Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering

The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When facing this abundance of data, decision makers must identify the crucial information to build upon an effective and operative prediction model wi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational economics Ročník 61; číslo 2; s. 715 - 741
Hlavní autori: Ben Jabeur, Sami, Stef, Nicolae, Carmona, Pedro
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2023
Springer
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0927-7099, 1572-9974
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When facing this abundance of data, decision makers must identify the crucial information to build upon an effective and operative prediction model with a high quality of the estimated output. The feature selection technique can be used to select significant variables without lowering the quality of performance classification. In addition, one of the main goals of bankruptcy prediction is to identify the model specification with the strongest explanatory power. Building on this premise, an improved XGBoost algorithm based on feature importance selection (FS-XGBoost) is proposed. FS-XGBoost is compared with seven machine learning algorithms based on three well-known feature selection methods that are frequently used in bankruptcy prediction: stepwise discriminant analysis, stepwise logistic regression, and partial least squares discriminant analysis (PLS-DA). Our experimental results confirm that FS-XGBoost provides more accurate predictions, outperforming traditional feature selection methods.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0927-7099
1572-9974
DOI:10.1007/s10614-021-10227-1