Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends

The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called “big data” challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and commun...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BioData mining Ročník 7; číslo 1; s. 22
Hlavní autori: Mohammed, Emad A, Far, Behrouz H, Naugler, Christopher
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 29.10.2014
Springer Nature B.V
Predmet:
ISSN:1756-0381, 1756-0381
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called “big data” challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. The MapReduce programming framework uses two tasks common in functional programming: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields.
AbstractList Doc number: 22 Abstract: The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data" challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. The MapReduce programming framework uses two tasks common in functional programming: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields.
The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data" challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. THE MAPREDUCE PROGRAMMING FRAMEWORK USES TWO TASKS COMMON IN FUNCTIONAL PROGRAMMING: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields.
The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data" challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. THE MAPREDUCE PROGRAMMING FRAMEWORK USES TWO TASKS COMMON IN FUNCTIONAL PROGRAMMING: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields.The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data" challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. THE MAPREDUCE PROGRAMMING FRAMEWORK USES TWO TASKS COMMON IN FUNCTIONAL PROGRAMMING: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields.
The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called “big data” challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. The MapReduce programming framework uses two tasks common in functional programming: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields.
ArticleNumber 22
Author Far, Behrouz H
Mohammed, Emad A
Naugler, Christopher
AuthorAffiliation 2 Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, AB, Canada
1 Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
AuthorAffiliation_xml – name: 2 Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, AB, Canada
– name: 1 Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
Author_xml – sequence: 1
  givenname: Emad A
  surname: Mohammed
  fullname: Mohammed, Emad A
  organization: Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary
– sequence: 2
  givenname: Behrouz H
  surname: Far
  fullname: Far, Behrouz H
  organization: Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary
– sequence: 3
  givenname: Christopher
  surname: Naugler
  fullname: Naugler, Christopher
  email: Christopher.Naugler@cls.ab.ca
  organization: Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25383096$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFTEUxYNU7IduXUrATTfTJpmZTOJCKMWqUBFE1-FOkpmmzkvGJFPpf9-8vvp4FoWuEnJ_53DvzTlEez54i9BrSk4oFfyUdi2vSC1o1VWMPUMH24e9nfs-OkzpmhDOSFu_QPusrUVNJD9AN2fzPDkN2QWfcBhwvrL4C8zfrFm0xXMMY4TVyvkRD-Vif4f4E-eA9eR8kU24dyM2kAGDh-k2ufQO6yVG6zOewJukYbalZvCw5CVanEvJpJfo-QBTsq8eziP04-LD9_NP1eXXj5_Pzy4r3UqSK0O1FKLmtTHU0FY20PV9LVupCbeasWEADa0hUgMIYigfBqkp0dATITrN6iP0fuM7L_3KGl3aijCpOboVxFsVwKm_K95dqTHcqIaxpmyoGBw_GMTwa7Epq5VL2k5lNhuWpCgvJCNU8iegrJNc8FY8BWVlWk66gr59hF6HJZZd31NUNEJQWqg3u3NuB_zz0QU42QA6hpSiHbYIJWqdJLUOi1qHRXWKrTfXPBJol-9jUvbkpv_LTjeyVPz9aONOu_9W3AGqudvV
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2015_10_012
crossref_primary_10_1088_1757_899X_782_2_022011
crossref_primary_10_1080_10408363_2018_1561640
crossref_primary_10_3390_scipharm92040064
crossref_primary_10_1109_JBHI_2018_2879381
crossref_primary_10_1016_j_jbi_2018_03_014
crossref_primary_10_1109_ACCESS_2018_2857499
crossref_primary_10_1109_TBME_2015_2422751
crossref_primary_10_1002_widm_1206
crossref_primary_10_1155_2017_6120820
crossref_primary_10_2196_14017
crossref_primary_10_1371_journal_pone_0145791
crossref_primary_10_1007_s00530_020_00736_8
crossref_primary_10_5858_arpa_2015_0507_RA
crossref_primary_10_1080_17517575_2020_1812005
crossref_primary_10_1109_ACCESS_2016_2626316
crossref_primary_10_1109_ACCESS_2018_2883149
crossref_primary_10_1109_ACCESS_2023_3332030
crossref_primary_10_1177_1932296815583505
crossref_primary_10_4018_IJEACH_2019010108
crossref_primary_10_1155_2021_6635463
crossref_primary_10_1155_2017_6261802
crossref_primary_10_1186_s12859_017_1881_8
crossref_primary_10_1186_s40537_023_00801_9
crossref_primary_10_1007_s00521_016_2780_z
crossref_primary_10_1080_10426914_2023_2238056
crossref_primary_10_1016_j_ijmedinf_2018_03_013
crossref_primary_10_1007_s11277_018_5331_3
crossref_primary_10_1108_TQM_02_2021_0051
crossref_primary_10_3390_healthcare6020054
crossref_primary_10_1093_gigascience_giaa042
crossref_primary_10_1007_s11227_016_1883_8
crossref_primary_10_1109_JBHI_2015_2450362
crossref_primary_10_3390_ijerph192215231
crossref_primary_10_1007_s10844_019_00557_w
crossref_primary_10_1016_j_jbi_2019_103311
crossref_primary_10_1016_j_procs_2020_03_078
crossref_primary_10_1080_12460125_2020_1869432
crossref_primary_10_1177_14604582241294217
crossref_primary_10_1093_gigascience_giy052
crossref_primary_10_3390_su15086655
crossref_primary_10_1007_s10115_018_1248_0
crossref_primary_10_4018_JGIM_2018070104
crossref_primary_10_46632_daai_5_1_5
crossref_primary_10_1038_s41598_018_36180_y
crossref_primary_10_4018_IJAMC_2018100102
Cites_doi 10.1093/bioinformatics/btp236
10.1186/1471-2105-14-S4-S1
10.1186/1471-2105-11-S12-S1
10.1364/JOSAA.1.000612
10.1186/1752-0509-8-5
10.1109/SERVICES.2011.95
10.1155/2013/361327
10.1007/978-1-4471-4474-8_22
10.1109/TSMCB.2003.818557
10.1186/1745-6150-7-43
10.1186/1471-2105-15-30
10.1016/S0166-2236(98)01300-9
10.1145/640075.640119
10.1109/IPDPS.2009.5161005
10.1016/j.bbrc.2012.08.101
10.1186/1471-2105-13-200
10.1186/1471-2105-7-3
10.1142/S1793536909000047
10.1007/s11606-013-2455-8
10.1017/CBO9780511598951.003
10.1007/BF00308809
10.1159/isbn.978-1-908541-19-2
10.1136/amiajnl-2012-001093
10.1109/CLOUD.2012.123
10.1145/1327452.1327492
10.1186/1472-6807-13-S1-S3
10.1111/j.1574-6968.1999.tb13575.x
10.1186/1471-2148-7-41
10.1103/RevModPhys.65.413
10.1186/1748-7188-7-12
10.1109/WCSE.2010.93
10.1097/01.ccm.0000435667.15070.9c
10.1186/1471-2105-13-324
10.1109/MSST.2010.5496972
10.1056/NEJMc1314515
10.1186/1751-0473-6-13
10.1145/1272998.1273005
10.1186/1472-6947-12-151
10.1016/j.jneuroim.2010.05.016
10.1007/978-3-642-30567-2_16
10.1186/1471-2164-14-425
10.1007/978-3-319-06932-6_51
10.14778/1687553.1687609
10.1007/978-3-319-03746-2_50
10.1118/1.3660200
10.1145/1454115.1454152
10.3389/neuro.09.031.2009
10.1093/bioinformatics/bts647
10.1093/bioinformatics/btt528
10.1101/gr.107524.110
10.1109/JPROC.2008.917757
10.1090/S0002-9939-1976-0416888-0
10.1145/1376616.1376726
10.1016/S0079-6603(00)66025-7
10.1186/2047-2501-2-3
10.1109/eScience.2008.62
10.1093/bioinformatics/btl379
10.1016/j.jom.2013.03.001
ContentType Journal Article
Copyright Mohammed et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
2014 Mohammed et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Copyright © 2014 Mohammed et al.; licensee BioMed Central Ltd. 2014 Mohammed et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Mohammed et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
– notice: 2014 Mohammed et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
– notice: Copyright © 2014 Mohammed et al.; licensee BioMed Central Ltd. 2014 Mohammed et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QO
7SC
7X7
7XB
8AL
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1186/1756-0381-7-22
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Public Health Database (subscription)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Technology collection
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Public Health
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed
Computer and Information Systems Abstracts
Engineering Research Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-0381
EndPage 22
ExternalDocumentID PMC4224309
3486227051
25383096
10_1186_1756_0381_7_22
Genre Journal Article
Review
GroupedDBID ---
0R~
23N
2WC
4.4
5GY
5VS
6J9
7X7
8C1
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DWQXO
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
ISR
ITC
K6V
K7-
KQ8
LK8
M48
M7P
ML~
M~E
O5R
O5S
OK1
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
~8M
AAYXX
AFFHD
CITATION
2VQ
ALIPV
C1A
IPNFZ
NPM
RIG
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c590t-d1c988363dd1d1594a7bb3959c06ec22ffaca5d09caa80d16ff9c10cab0887c23
IEDL.DBID RSV
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346027900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1756-0381
IngestDate Tue Nov 04 01:56:57 EST 2025
Fri Sep 05 06:25:49 EDT 2025
Tue Oct 07 09:24:43 EDT 2025
Fri Sep 05 14:22:43 EDT 2025
Sat Nov 29 14:49:03 EST 2025
Mon Jul 21 05:22:14 EDT 2025
Tue Nov 18 21:23:55 EST 2025
Sat Nov 29 06:06:38 EST 2025
Sat Sep 06 07:24:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Clinical data analysis
Distributed programming
Clinical big data analysis
Hadoop
Big data
Bioinformatics
MapReduce
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-d1c988363dd1d1594a7bb3959c06ec22ffaca5d09caa80d16ff9c10cab0887c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://link.springer.com/10.1186/1756-0381-7-22
PMID 25383096
PQID 1621848811
PQPubID 55347
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4224309
proquest_miscellaneous_1642220196
proquest_miscellaneous_1627968658
proquest_miscellaneous_1622594607
proquest_journals_1621848811
pubmed_primary_25383096
crossref_primary_10_1186_1756_0381_7_22
crossref_citationtrail_10_1186_1756_0381_7_22
springer_journals_10_1186_1756_0381_7_22
PublicationCentury 2000
PublicationDate 2014-10-29
PublicationDateYYYYMMDD 2014-10-29
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BioData mining
PublicationTitleAbbrev BioData Mining
PublicationTitleAlternate BioData Min
PublicationYear 2014
Publisher BioMed Central
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
References M Gaggero (120_CR54) 2008
B Xu (120_CR48) 2012; 426
F Omri (120_CR36) 2012
S Zhao (120_CR69) 2013; 14
Z Wu (120_CR72) 2009; 1
W Wang (120_CR30) 2011
W-P Chen (120_CR37) 2014; 24
L Wang (120_CR73) 2012
TA Tatusova (120_CR56) 1999; 174
Y Aphinyanaphongs (120_CR31) 2012; 192
S Herculano-Houzel (120_CR91) 2009; 3
B MacLean (120_CR45) 2006; 22
JG Reid (120_CR71) 2014; 15
L Feldkamp (120_CR77) 1984; 1
ME Colosimo (120_CR64) 2011; 6
J Dean (120_CR11) 2008; 51
JS Almeida (120_CR63) 2012; 7
M Hämäläinen (120_CR89) 1993; 65
AB Friedman (120_CR81) 2014; 370
SL Peyton Jones (120_CR12) 1987
GF Coulouris (120_CR3) 2005
A Darling (120_CR57) 2003; 2003
A McKenna (120_CR44) 2010; 20
A Matsunaga (120_CR55) 2008
S Devaraj (120_CR80) 2013; 31
W-P Lee (120_CR66) 2014; 8
E Kohlwey (120_CR34) 2011
S Yaramakala (120_CR32) 2005
J Gurtowski (120_CR70) 2012; 15.13
Y-L Lin (120_CR46) 2013; 2013
X Qiu (120_CR53) 2009
Y Wang (120_CR62) 2013; 14
L Gao (120_CR65) 2007; 7
D Markonis (120_CR75) 2012
H Horiguchi (120_CR33) 2012; 12
120_CR21
120_CR22
DE Bell (120_CR6) 1988; 1
120_CR16
A Rajaraman (120_CR2) 2012
GS Sadasivam (120_CR58) 2010
M Isard (120_CR52) 2007; 41
B Meng (120_CR76) 2011; 38
RC Taylor (120_CR26) 2010; 11
G Kumar (120_CR92) 2014; 42
M de Oliveira Branco (120_CR4) 2009
L Dai (120_CR27) 2012; 7
H Huang (120_CR47) 2013; 29
MA Musen (120_CR79) 2014
W Raghupathi (120_CR5) 2014; 2
D Purves (120_CR88) 1990
W Gropp (120_CR51) 1999
RS Kaplan (120_CR78) 2011; 89
MJ Brodie (120_CR85) 2012
F Wang (120_CR74) 2011
N Raghava (120_CR35) 2011
M Jonas (120_CR29) 2014
120_CR28
N Satish (120_CR9) 2009
NV Chawla (120_CR83) 2013; 28
120_CR23
H Nordberg (120_CR40) 2013; 29
T White (120_CR14) 2012
120_CR24
120_CR25
DR Bean (120_CR49) 1976; 55
C-F Juang (120_CR67) 2004; 34
H Braak (120_CR90) 1991; 82
RE Bryant (120_CR13) 2007
GM Shepherd (120_CR87) 1998; 21
J Xiaojing (120_CR18) 2010
B Zhang (120_CR68) 2013; 13
A Thusoo (120_CR19) 2009; 2
R Díaz-Uriarte (120_CR61) 2006; 7
S Shuman (120_CR1) 2000; 66
K Shvachko (120_CR15) 2010
M Olson (120_CR17) 2010; 1
AE Youssef (120_CR93) 2014; 2
S Schönherr (120_CR59) 2012; 13
120_CR41
120_CR42
JD Owens (120_CR8) 2008; 96
M Mazurek (120_CR82) 2014
Y-J Chang (120_CR43) 2012
MC Schatz (120_CR50) 2009; 25
AV Nguyen (120_CR39) 2011
PF Fabene (120_CR86) 2010; 224
S Lewis (120_CR60) 2012; 13
CM Cusack (120_CR84) 2013; 20
B He (120_CR10) 2008
C Olston (120_CR20) 2008
I Foster (120_CR7) 2003
K Zhang (120_CR38) 2003
References_xml – volume-title: The Implementation of Functional Programming Languages (Prentice-Hall International Series in Computer Science)
  year: 1987
  ident: 120_CR12
– volume: 25
  start-page: 1363
  issue: 11
  year: 2009
  ident: 120_CR50
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp236
– volume: 14
  start-page: 1
  issue: 16
  year: 2013
  ident: 120_CR62
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-S4-S1
– volume: 11
  start-page: S1
  issue: Suppl 12
  year: 2010
  ident: 120_CR26
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-S12-S1
– volume: 1
  start-page: 612
  issue: 6
  year: 1984
  ident: 120_CR77
  publication-title: JOSA A
  doi: 10.1364/JOSAA.1.000612
– volume-title: Distributed Systems: Concepts and Design: Pearson Education
  year: 2005
  ident: 120_CR3
– volume: 15.13
  start-page: 11
  year: 2012
  ident: 120_CR70
  publication-title: Curr Protoc Bioinformatics
– ident: 120_CR16
– start-page: 6
  volume-title: Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers: 2009
  year: 2009
  ident: 120_CR53
– volume: 8
  start-page: 5
  issue: 1
  year: 2014
  ident: 120_CR66
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-8-5
– start-page: 597
  volume-title: Services (SERVICES), 2011 IEEE World Congress on: 2011
  year: 2011
  ident: 120_CR34
  doi: 10.1109/SERVICES.2011.95
– volume: 2013
  start-page: 1
  year: 2013
  ident: 120_CR46
  publication-title: Int J Genomics
  doi: 10.1155/2013/361327
– start-page: 643
  volume-title: Biomedical Informatics
  year: 2014
  ident: 120_CR79
  doi: 10.1007/978-1-4471-4474-8_22
– volume: 34
  start-page: 997
  issue: 2
  year: 2004
  ident: 120_CR67
  publication-title: Syst Man Cybern B Cybern IEEE Trans on
  doi: 10.1109/TSMCB.2003.818557
– volume: 7
  start-page: 43
  issue: 1
  year: 2012
  ident: 120_CR27
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-7-43
– ident: 120_CR22
– ident: 120_CR41
– volume: 1
  start-page: 14
  issue: 3
  year: 2010
  ident: 120_CR17
  publication-title: IQT Quart
– start-page: 482
  volume-title: Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE International Conference on: 2011
  year: 2011
  ident: 120_CR35
– ident: 120_CR42
– volume: 15
  start-page: 30
  issue: 1
  year: 2014
  ident: 120_CR71
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-30
– volume: 21
  start-page: 460
  issue: 11
  year: 1998
  ident: 120_CR87
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(98)01300-9
– start-page: 332
  volume-title: Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology: 2003
  year: 2003
  ident: 120_CR38
  doi: 10.1145/640075.640119
– start-page: 1
  volume-title: Parallel & Distributed Processing, 2009 IPDPS 2009 IEEE International Symposium on: 2009
  year: 2009
  ident: 120_CR9
  doi: 10.1109/IPDPS.2009.5161005
– volume: 426
  start-page: 395
  issue: 3
  year: 2012
  ident: 120_CR48
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2012.08.101
– volume: 2
  start-page: 1
  issue: 2
  year: 2014
  ident: 120_CR93
  publication-title: Int J Ambient Syst Appl
– start-page: 1464
  volume-title: AMIA Annual Symposium Proceedings: 2011
  year: 2011
  ident: 120_CR30
– volume: 13
  start-page: 200
  issue: 1
  year: 2012
  ident: 120_CR59
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-200
– volume: 7
  start-page: 3
  issue: 1
  year: 2006
  ident: 120_CR61
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-3
– volume: 1
  start-page: 1
  issue: 01
  year: 2009
  ident: 120_CR72
  publication-title: Adv Adapt Data Anal
  doi: 10.1142/S1793536909000047
– volume: 28
  start-page: 660
  issue: 3
  year: 2013
  ident: 120_CR83
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-013-2455-8
– volume-title: AAAI Spring Symposium: Computational Physiology: 2011
  year: 2011
  ident: 120_CR39
– volume-title: Using MPI: Portable Parallel Programming With the Message-Passing Interface
  year: 1999
  ident: 120_CR51
– volume: 24
  start-page: 1383
  issue: 1
  year: 2014
  ident: 120_CR37
  publication-title: Biomed Mater Eng
– volume: 1
  start-page: 9
  year: 1988
  ident: 120_CR6
  publication-title: Decis Mak
  doi: 10.1017/CBO9780511598951.003
– volume: 82
  start-page: 239
  issue: 4
  year: 1991
  ident: 120_CR90
  publication-title: Acta Neuropathol
  doi: 10.1007/BF00308809
– volume-title: Fast Facts: Epilepsy
  year: 2012
  ident: 120_CR85
  doi: 10.1159/isbn.978-1-908541-19-2
– volume: 192
  start-page: 667
  year: 2012
  ident: 120_CR31
  publication-title: Stud Health Technol Inform
– volume: 20
  start-page: 134
  issue: 1
  year: 2013
  ident: 120_CR84
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-001093
– start-page: 155
  volume-title: Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on: 2012
  year: 2012
  ident: 120_CR43
  doi: 10.1109/CLOUD.2012.123
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 120_CR11
  publication-title: Commun ACM
  doi: 10.1145/1327452.1327492
– ident: 120_CR21
– volume: 13
  start-page: S3
  issue: Suppl 1
  year: 2013
  ident: 120_CR68
  publication-title: BMC Struct Biol
  doi: 10.1186/1472-6807-13-S1-S3
– volume: 174
  start-page: 247
  issue: 2
  year: 1999
  ident: 120_CR56
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.1999.tb13575.x
– ident: 120_CR25
– volume: 7
  start-page: 41
  issue: 1
  year: 2007
  ident: 120_CR65
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-7-41
– volume: 65
  start-page: 413
  issue: 2
  year: 1993
  ident: 120_CR89
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.65.413
– volume: 7
  start-page: 12
  issue: 1
  year: 2012
  ident: 120_CR63
  publication-title: Algorithms Mol Biol
  doi: 10.1186/1748-7188-7-12
– volume-title: Mining of Massive Datasets
  year: 2012
  ident: 120_CR2
– start-page: 17
  volume-title: 2010 Second WRI World Congress on Software Engineering: 2010
  year: 2010
  ident: 120_CR18
  doi: 10.1109/WCSE.2010.93
– volume: 42
  start-page: 583
  issue: 3
  year: 2014
  ident: 120_CR92
  publication-title: Crit Care Med
  doi: 10.1097/01.ccm.0000435667.15070.9c
– volume: 13
  start-page: 324
  issue: 1
  year: 2012
  ident: 120_CR60
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-324
– start-page: 1
  volume-title: Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on: 2010
  year: 2010
  ident: 120_CR15
  doi: 10.1109/MSST.2010.5496972
– volume: 89
  start-page: 46
  issue: 9
  year: 2011
  ident: 120_CR78
  publication-title: Harv Bus Rev
– volume-title: Distributed Data Management for Large Scale Applications
  year: 2009
  ident: 120_CR4
– volume: 370
  start-page: 484
  issue: 5
  year: 2014
  ident: 120_CR81
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc1314515
– start-page: 164
  volume-title: ICPADS: 2012
  year: 2012
  ident: 120_CR73
– volume: 6
  start-page: 13
  year: 2011
  ident: 120_CR64
  publication-title: Source Code Biol Med
  doi: 10.1186/1751-0473-6-13
– volume: 41
  start-page: 59
  issue: 3
  year: 2007
  ident: 120_CR52
  publication-title: ACM SIGOPS Oper Syst Rev
  doi: 10.1145/1272998.1273005
– start-page: 1
  volume-title: Data-intensive supercomputing: The case for DISC
  year: 2007
  ident: 120_CR13
– start-page: 1
  volume-title: Hadoop-gis: A high performance query system for analytical medical imaging with mapreduce
  year: 2011
  ident: 120_CR74
– volume: 12
  start-page: 151
  issue: 1
  year: 2012
  ident: 120_CR33
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-12-151
– volume: 224
  start-page: 22
  issue: 1
  year: 2010
  ident: 120_CR86
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2010.05.016
– ident: 120_CR24
– start-page: 4
  volume-title: Data Mining, Fifth IEEE International Conference on: 2005
  year: 2005
  ident: 120_CR32
– volume-title: Hadoop: The Definitive Guide
  year: 2012
  ident: 120_CR14
– ident: 120_CR28
– start-page: 192
  volume-title: Networked Digital Technologies
  year: 2012
  ident: 120_CR36
  doi: 10.1007/978-3-642-30567-2_16
– volume-title: Body and Brain: A Trophic Theory of Neural Connections
  year: 1990
  ident: 120_CR88
– volume: 2003
  start-page: 1
  year: 2003
  ident: 120_CR57
  publication-title: Proc Cluster World
– volume: 14
  start-page: 425
  issue: 1
  year: 2013
  ident: 120_CR69
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-425
– start-page: 527
  volume-title: Beyond Databases, Architectures, and Structures
  year: 2014
  ident: 120_CR82
  doi: 10.1007/978-3-319-06932-6_51
– volume: 2
  start-page: 1626
  issue: 2
  year: 2009
  ident: 120_CR19
  publication-title: Proc VLDB Endowment
  doi: 10.14778/1687553.1687609
– start-page: 679
  volume-title: Annual Update in Intensive Care and Emergency Medicine 2014
  year: 2014
  ident: 120_CR29
  doi: 10.1007/978-3-319-03746-2_50
– volume-title: Cloud Computing and Its Applications
  year: 2008
  ident: 120_CR54
– volume: 38
  start-page: 6603
  issue: 12
  year: 2011
  ident: 120_CR76
  publication-title: Med Phys
  doi: 10.1118/1.3660200
– start-page: 1
  volume-title: HISB: 2012
  year: 2012
  ident: 120_CR75
– start-page: 260
  volume-title: Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques: 2008
  year: 2008
  ident: 120_CR10
  doi: 10.1145/1454115.1454152
– volume-title: The Grid 2: Blueprint for a new Computing Infrastructure
  year: 2003
  ident: 120_CR7
– volume: 3
  start-page: 1
  year: 2009
  ident: 120_CR91
  publication-title: Front Hum Neurosci
  doi: 10.3389/neuro.09.031.2009
– volume: 29
  start-page: 135
  issue: 1
  year: 2013
  ident: 120_CR47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts647
– volume: 29
  start-page: 3014
  issue: 23
  year: 2013
  ident: 120_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt528
– volume: 20
  start-page: 1297
  issue: 9
  year: 2010
  ident: 120_CR44
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 96
  start-page: 879
  issue: 5
  year: 2008
  ident: 120_CR8
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2008.917757
– start-page: 2
  volume-title: Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud: 2010
  year: 2010
  ident: 120_CR58
– volume: 55
  start-page: 385
  issue: 2
  year: 1976
  ident: 120_CR49
  publication-title: Proc Am Math Soc
  doi: 10.1090/S0002-9939-1976-0416888-0
– start-page: 1099
  volume-title: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data: 2008
  year: 2008
  ident: 120_CR20
  doi: 10.1145/1376616.1376726
– volume: 66
  start-page: 1
  year: 2000
  ident: 120_CR1
  publication-title: Prog Nucleic Acid Res Mol Biol
  doi: 10.1016/S0079-6603(00)66025-7
– ident: 120_CR23
– volume: 2
  start-page: 3
  issue: 1
  year: 2014
  ident: 120_CR5
  publication-title: Health Inform Sci Syst
  doi: 10.1186/2047-2501-2-3
– start-page: 222
  volume-title: eScience, 2008 eScience’08 IEEE Fourth International Conference on: 2008
  year: 2008
  ident: 120_CR55
  doi: 10.1109/eScience.2008.62
– volume: 22
  start-page: 2830
  issue: 22
  year: 2006
  ident: 120_CR45
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl379
– volume: 31
  start-page: 181
  issue: 4
  year: 2013
  ident: 120_CR80
  publication-title: J Oper Manage
  doi: 10.1016/j.jom.2013.03.001
SSID ssj0062053
Score 2.3485723
SecondaryResourceType review_article
Snippet The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called “big data”...
The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data"...
Doc number: 22 Abstract: The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Cloning
Clusters
Computation
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data Mining and Knowledge Discovery
Data processing
Data storage
Fault tolerance
Life Sciences
Mathematical analysis
Mathematical models
Medical
Programming
Review
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICMhwcWq7SR-cEEVouJCVSGQeotsx6ErQbJ000r8ezyOs3Qp7IWzJ5GTeXvG3wC8bLE2VZWWWi9NTFBsTZ0KnEbdEqruFA-2SsMm1OGhPj42R_nAbZXbKmebmAx1O3g8I9_jEpMRrTl_u_xBcWoUVlfzCI2rcA1REkRq3TuaLbEUUcIyUCPXci96ypg9RxdFFRVi0xFdii4vN0n-USlNDujg9v9u_Q7cyqEn2Z9k5S5cCf09uDENo_x5H873L9SyydCRGBqSj3b5CcFdA8mNXN_j3kg3d3SRcSDz3UriFl8JNpwSm4FO3hA_oT-RdKEYW63iWksmHBMypnbcB_Dl4P3ndx9onspAfW3YSFvujdalLNuWtzEYqqxyrjS18UwGL0TXWW_rlhlvrWYtl11nPGfeOjRoXpQPYacf-vAYiGGBB1Y7UTlfqcAcIgMJH2LQqkLnygLozKLGZ8hynJzxrUmpi5YNsrRBljaqEaKAV2v65QTW8U_K3ZlVTVbaVfObTwW8WC9HdcMaiu3DcJZoYsJYSaa20igjdYztttHg2RuCExXwaBK09ZZFVJSS4YraEME1AUKCb670i5MEDR5fWsVHC3g9C-uFz_vrn3iy_U88hZtxlxV6a2F2YWc8PQvP4Lo_Hxer0-dJ3X4B8F81Pw
  priority: 102
  providerName: ProQuest
Title Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends
URI https://link.springer.com/article/10.1186/1756-0381-7-22
https://www.ncbi.nlm.nih.gov/pubmed/25383096
https://www.proquest.com/docview/1621848811
https://www.proquest.com/docview/1622594607
https://www.proquest.com/docview/1627968658
https://www.proquest.com/docview/1642220196
https://pubmed.ncbi.nlm.nih.gov/PMC4224309
Volume 7
WOSCitedRecordID wos000346027900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: RBZ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: RSV
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VFiQuvB-BEhkJCS4WtpP4wa1UrUCoq2h5aOESOY4DK8Fu1aaV-PeMnWTVZaGCiy8zSRxnxjOTGX8D8KwJuak8s9Q6aTBAsQWtlecUdUuoolXc2zw2m1CTiZ7NTLkFbDwLE6vdx5Rk3KmjWmv5Eu0cxr5oYKiiAjfdHTR1OjRrmL7_NO69UqBMDdCMm9esm54Nf3KzLPK33Gg0OYc3_3-yt-DG4F6SvV4ebsOWX9yBa33DyZ934XzvQr6aLFuC7h85ssfTAODqyVCs9QOfRNqxaot0SzKenyT1_CsJRaXEDmAmr4jrEZ5IPDQcyqmQ1pAeq4R0seT2Hnw8PPiw_4YOnReoKwzraMOd0TqTWdPwBh2e3Kq6zkxhHJPeCdG21tmiYcZZq1nDZdsax5mzddi0nMjuw_ZiufAPgRjmuWdFLfLa5cqzOqD_COfRMVW-rbME6PhRKjfAkofuGN-rGJ5oWYW1rMJaVqoSIoHnK_7jHpDjr5y74zeuBsU8rbgMMa3WnCfwdEVGlQp5Ervwy7PIg0FhLpm6lEcZqdF_u4wn_F8LAEQJPOhFazVlgcqQsUBRa0K3Ygiw3-uUxfxbhP_Gm-Z4aQIvRtG78Hp_XIlH_876GK7jjPNgnYXZhe3u5Mw_gavuvJufnqRwRc1UHDWOep-nsPP6YFJO0_gvA8d3iqahfrbEsSy-IL18e1R-TqOa_gLLqDHf
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAqIX3o9AASOB4GLVdhI_kBCqgKrVtiuEitRbcByHrgTJ0k2L-qf4jczksXQp7K0Hzp5EifPNKzP-hpBnBdamktgx55WFBMWlLNdBMNAtqdNSi-CSdtiEHo_NwYH9sEJ-DmdhsK1ysImtoS5qj__IN4TCZMQYId5MvzOcGoXV1WGERgeLUTj9ASnb7PXOO_i-z6Xcer__dpv1UwWYTy1vWCG8NSZWcVGIApx54nSexza1nqvgpSxL511acOudM7wQqiytF9y7HBXSI9EBmPxLSWw06tVIs8HyKwmI7okhhVEb4JkhWweXyDSTctHxnYtmzzdl_lGZbR3e1vX_batukGt9aE03O124SVZCdYtc6YZtnt4mJ5tnavW0LimEvnTPTT8ieW2gfaPaN9gLWg4da7Sp6XB2lOaTLxQbaqnriVxeUd-xW9H2wDS2ksFaQTueFtq07cZ3yKcLeem7ZLWqq3CfUMuDCDzNZZL7RAeeI_OR9AGCch3KPI4IGyCR-Z6SHSeDfM3a1MyoDCGUIYQynUkZkRdz-WlHRvJPyfUBGllvlGbZb1xE5Ol8GcwJ1ohcFerjVgYS4kRxvVRGW2Ugdl0mg_8WkXwpIvc6YM8fWYIhiDmu6AXIzwWQ8nxxpZocttTncNMELo3Iy0E5zrzeX3fiwfKdeEKubu_v7Wa7O-PRQ7IGT5xgZCLtOlltjo7DI3LZnzST2dHjVtUp-XzRCvMLfgSTzQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9QwDLem8RBfGM9RNiBISPClWpK2SYP4MgEnEHCaeGnfqjQPdhL0Tls3if8eu4_TjoMJic9x2jSxY7u2fwZ44ik2lWc2tU4ZdFBskdY6iBRlS-oiahFs3jWb0NNpeXhoDjbgxVgL02W7jyHJvqaBUJqadm_hYy_ipdpDnYd-MCqbVKcSL-BLOSXRk6_-6et4DyuJ_DXANK7PWVVDa7bleorkb3HSTv1Mtv5v4Tfg-mB2sv2eT27CRmhuwZW-EeXP23C2fy6OzeaRoVnIPtjFRwJ2DWxI4vqBb2VxzOZi7ZyNdZWsnn1jlGzK7ABy8py5HvmJdcXElGaFY571GCas7VJx78CXyevPL9-kQ0eG1BWGt6kXzpRlpjLvhUdDKLe6rjNTGMdVcFLGaJ0tPDfO2pJ7oWI0TnBna7rMnMzuwmYzb8I9YIYHEXhRy7x2uQ68JlQg6QIarDrEOksgHQ-ocgNcOXXN-F51bkupKtrLivay0pWUCTxd0i96oI6_Uu6O510NAntSCUW-blkKkcDj5TCKGsVPbBPmpx0NOou54vpCGm1UiXbdRTT0342AiRLY7tlsuWSJQpJxGtErDLgkIDjw1ZFmdtTBguNDc5yawLORDc993h934v6_kz6CqwevJtX7t9N3O3ANF5-TApdmFzbb49PwAC67s3Z2cvywk8FfNpw0BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+the+MapReduce+programming+framework+to+clinical+big+data+analysis%3A+current+landscape+and+future+trends&rft.jtitle=BioData+mining&rft.au=Mohammed%2C+Emad+A&rft.au=Far%2C+Behrouz+H&rft.au=Naugler%2C+Christopher&rft.date=2014-10-29&rft.issn=1756-0381&rft.eissn=1756-0381&rft.volume=7&rft.issue=1&rft.spage=22&rft.epage=22&rft_id=info:doi/10.1186%2F1756-0381-7-22&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0381&client=summon