Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy
Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered d...
Saved in:
| Published in: | Biomaterials Vol. 177; pp. 40 - 51 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier Ltd
01.09.2018
|
| Subjects: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T1-magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T1-MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy.
[Display omitted] |
|---|---|
| AbstractList | Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T1-magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T1-MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy.
[Display omitted] Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T -magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T -MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy. Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T1-magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T1-MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy.Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T1-magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T1-MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy. Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T₁-magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T₁-MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy. |
| Author | Hao, Guanyu Xu, Zhi Ping Li, Bei Kurniawan, Nyoman Gu, Zi Chen, Weiyu Tang, Jie |
| Author_xml | – sequence: 1 givenname: Bei surname: Li fullname: Li, Bei organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia – sequence: 2 givenname: Jie surname: Tang fullname: Tang, Jie organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia – sequence: 3 givenname: Weiyu surname: Chen fullname: Chen, Weiyu organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia – sequence: 4 givenname: Guanyu surname: Hao fullname: Hao, Guanyu organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia – sequence: 5 givenname: Nyoman surname: Kurniawan fullname: Kurniawan, Nyoman organization: Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia – sequence: 6 givenname: Zi surname: Gu fullname: Gu, Zi email: zi.gu1@unsw.edu.au organization: School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia – sequence: 7 givenname: Zhi Ping surname: Xu fullname: Xu, Zhi Ping email: gordonxu@uq.edu.au organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29883915$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUU1v1DAQtVAR3Rb-Aoo4ccnWduIk5gSUT6mAhOBsOfZkd5bEDo6z0h755zjdVkK9sNLIM2O9eaN574KcOe-AkBeMrhll1dVu3aIfdISAup_WnLJmTUUK8YisWFM3uZBUnJEVZSXPZcX4ObmYph1NPS35E3LOZdMUkokV-fPV76HP4haCdn6KaDKXirHXsfNhyNKTGT-MPUTIBjSQxXlIf9DjgE5H9C7bo86-fM9w0Bt0m3wzowWbaYM2B7fVzqRu3Proly2Dz6_MFlK63TkenpLHXToDnt3lS_Lzw_sf15_ym28fP1-_uclNuibmTLfSVoW0lFtai7asC9bWrLG8a4uiFKa0VatrqBoOtZR1Jw0vOPCybFoNVhSX5OWRdwz-9wxTVANOBvpeO_DzpHjSthBFI6v_Q6ngDa2YXFif30HndgCrxpBkCAd1r3ACvD4CTPDTFKBTBuOtbjFo7BWjajFV7dS_pqrFVEVFioXi1QOK-y0nDb87DkPSdo8Q1GQQFk8wgInKejyN5u0DGtOjQ6P7X3A4leQvnWjedQ |
| CitedBy_id | crossref_primary_10_1002_adhm_202100512 crossref_primary_10_1002_mba2_25 crossref_primary_10_1016_j_ccr_2024_216316 crossref_primary_10_1016_j_matdes_2020_109298 crossref_primary_10_1007_s40843_020_1387_7 crossref_primary_10_1039_C9NR04044G crossref_primary_10_1007_s43207_020_00090_5 crossref_primary_10_1016_j_pmatsci_2023_101220 crossref_primary_10_1002_anie_202410649 crossref_primary_10_1016_j_jmst_2022_08_053 crossref_primary_10_1016_j_matdes_2021_109731 crossref_primary_10_1016_j_nantod_2023_101788 crossref_primary_10_1039_D1BM00941A crossref_primary_10_1016_j_apsb_2024_09_012 crossref_primary_10_1016_j_mattod_2021_04_020 crossref_primary_10_1093_rb_rbae133 crossref_primary_10_1016_j_cis_2023_102869 crossref_primary_10_1016_j_nantod_2023_101782 crossref_primary_10_1002_admi_202200373 crossref_primary_10_1002_advs_201801155 crossref_primary_10_1016_j_biomaterials_2019_01_019 crossref_primary_10_1680_jemmr_22_00151 crossref_primary_10_1002_smll_202501655 crossref_primary_10_1007_s10876_022_02226_5 crossref_primary_10_1039_D2NH00478J crossref_primary_10_1016_j_ccr_2024_216109 crossref_primary_10_3390_nano9101404 crossref_primary_10_1016_j_addr_2022_114459 crossref_primary_10_1016_j_cej_2024_150067 crossref_primary_10_1002_smll_202403024 crossref_primary_10_1016_j_ccr_2023_215156 crossref_primary_10_1016_j_nantod_2020_100923 crossref_primary_10_1002_smtd_202200853 crossref_primary_10_1002_smll_202002115 crossref_primary_10_1016_j_addr_2022_114379 crossref_primary_10_1002_adma_202304176 crossref_primary_10_1557_s43578_022_00813_w crossref_primary_10_1007_s10853_024_09361_6 crossref_primary_10_3390_pharmaceutics13111803 crossref_primary_10_1016_j_addr_2021_114031 crossref_primary_10_1002_smll_202002672 crossref_primary_10_1016_j_jconrel_2021_05_011 crossref_primary_10_3390_nano13061102 crossref_primary_10_1016_j_partic_2021_06_005 crossref_primary_10_1016_j_biomaterials_2021_120807 crossref_primary_10_1002_adfm_202425206 crossref_primary_10_1016_j_ccr_2022_215008 crossref_primary_10_1038_s41467_022_31106_9 crossref_primary_10_1007_s42114_020_00153_5 crossref_primary_10_1016_j_eurpolymj_2020_109993 crossref_primary_10_1021_acs_chemrev_5c00193 crossref_primary_10_1002_anbr_202100123 crossref_primary_10_1016_j_jre_2025_09_006 crossref_primary_10_1002_adfm_201909745 crossref_primary_10_1016_j_nano_2021_102369 crossref_primary_10_1016_j_jconrel_2023_01_043 crossref_primary_10_1002_ange_202410649 crossref_primary_10_1186_s12951_022_01565_9 crossref_primary_10_2217_nnm_2018_0424 crossref_primary_10_1039_D1BM00765C crossref_primary_10_1016_j_addr_2022_114360 crossref_primary_10_1039_C8BM01243A crossref_primary_10_3390_pharmaceutics11010022 crossref_primary_10_1039_D3BM02133E crossref_primary_10_1140_epjp_s13360_022_02993_0 crossref_primary_10_1155_2022_2598536 crossref_primary_10_1016_j_jconrel_2020_04_019 crossref_primary_10_1002_advs_201901724 crossref_primary_10_1002_advs_202206546 crossref_primary_10_1039_D0SC06742C crossref_primary_10_1002_admi_202101914 crossref_primary_10_1016_j_ccr_2022_214821 crossref_primary_10_1007_s12274_020_3175_0 crossref_primary_10_1080_10717544_2024_2417986 crossref_primary_10_1007_s11426_020_9738_5 crossref_primary_10_1039_D2CS00236A crossref_primary_10_1016_j_carbpol_2020_116344 crossref_primary_10_1186_s12951_021_01096_9 crossref_primary_10_3389_fbioe_2022_972837 crossref_primary_10_1002_adma_202206915 crossref_primary_10_1002_smtd_201900343 crossref_primary_10_1016_j_addr_2022_114270 crossref_primary_10_1002_sstr_202000112 crossref_primary_10_1016_j_actbio_2022_09_024 crossref_primary_10_1039_D0BM01855D crossref_primary_10_3390_pharmaceutics15020413 crossref_primary_10_3389_fphar_2022_882704 crossref_primary_10_1002_cplu_202500416 crossref_primary_10_1016_j_cej_2019_123562 crossref_primary_10_6023_A20090441 |
| Cites_doi | 10.1021/acsami.7b05583 10.1039/C3CS60417A 10.1021/ja4013497 10.1038/nplants.2016.207 10.1021/nn2005766 10.1021/nl404777h 10.1021/ja207798q 10.1200/JCO.2007.14.8163 10.1002/adma.201701546 10.1021/acsami.7b02014 10.1021/acsnano.5b05043 10.1021/acsnano.7b01092 10.1002/adma.201602193 10.1016/j.actbio.2017.10.015 10.1038/natrevmats.2016.14 10.1021/acs.jpcc.6b05712 10.1016/j.jconrel.2008.05.021 10.1038/nrc1074 10.3390/ijms15059067 10.1021/nn506687t 10.1038/nbt.3330 10.1002/smll.201403249 10.1038/nrd3554 10.1002/adfm.201502868 10.1002/adfm.201503046 10.1073/pnas.1700790114 10.1039/C5TB00248F 10.1002/chem.201702835 10.1039/C1CS15237H 10.1002/aenm.201501974 10.1021/jp002715u 10.1002/adfm.200801127 10.1038/nmat3004 10.1002/mrm.1910320110 10.1021/nn400894d 10.1021/acs.chemrev.5b00346 10.1126/science.2408340 10.1021/nn200110j 10.1039/C4CS00236A 10.1111/j.1349-7006.2006.00382.x 10.1016/j.ajpath.2010.10.029 10.1016/j.jcis.2017.10.069 10.1021/ja211363w 10.1021/nl071008a 10.1038/s41551-016-0006 10.1002/anie.201510844 10.1038/nrc1478 10.1021/ja201918u 10.1039/c3gc40658j 10.1002/adfm.201501269 10.1039/C6CS00592F 10.1021/ja508641z 10.1021/acsami.7b05294 10.1016/j.biomaterials.2016.01.009 10.1038/nmat2162 10.1021/ja805655b 10.1038/nnano.2016.280 10.1002/adma.201503730 10.1021/ja056652a 10.1016/j.jssc.2004.03.041 10.1146/annurev.physchem.58.032806.104607 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2018.05.055 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1878-5905 |
| EndPage | 51 |
| ExternalDocumentID | 29883915 10_1016_j_biomaterials_2018_05_055 S0142961218304125 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS RIG 9DU AAYXX CITATION AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c590t-1ab9d639d02d075b4731b718d2fb3345c4d6ba7e682e7997f9c232e2448baed53 |
| ISICitedReferencesCount | 101 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439401700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Sun Nov 09 09:28:52 EST 2025 Sun Sep 28 11:57:34 EDT 2025 Mon Jul 21 06:00:03 EDT 2025 Sat Nov 29 07:25:29 EST 2025 Tue Nov 18 21:26:47 EST 2025 Fri Feb 23 02:49:13 EST 2024 Tue Oct 14 19:30:05 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | T1–weighted MRI contrast agents Acid-enhanced photothermal therapy Cu-layered double hydroxides Tumor microenvironment pH-sensitive theranostic agents T–weighted MRI contrast agents |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c590t-1ab9d639d02d075b4731b718d2fb3345c4d6ba7e682e7997f9c232e2448baed53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://hdl.handle.net/10072/426569 |
| PMID | 29883915 |
| PQID | 2052806195 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2101353896 proquest_miscellaneous_2052806195 pubmed_primary_29883915 crossref_citationtrail_10_1016_j_biomaterials_2018_05_055 crossref_primary_10_1016_j_biomaterials_2018_05_055 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2018_05_055 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2018_05_055 |
| PublicationCentury | 2000 |
| PublicationDate | September 2018 2018-09-00 20180901 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Ni, Liu, Yao, Bu, Shi (bib8) 2017; 12 Ito, Fujioka, Yoshida, Wakamatsu, Ito, Yamashita, Jimbow, Honda (bib53) 2007; 98 West, Hampson, Arnold, Kumar (bib55) 1985; 228 Xu, Stevenson, Lu, Lu, Bartlett, Gray (bib20) 2006; 128 Barth, Altinoglu, Shanmugavelandy, Kaiser, Crespo-Gonzalez, DiVittore, McGovern, Goff, Keasey, Adair, Loughran, Claxton, Kester (bib37) 2011; 5 Wei, Shi, Wang, Li, Duan (bib34) 2004; 177 Gatenby, Gillies (bib5) 2004; 4 Gao, Ma, Wu, Qiao, Volinsky, Su (bib40) 2016; 120 An, Zhao, Lin, Liu (bib23) 2014; 15 Kriegel, Rodriguez-Fernandez, Wisnet, Zhang, Waurisch, Eychmuller, Dubavik, Govorov, Feldmann (bib45) 2013; 7 Matsumura, Maeda (bib61) 1986; 46 Pan, Caruthers, Senpan, Yalaz, Stacy, Hu, Marsh, Gaffney, Wickline, Lanza (bib56) 2011; 133 Kamaly, Yameen, Wu, Farokhzad (bib54) 2016; 116 Wang, Riedinger, Li, Fu, Liu, Li, Liu, Tan, Barthel, Pugliese, De Donato, D'Abbusco, Meng, Manna, Meng, Pellegrino (bib32) 2015; 9 Yin, Zhen, Zhao, Tang, Ji, Lyu, Fan, Huang, Pu (bib18) 2017; 9 Zuo, Chen, Li, Xu, Cooper, Gu, Xu (bib22) 2017; 23 Mou, Li, Liu, Xu, Song, Wang, Zhang, Chen, Shi, Chen (bib30) 2015; 11 Anker, Hall, Lyandres, Shah, Zhao, Van Duyne (bib36) 2008; 7 Luther, Jain, Ewers, Alivisatos (bib44) 2011; 10 Wilhelm, Tavares, Dai, Ohta, Audet, Dvorak, Chan (bib62) 2016; 1 Mou, Lin, Huang, Chen, Shi (bib16) 2016; 84 Sun, Gao, Lei, Xie (bib38) 2015; 44 Dai, Xu, Sun, Chen (bib7) 2017; 46 Oh, Choi, Lee, Han, Choy (bib35) 2009; 19 Chen, Lin, Ling (bib4) 2016; 10 Neri, Supuran (bib6) 2011; 10 Yin, Zhen, Fan, Huang, Pu (bib17) 2017; 11 Tian, Hu, Zhu, Zou, Chen, Yang, Li, Su, Han, Liu (bib31) 2013; 135 Manthiram, Alivisatos (bib15) 2012; 134 Park, Cho, Kwon, Yun, Choy (bib25) 2016; 55 Zhang, Fan, Li (bib49) 2013; 15 Kriegel, Jiang, Rodriguez-Fernandez, Schaller, Talapin, Da Como, Feldmann (bib43) 2012; 134 Zhao, Huang, Li, Yang, Ramezani, Lin, Wang, Ma, Zeng, Luo, De Boer, Xie, Thibodeaux, Brekken, Sun, Sumer, Gao (bib1) 2016; 1 Zhang, Sun, Zeng, Sun, Wang, Wang, Wu, Dou, Gao, Li (bib29) 2016; 28 Prinetto, Ghiotti, Durand, Tichit (bib48) 2000; 104 Gu, Yan, Cheong, Cao, Zuo, Thomas, Rolfe, Xu (bib50) 2018; 512 Chen, Shao, Li, Xu, Gu (bib51) 2014; 9 Zhao, Jia, Waterhouse, Wu, Tung, O'Hare, Zhang (bib28) 2016; 6 Zhao, Pan, Lou, Qiu, Zhu, Burda (bib42) 2009; 131 Willets, Van Duyne (bib47) 2007; 58 Ding, Liow, Zhang, Huang, Li, Shen, Liu, Zou, Gao, Zhang, Li, Wang, Li, Jiang (bib33) 2014; 136 Zhan, Qian, Liang, Somesfalean, Wang, He, Zhang, Andersson-Engels (bib12) 2011; 5 Angkawinitwong, Awwad, Khaw, Brocchini, Williams (bib11) 2017; 64 Li, Gu, Kurniawan, Chen, Xu (bib21) 2017; 29 Deng, Hou, Deng, Yang, Li, Lin (bib14) 2015; 25 Hijnen, De Smet, Langereis, Heijman, Grüll (bib2) 2017; 114 Brandes, Franceschi, Tosoni, Blatt, Pession, Tallini, Bertorelle, Bartolini, Calbucci, Andreoli, Frezza, Leonardi, Spagnolli, Ermani (bib3) 2008; 26 Hsu, Ngo, Tao (bib41) 2014; 14 Gu, Zuo, Li, Wu, Xu (bib60) 2015; 3 Bao, Haque, Jackson, Hazari, Moroz, Jetly, Dash (bib64) 2011; 178 Dreaden, Alkilany, Huang, Murphy, El-Sayed (bib13) 2012; 41 Zhao, Chen, Bian, Zhou, Waterhouse, Wu, Tung, Smith, O'Hare, Zhang (bib27) 2015; 27 Liu, Swihart (bib39) 2014; 43 Blanco, Shen, Ferrari (bib63) 2015; 33 Hsu, Ng, Zhang, Wong, Bhakoo, Li, Wang (bib9) 2015; 25 Xu, Niebert, Porazik, Walker, Cooper, Middelberg, Gray, Bartlett, Lu (bib19) 2008; 130 Yan, Zhou, Zhang, Huang, Chen, Roy, Zhang, Chen (bib59) 2017; 9 Liu, Wang, Liu, Zou, Wang (bib26) 2017; 29 Zhang, Du, Zhang, Cai, Sun, Zhou, Zhou, Qian, Zhong, Zheng, Kaigler, Liu, Zhang, Zou, Wu (bib10) 2015; 25 Jain, Huang, El-Sayed (bib46) 2007; 7 Ge, Lin, Li, Liu, Wang, Li, Zhang, Liu, Liu, Shi, Sun, Zhang, Yang (bib57) 2017; 9 Mitter, Worrall, Robinson, Li, Jain, Taochy, Fletcher, Carroll, Lu, Xu (bib24) 2017; 3 Longley, Harkin, Johnston (bib52) 2003; 3 Donahue, Burstein, Manning, Gray (bib58) 1994; 32 Tian (10.1016/j.biomaterials.2018.05.055_bib31) 2013; 135 Anker (10.1016/j.biomaterials.2018.05.055_bib36) 2008; 7 Zhao (10.1016/j.biomaterials.2018.05.055_bib28) 2016; 6 Sun (10.1016/j.biomaterials.2018.05.055_bib38) 2015; 44 Xu (10.1016/j.biomaterials.2018.05.055_bib20) 2006; 128 Prinetto (10.1016/j.biomaterials.2018.05.055_bib48) 2000; 104 Dai (10.1016/j.biomaterials.2018.05.055_bib7) 2017; 46 Luther (10.1016/j.biomaterials.2018.05.055_bib44) 2011; 10 Zhang (10.1016/j.biomaterials.2018.05.055_bib49) 2013; 15 Deng (10.1016/j.biomaterials.2018.05.055_bib14) 2015; 25 Hijnen (10.1016/j.biomaterials.2018.05.055_bib2) 2017; 114 Zuo (10.1016/j.biomaterials.2018.05.055_bib22) 2017; 23 Brandes (10.1016/j.biomaterials.2018.05.055_bib3) 2008; 26 Zhao (10.1016/j.biomaterials.2018.05.055_bib27) 2015; 27 Wang (10.1016/j.biomaterials.2018.05.055_bib32) 2015; 9 Longley (10.1016/j.biomaterials.2018.05.055_bib52) 2003; 3 Mou (10.1016/j.biomaterials.2018.05.055_bib30) 2015; 11 Blanco (10.1016/j.biomaterials.2018.05.055_bib63) 2015; 33 Donahue (10.1016/j.biomaterials.2018.05.055_bib58) 1994; 32 Ding (10.1016/j.biomaterials.2018.05.055_bib33) 2014; 136 Hsu (10.1016/j.biomaterials.2018.05.055_bib41) 2014; 14 Angkawinitwong (10.1016/j.biomaterials.2018.05.055_bib11) 2017; 64 Wilhelm (10.1016/j.biomaterials.2018.05.055_bib62) 2016; 1 Pan (10.1016/j.biomaterials.2018.05.055_bib56) 2011; 133 Mou (10.1016/j.biomaterials.2018.05.055_bib16) 2016; 84 Liu (10.1016/j.biomaterials.2018.05.055_bib26) 2017; 29 Kamaly (10.1016/j.biomaterials.2018.05.055_bib54) 2016; 116 Ge (10.1016/j.biomaterials.2018.05.055_bib57) 2017; 9 Li (10.1016/j.biomaterials.2018.05.055_bib21) 2017; 29 Chen (10.1016/j.biomaterials.2018.05.055_bib4) 2016; 10 Matsumura (10.1016/j.biomaterials.2018.05.055_bib61) 1986; 46 Xu (10.1016/j.biomaterials.2018.05.055_bib19) 2008; 130 Wei (10.1016/j.biomaterials.2018.05.055_bib34) 2004; 177 Gu (10.1016/j.biomaterials.2018.05.055_bib50) 2018; 512 Neri (10.1016/j.biomaterials.2018.05.055_bib6) 2011; 10 Jain (10.1016/j.biomaterials.2018.05.055_bib46) 2007; 7 Gu (10.1016/j.biomaterials.2018.05.055_bib60) 2015; 3 Bao (10.1016/j.biomaterials.2018.05.055_bib64) 2011; 178 Zhan (10.1016/j.biomaterials.2018.05.055_bib12) 2011; 5 Yin (10.1016/j.biomaterials.2018.05.055_bib18) 2017; 9 Liu (10.1016/j.biomaterials.2018.05.055_bib39) 2014; 43 Zhang (10.1016/j.biomaterials.2018.05.055_bib10) 2015; 25 Zhang (10.1016/j.biomaterials.2018.05.055_bib29) 2016; 28 Kriegel (10.1016/j.biomaterials.2018.05.055_bib43) 2012; 134 An (10.1016/j.biomaterials.2018.05.055_bib23) 2014; 15 Gao (10.1016/j.biomaterials.2018.05.055_bib40) 2016; 120 Mitter (10.1016/j.biomaterials.2018.05.055_bib24) 2017; 3 Yin (10.1016/j.biomaterials.2018.05.055_bib17) 2017; 11 Ito (10.1016/j.biomaterials.2018.05.055_bib53) 2007; 98 Zhao (10.1016/j.biomaterials.2018.05.055_bib42) 2009; 131 Willets (10.1016/j.biomaterials.2018.05.055_bib47) 2007; 58 Park (10.1016/j.biomaterials.2018.05.055_bib25) 2016; 55 Oh (10.1016/j.biomaterials.2018.05.055_bib35) 2009; 19 Kriegel (10.1016/j.biomaterials.2018.05.055_bib45) 2013; 7 Dreaden (10.1016/j.biomaterials.2018.05.055_bib13) 2012; 41 Yan (10.1016/j.biomaterials.2018.05.055_bib59) 2017; 9 Zhao (10.1016/j.biomaterials.2018.05.055_bib1) 2016; 1 Manthiram (10.1016/j.biomaterials.2018.05.055_bib15) 2012; 134 Chen (10.1016/j.biomaterials.2018.05.055_bib51) 2014; 9 West (10.1016/j.biomaterials.2018.05.055_bib55) 1985; 228 Hsu (10.1016/j.biomaterials.2018.05.055_bib9) 2015; 25 Zhang (10.1016/j.biomaterials.2018.05.055_bib8) 2017; 12 Gatenby (10.1016/j.biomaterials.2018.05.055_bib5) 2004; 4 Barth (10.1016/j.biomaterials.2018.05.055_bib37) 2011; 5 |
| References_xml | – volume: 10 start-page: 767 year: 2011 end-page: 777 ident: bib6 article-title: Interfering with pH regulation in tumours as a therapeutic strategy publication-title: Nat. Rev. Drug Discov. – volume: 15 start-page: 9067 year: 2014 end-page: 9081 ident: bib23 article-title: A pH and redox dual responsive 4-arm poly(ethylene glycol)-block-poly(disulfide histamine) copolymer for non-viral gene transfection in vitro and in vivo publication-title: Int. J. Mol. Sci. – volume: 29 year: 2017 ident: bib26 article-title: Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation publication-title: Adv. Mater. – volume: 4 start-page: 891 year: 2004 end-page: 899 ident: bib5 article-title: Why do cancers have high aerobic glycolysis? publication-title: Nat. Rev. Cancer – volume: 130 start-page: 86 year: 2008 end-page: 94 ident: bib19 article-title: Subcellular compartment targeting of layered double hydroxide nanoparticles publication-title: J. Control Release – volume: 3 start-page: 3331 year: 2015 end-page: 3339 ident: bib60 article-title: Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake publication-title: J. Mater. Chem. B – volume: 26 start-page: 2192 year: 2008 end-page: 2197 ident: bib3 article-title: MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients publication-title: J. Clin. Oncol. – volume: 5 start-page: 3744 year: 2011 end-page: 3757 ident: bib12 article-title: Using 915 nm laser excited Tm publication-title: ACS Nano – volume: 120 start-page: 17613 year: 2016 end-page: 17619 ident: bib40 article-title: Size-dependent vacancy concentration in nickel, copper, gold, and platinum nanoparticles publication-title: J. Phys. Chem. C – volume: 7 start-page: 2080 year: 2007 end-page: 2088 ident: bib46 article-title: On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation publication-title: Nano Lett. – volume: 6 year: 2016 ident: bib28 article-title: Layered double hydroxide nanostructured photocatalysts for renewable energy production publication-title: Adv. Energy Mater. – volume: 134 start-page: 3995 year: 2012 end-page: 3998 ident: bib15 article-title: Tunable localized surface plasmon resonances in tungsten oxide nanocrystals publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 361 year: 2011 end-page: 366 ident: bib44 article-title: Localized surface plasmon resonances arising from free carriers in doped quantum dots publication-title: Nat. Mater. – volume: 9 start-page: 34185 year: 2017 end-page: 34193 ident: bib59 article-title: A novel type of aqueous dispersible ultrathin-layered double hydroxide nanosheets for in vivo bioimaging and drug delivery publication-title: ACS Appl. Mater. Interfaces – volume: 104 start-page: 11117 year: 2000 end-page: 11126 ident: bib48 article-title: Investigation of acid-base properties of catalysts obtained from layered double hydroxides publication-title: J. Phys. Chem. B – volume: 512 start-page: 404 year: 2018 end-page: 410 ident: bib50 article-title: Layered double hydroxide nanoparticles: impact on vascular cells, blood cells and the complement system publication-title: J. Colloid Interface Sci. – volume: 134 start-page: 1583 year: 2012 end-page: 1590 ident: bib43 article-title: Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1 year: 2016 end-page: 12 ident: bib62 article-title: Analysis of nanoparticle delivery to tumours publication-title: Nat. Rev. Mater. – volume: 3 start-page: 330 year: 2003 end-page: 338 ident: bib52 article-title: 5-Fluorouracil: mechanisms of action and clinical strategies publication-title: Nat. Rev. Cancer – volume: 128 start-page: 36 year: 2006 end-page: 37 ident: bib20 article-title: Stable suspension of layered double hydroxide nanoparticles in aqueous solution publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 2389 year: 2013 end-page: 2393 ident: bib49 article-title: Lewis-base-promoted copper-based catalyst for highly efficient hydrogenation of dimethyl 1,4-cyclohexane dicarboxylate publication-title: Green Chem. – volume: 9 start-page: 3403 year: 2014 end-page: 3411 ident: bib51 article-title: Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways publication-title: Int. J. Nanomed. – volume: 178 start-page: 838 year: 2011 end-page: 852 ident: bib64 article-title: Increased expression of p-glycoprotein is associated with doxorubicin chemoresistance in the metastatic 4T1 breast cancer model publication-title: Am. J. Pathol. – volume: 3 start-page: 16207 year: 2017 ident: bib24 article-title: Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses publication-title: Nat. Plants – volume: 84 start-page: 13 year: 2016 end-page: 24 ident: bib16 article-title: Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT publication-title: Biomaterials – volume: 9 start-page: 12332 year: 2017 end-page: 12339 ident: bib18 article-title: Amphiphilic semiconducting oligomer for near-infrared photoacoustic and fluorescence imaging publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 3830 year: 2017 end-page: 3852 ident: bib7 article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment publication-title: Chem. Soc. Rev. – volume: 9 start-page: 1788 year: 2015 end-page: 1800 ident: bib32 article-title: Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects publication-title: ACS Nano – volume: 19 start-page: 1617 year: 2009 end-page: 1624 ident: bib35 article-title: Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand publication-title: Adv. Funct. Mater. – volume: 7 start-page: 442 year: 2008 end-page: 453 ident: bib36 article-title: Biosensing with plasmonic nanosensors publication-title: Nat. Mater. – volume: 25 start-page: 6101 year: 2015 end-page: 6111 ident: bib10 article-title: Gadolinium-doped iron oxide nanoprobe as multifunctional bioimaging agent and drug Delivery system publication-title: Adv. Funct. Mater. – volume: 114 start-page: 4802 year: 2017 end-page: 4811 ident: bib2 article-title: Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 19706 year: 2017 end-page: 19716 ident: bib57 article-title: Cu publication-title: ACS Appl. Mater. Interfaces – volume: 29 year: 2017 ident: bib21 article-title: Manganese-based layered double hydroxide nanoparticles as a T publication-title: Adv. Mater. – volume: 25 start-page: 5269 year: 2015 end-page: 5276 ident: bib9 article-title: A hybrid silica nanoreactor framework for encapsulation of hollow manganese oxide nanoparticles of superior T-1 magnetic resonance relaxivity publication-title: Adv. Funct. Mater. – volume: 23 start-page: 14299 year: 2017 end-page: 14306 ident: bib22 article-title: MnAl layered double hydroxide nanoparticles as a dual-functional platform for magnetic resonance imaging and siRNA delivery publication-title: Chem. Eur J. – volume: 1 start-page: 1 year: 2016 end-page: 7 ident: bib1 article-title: A transistor-like pH nanoprobe for tumour detection and image-guided surgery publication-title: Nat. Biomed. Eng. – volume: 11 start-page: 4174 year: 2017 end-page: 4182 ident: bib17 article-title: Degradable semiconducting oligomer amphiphile for ratiometric photoacoustic imaging of hypochlorite publication-title: ACS Nano – volume: 32 start-page: 66 year: 1994 end-page: 76 ident: bib58 article-title: Studies of Gd-DTPA relaxivity and proton exchange rates in tissue publication-title: Magn. Reson. Med. – volume: 64 start-page: 126 year: 2017 end-page: 136 ident: bib11 article-title: Electrospun formulations of bevacizumab for sustained release in the eye publication-title: Acta Biomater. – volume: 11 start-page: 2275 year: 2015 end-page: 2283 ident: bib30 article-title: Ultrasmall Cu publication-title: Small – volume: 135 start-page: 8571 year: 2013 end-page: 8577 ident: bib31 article-title: Sub-10 nm Fe publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 623 year: 2015 end-page: 636 ident: bib38 article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis publication-title: Chem. Soc. Rev. – volume: 41 start-page: 2740 year: 2012 end-page: 2779 ident: bib13 article-title: The golden age: gold nanoparticles for biomedicine publication-title: Chem. Soc. Rev. – volume: 55 start-page: 4582 year: 2016 end-page: 4586 ident: bib25 article-title: Biodegradable inorganic nanovector: passive versus active tumor targeting in siRNA transportation publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 7824 year: 2015 end-page: 7831 ident: bib27 article-title: Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO publication-title: Adv. Mater. – volume: 46 start-page: 6387 year: 1986 end-page: 6392 ident: bib61 article-title: A new concept for macromolecular therapeutics in cancer-chemotherapy- mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs publication-title: Cancer Res. – volume: 33 start-page: 941 year: 2015 end-page: 951 ident: bib63 article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery publication-title: Nat. Biotechnol. – volume: 28 start-page: 8927 year: 2016 end-page: 8936 ident: bib29 article-title: Ambient aqueous synthesis of ultrasmall PEGylated Cu publication-title: Adv. Mater. – volume: 98 start-page: 424 year: 2007 end-page: 430 ident: bib53 article-title: 4-S-cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma publication-title: Cancer Sci. – volume: 25 start-page: 7280 year: 2015 end-page: 7290 ident: bib14 article-title: Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W publication-title: Adv. Funct. Mater. – volume: 12 start-page: 378 year: 2017 end-page: 386 ident: bib8 article-title: Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy publication-title: Nat. Nanotechnol. – volume: 7 start-page: 4367 year: 2013 end-page: 4377 ident: bib45 article-title: Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances publication-title: ACS Nano – volume: 14 start-page: 2372 year: 2014 end-page: 2380 ident: bib41 article-title: Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies publication-title: Nano Lett. – volume: 10 start-page: 93 year: 2016 end-page: 101 ident: bib4 article-title: Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy publication-title: ACS Nano – volume: 131 start-page: 4253 year: 2009 end-page: 4261 ident: bib42 article-title: Plasmonic Cu publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 267 year: 2007 end-page: 297 ident: bib47 article-title: Localized surface plasmon resonance spectroscopy and sensing publication-title: Annu. Rev. Phys. Chem. – volume: 228 start-page: 1324 year: 1985 end-page: 1326 ident: bib55 article-title: Angiogenesis induced by degradation products of hyaluronic-acid publication-title: Science – volume: 136 start-page: 15684 year: 2014 end-page: 15693 ident: bib33 article-title: Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 3908 year: 2014 end-page: 3920 ident: bib39 article-title: Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials publication-title: Chem. Soc. Rev. – volume: 116 start-page: 2602 year: 2016 end-page: 2663 ident: bib54 article-title: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release publication-title: Chem. Rev. – volume: 133 start-page: 9168 year: 2011 end-page: 9171 ident: bib56 article-title: Synthesis of nanoQ, a copper-based contrast agent for high-resolution magnetic resonance imaging characterization of human thrombus publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 5325 year: 2011 end-page: 5337 ident: bib37 article-title: Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia publication-title: ACS Nano – volume: 177 start-page: 2534 year: 2004 end-page: 2541 ident: bib34 article-title: Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD publication-title: J. Solid State Chem. – volume: 9 start-page: 19706 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib57 article-title: Cu2+-loaded polydopamine nanoparticles for magnetic resonance imaging-guided pH- and near-infrared-light-stimulated thermochemotherapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05583 – volume: 43 start-page: 3908 year: 2014 ident: 10.1016/j.biomaterials.2018.05.055_bib39 article-title: Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60417A – volume: 135 start-page: 8571 year: 2013 ident: 10.1016/j.biomaterials.2018.05.055_bib31 article-title: Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4013497 – volume: 3 start-page: 16207 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib24 article-title: Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses publication-title: Nat. Plants doi: 10.1038/nplants.2016.207 – volume: 5 start-page: 5325 year: 2011 ident: 10.1016/j.biomaterials.2018.05.055_bib37 article-title: Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia publication-title: ACS Nano doi: 10.1021/nn2005766 – volume: 14 start-page: 2372 year: 2014 ident: 10.1016/j.biomaterials.2018.05.055_bib41 article-title: Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies publication-title: Nano Lett. doi: 10.1021/nl404777h – volume: 134 start-page: 1583 year: 2012 ident: 10.1016/j.biomaterials.2018.05.055_bib43 article-title: Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207798q – volume: 26 start-page: 2192 year: 2008 ident: 10.1016/j.biomaterials.2018.05.055_bib3 article-title: MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2007.14.8163 – volume: 29 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib26 article-title: Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201701546 – volume: 9 start-page: 12332 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib18 article-title: Amphiphilic semiconducting oligomer for near-infrared photoacoustic and fluorescence imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02014 – volume: 29 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib21 article-title: Manganese-based layered double hydroxide nanoparticles as a T1 -MRI contrast agent with ultrasensitive pH response and high relaxivity publication-title: Adv. Mater. – volume: 10 start-page: 93 year: 2016 ident: 10.1016/j.biomaterials.2018.05.055_bib4 article-title: Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy publication-title: ACS Nano doi: 10.1021/acsnano.5b05043 – volume: 11 start-page: 4174 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib17 article-title: Degradable semiconducting oligomer amphiphile for ratiometric photoacoustic imaging of hypochlorite publication-title: ACS Nano doi: 10.1021/acsnano.7b01092 – volume: 28 start-page: 8927 year: 2016 ident: 10.1016/j.biomaterials.2018.05.055_bib29 article-title: Ambient aqueous synthesis of ultrasmall PEGylated Cu2-xSe nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer publication-title: Adv. Mater. doi: 10.1002/adma.201602193 – volume: 64 start-page: 126 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib11 article-title: Electrospun formulations of bevacizumab for sustained release in the eye publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.10.015 – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.biomaterials.2018.05.055_bib62 article-title: Analysis of nanoparticle delivery to tumours publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.14 – volume: 120 start-page: 17613 year: 2016 ident: 10.1016/j.biomaterials.2018.05.055_bib40 article-title: Size-dependent vacancy concentration in nickel, copper, gold, and platinum nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b05712 – volume: 130 start-page: 86 year: 2008 ident: 10.1016/j.biomaterials.2018.05.055_bib19 article-title: Subcellular compartment targeting of layered double hydroxide nanoparticles publication-title: J. Control Release doi: 10.1016/j.jconrel.2008.05.021 – volume: 3 start-page: 330 year: 2003 ident: 10.1016/j.biomaterials.2018.05.055_bib52 article-title: 5-Fluorouracil: mechanisms of action and clinical strategies publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1074 – volume: 15 start-page: 9067 year: 2014 ident: 10.1016/j.biomaterials.2018.05.055_bib23 article-title: A pH and redox dual responsive 4-arm poly(ethylene glycol)-block-poly(disulfide histamine) copolymer for non-viral gene transfection in vitro and in vivo publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms15059067 – volume: 9 start-page: 1788 year: 2015 ident: 10.1016/j.biomaterials.2018.05.055_bib32 article-title: Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects publication-title: ACS Nano doi: 10.1021/nn506687t – volume: 33 start-page: 941 year: 2015 ident: 10.1016/j.biomaterials.2018.05.055_bib63 article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3330 – volume: 11 start-page: 2275 year: 2015 ident: 10.1016/j.biomaterials.2018.05.055_bib30 article-title: Ultrasmall Cu2-xS nanodots for highly efficient photoacoustic imaging-guided photothermal therapy publication-title: Small doi: 10.1002/smll.201403249 – volume: 10 start-page: 767 year: 2011 ident: 10.1016/j.biomaterials.2018.05.055_bib6 article-title: Interfering with pH regulation in tumours as a therapeutic strategy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3554 – volume: 25 start-page: 6101 year: 2015 ident: 10.1016/j.biomaterials.2018.05.055_bib10 article-title: Gadolinium-doped iron oxide nanoprobe as multifunctional bioimaging agent and drug Delivery system publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502868 – volume: 25 start-page: 7280 year: 2015 ident: 10.1016/j.biomaterials.2018.05.055_bib14 article-title: Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503046 – volume: 114 start-page: 4802 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib2 article-title: Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1700790114 – volume: 3 start-page: 3331 year: 2015 ident: 10.1016/j.biomaterials.2018.05.055_bib60 article-title: Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00248F – volume: 23 start-page: 14299 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib22 article-title: MnAl layered double hydroxide nanoparticles as a dual-functional platform for magnetic resonance imaging and siRNA delivery publication-title: Chem. Eur J. doi: 10.1002/chem.201702835 – volume: 41 start-page: 2740 year: 2012 ident: 10.1016/j.biomaterials.2018.05.055_bib13 article-title: The golden age: gold nanoparticles for biomedicine publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15237H – volume: 6 year: 2016 ident: 10.1016/j.biomaterials.2018.05.055_bib28 article-title: Layered double hydroxide nanostructured photocatalysts for renewable energy production publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501974 – volume: 104 start-page: 11117 year: 2000 ident: 10.1016/j.biomaterials.2018.05.055_bib48 article-title: Investigation of acid-base properties of catalysts obtained from layered double hydroxides publication-title: J. Phys. Chem. B doi: 10.1021/jp002715u – volume: 19 start-page: 1617 year: 2009 ident: 10.1016/j.biomaterials.2018.05.055_bib35 article-title: Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801127 – volume: 10 start-page: 361 year: 2011 ident: 10.1016/j.biomaterials.2018.05.055_bib44 article-title: Localized surface plasmon resonances arising from free carriers in doped quantum dots publication-title: Nat. Mater. doi: 10.1038/nmat3004 – volume: 32 start-page: 66 year: 1994 ident: 10.1016/j.biomaterials.2018.05.055_bib58 article-title: Studies of Gd-DTPA relaxivity and proton exchange rates in tissue publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910320110 – volume: 7 start-page: 4367 year: 2013 ident: 10.1016/j.biomaterials.2018.05.055_bib45 article-title: Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances publication-title: ACS Nano doi: 10.1021/nn400894d – volume: 116 start-page: 2602 year: 2016 ident: 10.1016/j.biomaterials.2018.05.055_bib54 article-title: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00346 – volume: 228 start-page: 1324 year: 1985 ident: 10.1016/j.biomaterials.2018.05.055_bib55 article-title: Angiogenesis induced by degradation products of hyaluronic-acid publication-title: Science doi: 10.1126/science.2408340 – volume: 5 start-page: 3744 year: 2011 ident: 10.1016/j.biomaterials.2018.05.055_bib12 article-title: Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation publication-title: ACS Nano doi: 10.1021/nn200110j – volume: 44 start-page: 623 year: 2015 ident: 10.1016/j.biomaterials.2018.05.055_bib38 article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00236A – volume: 98 start-page: 424 year: 2007 ident: 10.1016/j.biomaterials.2018.05.055_bib53 article-title: 4-S-cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2006.00382.x – volume: 178 start-page: 838 year: 2011 ident: 10.1016/j.biomaterials.2018.05.055_bib64 article-title: Increased expression of p-glycoprotein is associated with doxorubicin chemoresistance in the metastatic 4T1 breast cancer model publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2010.10.029 – volume: 512 start-page: 404 year: 2018 ident: 10.1016/j.biomaterials.2018.05.055_bib50 article-title: Layered double hydroxide nanoparticles: impact on vascular cells, blood cells and the complement system publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.10.069 – volume: 134 start-page: 3995 year: 2012 ident: 10.1016/j.biomaterials.2018.05.055_bib15 article-title: Tunable localized surface plasmon resonances in tungsten oxide nanocrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211363w – volume: 7 start-page: 2080 year: 2007 ident: 10.1016/j.biomaterials.2018.05.055_bib46 article-title: On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation publication-title: Nano Lett. doi: 10.1021/nl071008a – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.biomaterials.2018.05.055_bib1 article-title: A transistor-like pH nanoprobe for tumour detection and image-guided surgery publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-016-0006 – volume: 46 start-page: 6387 year: 1986 ident: 10.1016/j.biomaterials.2018.05.055_bib61 article-title: A new concept for macromolecular therapeutics in cancer-chemotherapy- mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs publication-title: Cancer Res. – volume: 55 start-page: 4582 year: 2016 ident: 10.1016/j.biomaterials.2018.05.055_bib25 article-title: Biodegradable inorganic nanovector: passive versus active tumor targeting in siRNA transportation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510844 – volume: 4 start-page: 891 year: 2004 ident: 10.1016/j.biomaterials.2018.05.055_bib5 article-title: Why do cancers have high aerobic glycolysis? publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1478 – volume: 133 start-page: 9168 year: 2011 ident: 10.1016/j.biomaterials.2018.05.055_bib56 article-title: Synthesis of nanoQ, a copper-based contrast agent for high-resolution magnetic resonance imaging characterization of human thrombus publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201918u – volume: 15 start-page: 2389 year: 2013 ident: 10.1016/j.biomaterials.2018.05.055_bib49 article-title: Lewis-base-promoted copper-based catalyst for highly efficient hydrogenation of dimethyl 1,4-cyclohexane dicarboxylate publication-title: Green Chem. doi: 10.1039/c3gc40658j – volume: 9 start-page: 3403 year: 2014 ident: 10.1016/j.biomaterials.2018.05.055_bib51 article-title: Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways publication-title: Int. J. Nanomed. – volume: 25 start-page: 5269 year: 2015 ident: 10.1016/j.biomaterials.2018.05.055_bib9 article-title: A hybrid silica nanoreactor framework for encapsulation of hollow manganese oxide nanoparticles of superior T-1 magnetic resonance relaxivity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501269 – volume: 46 start-page: 3830 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib7 article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00592F – volume: 136 start-page: 15684 year: 2014 ident: 10.1016/j.biomaterials.2018.05.055_bib33 article-title: Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508641z – volume: 9 start-page: 34185 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib59 article-title: A novel type of aqueous dispersible ultrathin-layered double hydroxide nanosheets for in vivo bioimaging and drug delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05294 – volume: 84 start-page: 13 year: 2016 ident: 10.1016/j.biomaterials.2018.05.055_bib16 article-title: Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.009 – volume: 7 start-page: 442 year: 2008 ident: 10.1016/j.biomaterials.2018.05.055_bib36 article-title: Biosensing with plasmonic nanosensors publication-title: Nat. Mater. doi: 10.1038/nmat2162 – volume: 131 start-page: 4253 year: 2009 ident: 10.1016/j.biomaterials.2018.05.055_bib42 article-title: Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805655b – volume: 12 start-page: 378 year: 2017 ident: 10.1016/j.biomaterials.2018.05.055_bib8 article-title: Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.280 – volume: 27 start-page: 7824 year: 2015 ident: 10.1016/j.biomaterials.2018.05.055_bib27 article-title: Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water publication-title: Adv. Mater. doi: 10.1002/adma.201503730 – volume: 128 start-page: 36 year: 2006 ident: 10.1016/j.biomaterials.2018.05.055_bib20 article-title: Stable suspension of layered double hydroxide nanoparticles in aqueous solution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056652a – volume: 177 start-page: 2534 year: 2004 ident: 10.1016/j.biomaterials.2018.05.055_bib34 article-title: Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2004.03.041 – volume: 58 start-page: 267 year: 2007 ident: 10.1016/j.biomaterials.2018.05.055_bib47 article-title: Localized surface plasmon resonance spectroscopy and sensing publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.58.032806.104607 |
| SSID | ssj0014042 |
| Score | 2.567998 |
| Snippet | Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 40 |
| SubjectTerms | Acid-enhanced photothermal therapy Animals Antimetabolites, Antineoplastic - therapeutic use cations copper Copper - therapeutic use Cu-layered double hydroxides drug therapy Female Fluorouracil - therapeutic use geometry Hydroxides - therapeutic use Hyperthermia, Induced - methods magnetic resonance imaging Magnetic Resonance Imaging - methods Mice Mice, Inbred BALB C Mice, Nude microstructure nanoparticles Nanoparticles - therapeutic use Neoplasms - diagnostic imaging Neoplasms - therapy pH-sensitive theranostic agents Phototherapy - methods T1–weighted MRI contrast agents Theranostic Nanomedicine - methods tissues Tumor microenvironment X-ray photoelectron spectroscopy |
| Title | Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961218304125 https://dx.doi.org/10.1016/j.biomaterials.2018.05.055 https://www.ncbi.nlm.nih.gov/pubmed/29883915 https://www.proquest.com/docview/2052806195 https://www.proquest.com/docview/2101353896 |
| Volume | 177 |
| WOSCitedRecordID | wos000439401700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSF4QDAYlMtkJN6iQBLnYgvxMKYhQKxC04C-RU7ssExtUo20Go_8EX4rx5ekKahQkJAqy4piK875evzZ-XwOQk94wbMCeKtLSBG7IczJLs1Y6BY0KIgsuJfoXIcf3yWjER2P2fvB4Ht7FmYxSaqKXl6y2X81NVwDY6ujs39h7q5TuAB1MDqUYHYoNzL8qF7IiaPPVVW1isLsVFCZTXij-KmWFWodObBlR-Wid5r5VIX9nuj8XhoOi5I7xydOOdUpjNzP81IAL-V5KVxZnRnNwOysbvTprWntwsOC7aHS9GIUtF-KyxpIsRl4p_7REoKXslzuG1hhcNnh7NAeG_kky6_zpZ_UO7uA68petBsWPu0UWcs9zMBlsb_qhG0yF-NGTQQnOyGbgLS_uHqz63D-NOsNQ0n1qI7EamL_rsbX_mne69SIrdDtPO33laq-Ui-CX7SFdoIkYuA1dw7eHI3fdt-pQk-nZ-qG1Ia11QrCdU-2jgKtW-JoqnN6E92waxR8YLB1Cw1ktYuu9yJX7qKrx1aTcRt904DDPcDhPuAwFLgFHFaAwxpwuAc4DIDDxyd4FXB4BXC4D7hnK3C7gz68Ojo9fO3axB5uHjGvcX2eMQHUWHiBAMqahQnxMyBJIigyQsIoD0Wc8UTGNJAJY0nBciD-EpgozbgUEdlD21VdyXsIC6K8EKxqmJAho14WFiRmkWAZpTzx_CFi7btOcxv1XiVfmaR_tvoQka7tzMR-2ajV89akaXu6GebjFHC7UesXXWvLgQ233bj94xZFKUwU6usfr2Q9VzdFSkXhs9_dA70ToEAsHqK7BoLdyANGqcomcf-f3soDdG3pCx6i7eZiLh-hK_miKb9c7KOtZEz37Z_rB_EqAk8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+theranostic+nanoplatform+for+complete+mice+tumor+elimination+via+MR+imaging-guided+acid-enhanced+photothermo-%2Fchemo-therapy&rft.jtitle=Biomaterials&rft.au=Li%2C+Bei&rft.au=Tang%2C+Jie&rft.au=Chen%2C+Weiyu&rft.au=Hao%2C+Guanyu&rft.date=2018-09-01&rft.issn=0142-9612&rft.volume=177&rft.spage=40&rft.epage=51&rft_id=info:doi/10.1016%2Fj.biomaterials.2018.05.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2018_05_055 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |