00816.x – ident: e_1_2_7_62_1 doi: 10.1016/S0038-0717(00)00084-5 – start-page: 183 volume-title: Climate Change 2001: The Scientific Basis year: 2001 ident: e_1_2_7_81_1 – ident: e_1_2_7_105_1 doi: 10.1007/s00442-007-0804-1 – ident: e_1_2_7_93_1 doi: 10.1029/2001GB001840 – ident: e_1_2_7_40_1 doi: 10.1007/s10021-002-0227-0 – ident: e_1_2_7_64_1 doi: 10.1007/978-3-642-80913-2_12 – ident: e_1_2_7_37_1 doi: 10.1038/nature03138 – ident: e_1_2_7_106_1 doi: 10.1016/j.soilbio.2009.03.001 – ident: e_1_2_7_39_1 doi: 10.1890/04-1254 – ident: e_1_2_7_91_1 doi: 10.1890/03-8002 – ident: e_1_2_7_3_1 doi: 10.1073/pnas.0608998104 – ident: e_1_2_7_73_1 doi: 10.1029/97GB00059 – ident: e_1_2_7_18_1 doi: 10.1093/aob/mcg041 – ident: e_1_2_7_89_1 doi: 10.1890/1051-0761(1997)007[0444:RONLET]2.0.CO;2 – ident: e_1_2_7_15_1 doi: 10.1073/pnas.0702737104 – ident: e_1_2_7_16_1 doi: 10.1007/s10533-004-1773-7 – ident: e_1_2_7_103_1 doi: 10.1016/j.soilbio.2004.04.023 – ident: e_1_2_7_11_1 doi: 10.1128/AEM.02188-07 – ident: e_1_2_7_21_1 doi: 10.1111/j.1469-8137.2005.01571.x – ident: e_1_2_7_34_1 doi: 10.1890/070062 – ident: e_1_2_7_38_1 doi: 10.1146/annurev.energy.32.053006.141119 – ident: e_1_2_7_108_1 doi: 10.1029/2008GL037014 – ident: e_1_2_7_23_1 doi: 10.1007/978-0-387-76570-9_16 – ident: e_1_2_7_95_1 doi: 10.1175/2008JCLI2038.1 – ident: e_1_2_7_99_1 doi: 10.1111/j.1574-6941.2007.00337.x – ident: e_1_2_7_87_1 doi: 10.1890/02-4032 – ident: e_1_2_7_28_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_7_68_1 doi: 10.1111/j.1365-2486.2007.01420.x – ident: e_1_2_7_69_1 doi: 10.1038/nature02887 – ident: e_1_2_7_55_1 doi: 10.1029/2006GL025677 – ident: e_1_2_7_31_1 doi: 10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2 – ident: e_1_2_7_57_1 doi: 10.1007/s10021-007-9037-8 – ident: e_1_2_7_78_1 doi: 10.1007/s004420000615 – ident: e_1_2_7_98_1 doi: 10.1029/2006GB002868 – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-2486.2004.00878.x – start-page: 243 volume-title: Arctic Climate Impact Assessment year: 2005 ident: e_1_2_7_14_1 – ident: e_1_2_7_67_1 doi: 10.1890/02-5291 – ident: e_1_2_7_72_1 doi: 10.1146/annurev.es.26.110195.002353 – ident: e_1_2_7_97_1 doi: 10.1007/3-540-29449-X_1 – ident: e_1_2_7_44_1 doi: 10.1029/2008JG000728 – ident: e_1_2_7_32_1 doi: 10.1016/j.soilbio.2007.03.024 – ident: e_1_2_7_13_1 doi: 10.1111/j.1744-7909.2008.00750.x – ident: e_1_2_7_66_1 doi: 10.1111/j.1365-2435.2008.01479.x – ident: e_1_2_7_60_1 doi: 10.1038/nature06777 – ident: e_1_2_7_63_1 doi: 10.1007/s11104-006-9162-8 – ident: e_1_2_7_71_1 doi: 10.1126/science.277.5325.504 – ident: e_1_2_7_50_1 doi: 10.1111/j.1365-2486.2006.01210.x – ident: e_1_2_7_86_1 doi: 10.1038/nature04486 – ident: e_1_2_7_102_1 doi: 10.1007/s00442-003-1419-9 – ident: e_1_2_7_2_1 doi: 10.1016/j.agee.2006.01.004 – ident: e_1_2_7_20_1 doi: 10.1890/080005 – volume: 35 start-page: 955 year: 1998 ident: e_1_2_7_6_1 article-title: Comparison of fungal/bacterial ratios in a pH gradient using physiological and PLFA‐based techiques publication-title: Soil Biology and Biochemistry – ident: e_1_2_7_19_1 doi: 10.1007/s10021-005-0105-7 – ident: e_1_2_7_43_1 doi: 10.1007/s10021-002-0130-8 – ident: e_1_2_7_49_1 doi: 10.1038/35081058 – ident: e_1_2_7_41_1 doi: 10.1111/j.1365-2745.2008.01453.x – ident: e_1_2_7_22_1 doi: 10.1029/2002GL016848 – ident: e_1_2_7_77_1 doi: 10.1016/j.agrformet.2007.09.006 – ident: e_1_2_7_52_1 doi: 10.1046/j.1365-2486.2001.00412.x – ident: e_1_2_7_83_1 doi: 10.1890/1051-0761(2002)012[0937:NEPACM]2.0.CO;2 – ident: e_1_2_7_35_1 doi: 10.1111/j.1365-2486.2007.01450.x – ident: e_1_2_7_110_1 doi: 10.1890/1051-0761(2007)017[0203:NEOCAC]2.0.CO;2 – ident: e_1_2_7_36_1 doi: 10.1890/08-0806.1 – ident: e_1_2_7_65_1 doi: 10.1007/s004420100693 – ident: e_1_2_7_74_1 doi: 10.1029/2000GB001298 – ident: e_1_2_7_53_1 doi: 10.1016/S0038-0717(01)00175-4 – ident: e_1_2_7_59_1 doi: 10.1038/nature03226 – ident: e_1_2_7_48_1 doi: 10.1046/j.1469-8137.2002.00417.x – ident: e_1_2_7_56_1 doi: 10.1007/BF00000940 – ident: e_1_2_7_58_1 doi: 10.1139/x06-217 – ident: e_1_2_7_27_1 doi: 10.1890/06-1847.1 – ident: e_1_2_7_10_1 doi: 10.1038/415381a – ident: e_1_2_7_30_1 doi: 10.1111/j.1461-0248.2008.01164.x – ident: e_1_2_7_42_1 doi: 10.1175/JCLI3800.1 – ident: e_1_2_7_94_1 doi: 10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2 – ident: e_1_2_7_76_1 doi: 10.1007/s00374-005-0049-2 – ident: e_1_2_7_54_1 doi: 10.1029/2008GB003250 – ident: e_1_2_7_84_1 doi: 10.1139/b04-123 – ident: e_1_2_7_100_1 doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 – ident: e_1_2_7_109_1 doi: 10.1111/j.1365-2486.2007.01415.x – ident: e_1_2_7_4_1 doi: 10.1046/j.1365-2486.2003.00629.x – ident: e_1_2_7_5_1 doi: 10.1023/A:1019637807021 – ident: e_1_2_7_82_1 doi: 10.1034/j.1600-0889.1992.t01-1-00001.x – ident: e_1_2_7_45_1 doi: 10.1111/j.1365-2486.2007.01383.x – ident: e_1_2_7_79_1 doi: 10.1073/pnas.0509478102 – ident: e_1_2_7_70_1 doi: 10.2136/sssaj1999.03615995006300020008x – ident: e_1_2_7_104_1 doi: 10.1038/nature05040 – ident: e_1_2_7_17_1 doi: 10.1038/377199a0 – ident: e_1_2_7_96_1 doi: 10.2134/agronmonogr22 – ident: e_1_2_7_92_1 doi: 10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2 – ident: e_1_2_7_90_1 doi: 10.1890/03-4037 |
| SSID | ssj0006750 |
| Score | 2.4485607 |
| Snippet | 1. Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell '' Whittaker... 1. Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker... Summary 1. Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell &... 1. Most current climate–carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker... Most current climate - carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker... Summary1.Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell &... |
| SourceID | proquest pascalfrancis crossref wiley jstor fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 840 |
| SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Atmospheric models biogeochemical cycles Biogeochemistry Biological and medical sciences Carbon Carbon cycle carbon dioxide carbon sequestration climate Climate change Climate change mitigation Climate cycles Climate models Climate system Decomposition degradation Demecology Ecosystem models Ecosystems Emissions energy Forest soils Fundamental and applied biological sciences. Psychology General aspects heterotrophic respiration heterotrophs Hydrology issues and policy land cover methane microbial communities mycorrhizae mycorrhizas net ecosystem production net primary production nitrogen Plants and fungi Primary production primary productivity roots Simulation soil carbon Soil dynamics Soil ecology Soil microorganisms Soil respiration Special Feature: Plant-Soil Interactions and the Carbon Cycle Species composition species diversity temperature Terrestrial ecosystems Wildfires |
| Title | changing global carbon cycle: linking plant-soil carbon dynamics to global consequences |
| URI | https://www.jstor.org/stable/27754276 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2745.2009.01529.x https://www.proquest.com/docview/208887554 https://www.proquest.com/docview/20796151 https://www.proquest.com/docview/46357995 |
| Volume | 97 |
| WOSCitedRecordID | wos000268928200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1365-2745 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0006750 issn: 0022-0477 databaseCode: WIN dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2745 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006750 issn: 0022-0477 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7RbStxoVCoGlqWHLgGeR3nx9yg3RWgaoWAhV5QZDtxtVJJqs0WsTfegTfkSToTZ8NGAqlC3CzFdmJ7PPM5M_4G4BmXiAK05kEuQxYIm8tAG8YCw2wYpYk1zmP66SyZTtPzc_mujX-iuzCOH6L74UY7o9HXtMGVrvub3N2nElFLO4mmSD5HPLnNUYyjAWyfvp_Mzjq9jNCYrbnDmUiSflzPH_vqGastq6p11CKFUKoaZ9G69Bc9fLqJchszNdn7nwO8D_dasOq_dNL1AO4U5T7suvSVq33YeVUhtMTC7rjhvl49hC8odn5zmRhNou_YRnyjFroqfbPCTl74bbYG_-oSF_XXj591Ne-q5KtSfZ2b2l9WXeONcO9HMJuMP568DtoMDoGJpJCB0OTnjRWR4IWFjkKrmBnx3IRcS26NNCrXIheapRbPLTIXSsswt5wXqtBMhwcwKKuyOAQfj14jKSIdJtqI1IQytrmNEC3xUcwLyT1I1kuVmZbenLJsXGYbxxycz4zmk5JvyqyZz-y7B6Ou5ZWj-LhFm0OUhkxdoCbOZh84-X_JAcvoQw4aEen64kQyyJPYg2FPZn5XQLWKAIJ5cLQWoqzVJDW-NUU7gKDPg6fdU1QB5NdRZVFdU5VEEjD9ew1BrINSRh7EjcTdepzZ2_EJlR7_a8MjuOv8bxSVdwyD5eK6eAI75ttyXi-G7RYdwtbnN9Mb_zg2eQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BaQUXHoWqodDmwDXI6zgPc4NqqxaWFRIt9IIsP2K0UkmqzRaxN_4D_5BfwkySDRsJpApxixTbie3xzGfP-BuAZ1wiCjCGR07GLBLeychYxiLLfJzkmbetx_TDJJtO8_Nz-a5LB0R3YVp-iP7AjVZGo69pgdOB9HCVtxeqRNLxTqItks8RUN4SiDsoj8PHk2mvlhEZsxV1OBNZNgzr-WNLA1t10-tqFbRIEZS6xkH0bfaLATxdB7mNlTq691_7dx_udmA1fNlK1wO4UZTbsNWmr1xuw-arCqElPmyNG-7r5UP4hGIXNpeJ0SSGLdtIaPXcVGVol9jIi7DL1hBeXuCk_vz-o65mfRG3LPWXma3DRdVXXgv3fgRnR-PTw-Ooy-AQ2UQKGQlDft5UEwleXJgk9prZEXc25kZyb6XVzggnDMs97lukE9rI2HnOC10YZuId2CirstiFELdeIykSE2fGitzGMvXOJ4iW-CjlheQBZKu5UrajN6csGxdqbZuD46loPCn5plTNeKpvAYz6mpctxcc16uyiOCj9GTWxOnvPyf9LDlhGP7LTyEjfFieSQZ6lAewPhOZ3AVSrCCBYAHsrKVKdJqnxqznaAQR9ARz0b1EFkF9Hl0V1RUUyScD07yUEsQ5KmQSQNiJ37X6q1-NDenr8rxUP4Pbx6duJmpxM3-zBndYXRxF6T2BjMb8qnsKm_bqY1fP9ZrX-Ak7yOCw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BtkVceBSqhkKbA9cgr-M8zA3aXfFYrSpgUS8o8iNGK5Vktdki9sZ_4B_yS5hJsmEjgVQhbpZiO7E9nvmcGX8D8JRLRAFa88DKkAXCWRlow1hgmAujNHGm8Zh-nCTTaXpxIc_bdEB0F6bhh-h-uNHOqPU1bfB8YV1_lzcXqkTU8k6iLZLPEFDuCMopM4Cds3fj2aRTzIiN2YY8nIkk6Qf2_LGvnrW66VS5CVukGEpV4TS6Jv9FD6Buw9zaTo3v_tcR3oM7LVz1XzTydR9u5MU-7DUJLNf7sPuyRHCJhb1RzX69fgCfUPD8-joxGkW_4RvxjVrqsvDNGjt57rf5GvzFJS7rz-8_qnLeVbHrQn2Zm8pflV3jrYDvhzAbjz6cvgraHA6BiaSQgdDk6Y0V0eCFuY5Cp5gZcmtCriV3RhpltbBCs9ThyUVaobQMreM8V7lmOjyAQVEW-SH4ePgaShHpMNFGpCaUsbMuQrzEhzHPJfcg2axVZlqCc8qzcZltHXRwPjOaT0q_KbN6PrNvHgy7louG5OMabQ5RHDL1GXVxNnvPyQNMLlhGH3JQy0jXFyeaQZ7EHhz3hOZ3BVSsCCGYB0cbKcpaXVLhW1O0BAj7PDjpnqISIM-OKvLyiqokkqDp32sI4h2UMvIgrkXu2uPM3oxOqfToXxuewK3zs3E2eT19ewS3G2ccheg9hsFqeZU_gV3zdTWvlsftdv0FgnE41Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=changing+global+carbon+cycle%3A+linking+plant-soil+carbon+dynamics+to+global+consequences&rft.jtitle=The+Journal+of+ecology&rft.au=Stuart+Chapin+III%2C+F&rft.au=McFarland%2C+Jack&rft.au=David+McGuire%2C+A&rft.au=Euskirchen%2C+Eugenie+S&rft.date=2009-09-01&rft.pub=Oxford%2C+UK+%3A+Blackwell+Publishing+Ltd&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=97&rft.issue=5&rft.spage=840&rft.epage=850&rft_id=info:doi/10.1111%2Fj.1365-2745.2009.01529.x&rft.externalDocID=US201301666092 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |