Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy

Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered d...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials Vol. 177; pp. 40 - 51
Main Authors: Li, Bei, Tang, Jie, Chen, Weiyu, Hao, Guanyu, Kurniawan, Nyoman, Gu, Zi, Xu, Zhi Ping
Format: Journal Article
Language:English
Published: Netherlands Elsevier Ltd 01.09.2018
Subjects:
ISSN:0142-9612, 1878-5905, 1878-5905
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T1-magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T1-MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy. [Display omitted]
AbstractList Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T1-magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T1-MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy. [Display omitted]
Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T -magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T -MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy.
Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T1-magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T1-MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy.Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T1-magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T1-MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy.
Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise diagnosis and efficient treatment. Here, we report such a theranostic nanoplatform by engineering defect-rich multifunctional Cu-doped layered double hydroxide (Cu-LDH) nanoparticles, which integrates pH-sensitive T₁-magnetic resonance imaging (MRI), acid-enhanced photothermal therapy and heat-facilitated chemotherapy. As characterized with EXAFS and XPS, smaller Cu-LDH nanoparticles possess a considerable amount of defects around Cu cations, an advantageous microstructure that enables a high photothermal conversion of 808 nm NIR laser (53.1%). The exposure of CuOH octahedra on the LDH surface makes the photothermal conversion significantly acid-enhanced (53.1% at pH 7.0 vs. 81.9% at pH 5.0). This Cu peculiar microstructure also makes T₁-MRI very pH-sensitive, a desirable guide for subsequent tumor photothermal therapy. Combined photothermal therapy and chemotherapy lead to nearly complete elimination of tumor tissues in vivo with a low injection dose of agents. Therefore, this novel defect-rich Cu-LDH nanoplatform is one of promising tumor-specific nanotheranostic agents for non-invasive imaging-guided combinational therapy.
Author Hao, Guanyu
Xu, Zhi Ping
Li, Bei
Kurniawan, Nyoman
Gu, Zi
Chen, Weiyu
Tang, Jie
Author_xml – sequence: 1
  givenname: Bei
  surname: Li
  fullname: Li, Bei
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
– sequence: 2
  givenname: Jie
  surname: Tang
  fullname: Tang, Jie
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
– sequence: 3
  givenname: Weiyu
  surname: Chen
  fullname: Chen, Weiyu
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
– sequence: 4
  givenname: Guanyu
  surname: Hao
  fullname: Hao, Guanyu
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
– sequence: 5
  givenname: Nyoman
  surname: Kurniawan
  fullname: Kurniawan, Nyoman
  organization: Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
– sequence: 6
  givenname: Zi
  surname: Gu
  fullname: Gu, Zi
  email: zi.gu1@unsw.edu.au
  organization: School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
– sequence: 7
  givenname: Zhi Ping
  surname: Xu
  fullname: Xu, Zhi Ping
  email: gordonxu@uq.edu.au
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29883915$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAQtVAR3Rb-Aoo4ccnWduIk5gSUT6mAhOBsOfZkd5bEDo6z0h755zjdVkK9sNLIM2O9eaN574KcOe-AkBeMrhll1dVu3aIfdISAup_WnLJmTUUK8YisWFM3uZBUnJEVZSXPZcX4ObmYph1NPS35E3LOZdMUkokV-fPV76HP4haCdn6KaDKXirHXsfNhyNKTGT-MPUTIBjSQxXlIf9DjgE5H9C7bo86-fM9w0Bt0m3wzowWbaYM2B7fVzqRu3Proly2Dz6_MFlK63TkenpLHXToDnt3lS_Lzw_sf15_ym28fP1-_uclNuibmTLfSVoW0lFtai7asC9bWrLG8a4uiFKa0VatrqBoOtZR1Jw0vOPCybFoNVhSX5OWRdwz-9wxTVANOBvpeO_DzpHjSthBFI6v_Q6ngDa2YXFif30HndgCrxpBkCAd1r3ACvD4CTPDTFKBTBuOtbjFo7BWjajFV7dS_pqrFVEVFioXi1QOK-y0nDb87DkPSdo8Q1GQQFk8wgInKejyN5u0DGtOjQ6P7X3A4leQvnWjedQ
CitedBy_id crossref_primary_10_1002_adhm_202100512
crossref_primary_10_1002_mba2_25
crossref_primary_10_1016_j_ccr_2024_216316
crossref_primary_10_1016_j_matdes_2020_109298
crossref_primary_10_1007_s40843_020_1387_7
crossref_primary_10_1039_C9NR04044G
crossref_primary_10_1007_s43207_020_00090_5
crossref_primary_10_1016_j_pmatsci_2023_101220
crossref_primary_10_1002_anie_202410649
crossref_primary_10_1016_j_jmst_2022_08_053
crossref_primary_10_1016_j_matdes_2021_109731
crossref_primary_10_1016_j_nantod_2023_101788
crossref_primary_10_1039_D1BM00941A
crossref_primary_10_1016_j_apsb_2024_09_012
crossref_primary_10_1016_j_mattod_2021_04_020
crossref_primary_10_1093_rb_rbae133
crossref_primary_10_1016_j_cis_2023_102869
crossref_primary_10_1016_j_nantod_2023_101782
crossref_primary_10_1002_admi_202200373
crossref_primary_10_1002_advs_201801155
crossref_primary_10_1016_j_biomaterials_2019_01_019
crossref_primary_10_1680_jemmr_22_00151
crossref_primary_10_1002_smll_202501655
crossref_primary_10_1007_s10876_022_02226_5
crossref_primary_10_1039_D2NH00478J
crossref_primary_10_1016_j_ccr_2024_216109
crossref_primary_10_3390_nano9101404
crossref_primary_10_1016_j_addr_2022_114459
crossref_primary_10_1016_j_cej_2024_150067
crossref_primary_10_1002_smll_202403024
crossref_primary_10_1016_j_ccr_2023_215156
crossref_primary_10_1016_j_nantod_2020_100923
crossref_primary_10_1002_smtd_202200853
crossref_primary_10_1002_smll_202002115
crossref_primary_10_1016_j_addr_2022_114379
crossref_primary_10_1002_adma_202304176
crossref_primary_10_1557_s43578_022_00813_w
crossref_primary_10_1007_s10853_024_09361_6
crossref_primary_10_3390_pharmaceutics13111803
crossref_primary_10_1016_j_addr_2021_114031
crossref_primary_10_1002_smll_202002672
crossref_primary_10_1016_j_jconrel_2021_05_011
crossref_primary_10_3390_nano13061102
crossref_primary_10_1016_j_partic_2021_06_005
crossref_primary_10_1016_j_biomaterials_2021_120807
crossref_primary_10_1002_adfm_202425206
crossref_primary_10_1016_j_ccr_2022_215008
crossref_primary_10_1038_s41467_022_31106_9
crossref_primary_10_1007_s42114_020_00153_5
crossref_primary_10_1016_j_eurpolymj_2020_109993
crossref_primary_10_1021_acs_chemrev_5c00193
crossref_primary_10_1002_anbr_202100123
crossref_primary_10_1016_j_jre_2025_09_006
crossref_primary_10_1002_adfm_201909745
crossref_primary_10_1016_j_nano_2021_102369
crossref_primary_10_1016_j_jconrel_2023_01_043
crossref_primary_10_1002_ange_202410649
crossref_primary_10_1186_s12951_022_01565_9
crossref_primary_10_2217_nnm_2018_0424
crossref_primary_10_1039_D1BM00765C
crossref_primary_10_1016_j_addr_2022_114360
crossref_primary_10_1039_C8BM01243A
crossref_primary_10_3390_pharmaceutics11010022
crossref_primary_10_1039_D3BM02133E
crossref_primary_10_1140_epjp_s13360_022_02993_0
crossref_primary_10_1155_2022_2598536
crossref_primary_10_1016_j_jconrel_2020_04_019
crossref_primary_10_1002_advs_201901724
crossref_primary_10_1002_advs_202206546
crossref_primary_10_1039_D0SC06742C
crossref_primary_10_1002_admi_202101914
crossref_primary_10_1016_j_ccr_2022_214821
crossref_primary_10_1007_s12274_020_3175_0
crossref_primary_10_1080_10717544_2024_2417986
crossref_primary_10_1007_s11426_020_9738_5
crossref_primary_10_1039_D2CS00236A
crossref_primary_10_1016_j_carbpol_2020_116344
crossref_primary_10_1186_s12951_021_01096_9
crossref_primary_10_3389_fbioe_2022_972837
crossref_primary_10_1002_adma_202206915
crossref_primary_10_1002_smtd_201900343
crossref_primary_10_1016_j_addr_2022_114270
crossref_primary_10_1002_sstr_202000112
crossref_primary_10_1016_j_actbio_2022_09_024
crossref_primary_10_1039_D0BM01855D
crossref_primary_10_3390_pharmaceutics15020413
crossref_primary_10_3389_fphar_2022_882704
crossref_primary_10_1002_cplu_202500416
crossref_primary_10_1016_j_cej_2019_123562
crossref_primary_10_6023_A20090441
Cites_doi 10.1021/acsami.7b05583
10.1039/C3CS60417A
10.1021/ja4013497
10.1038/nplants.2016.207
10.1021/nn2005766
10.1021/nl404777h
10.1021/ja207798q
10.1200/JCO.2007.14.8163
10.1002/adma.201701546
10.1021/acsami.7b02014
10.1021/acsnano.5b05043
10.1021/acsnano.7b01092
10.1002/adma.201602193
10.1016/j.actbio.2017.10.015
10.1038/natrevmats.2016.14
10.1021/acs.jpcc.6b05712
10.1016/j.jconrel.2008.05.021
10.1038/nrc1074
10.3390/ijms15059067
10.1021/nn506687t
10.1038/nbt.3330
10.1002/smll.201403249
10.1038/nrd3554
10.1002/adfm.201502868
10.1002/adfm.201503046
10.1073/pnas.1700790114
10.1039/C5TB00248F
10.1002/chem.201702835
10.1039/C1CS15237H
10.1002/aenm.201501974
10.1021/jp002715u
10.1002/adfm.200801127
10.1038/nmat3004
10.1002/mrm.1910320110
10.1021/nn400894d
10.1021/acs.chemrev.5b00346
10.1126/science.2408340
10.1021/nn200110j
10.1039/C4CS00236A
10.1111/j.1349-7006.2006.00382.x
10.1016/j.ajpath.2010.10.029
10.1016/j.jcis.2017.10.069
10.1021/ja211363w
10.1021/nl071008a
10.1038/s41551-016-0006
10.1002/anie.201510844
10.1038/nrc1478
10.1021/ja201918u
10.1039/c3gc40658j
10.1002/adfm.201501269
10.1039/C6CS00592F
10.1021/ja508641z
10.1021/acsami.7b05294
10.1016/j.biomaterials.2016.01.009
10.1038/nmat2162
10.1021/ja805655b
10.1038/nnano.2016.280
10.1002/adma.201503730
10.1021/ja056652a
10.1016/j.jssc.2004.03.041
10.1146/annurev.physchem.58.032806.104607
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2018.05.055
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 51
ExternalDocumentID 29883915
10_1016_j_biomaterials_2018_05_055
S0142961218304125
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
RIG
9DU
AAYXX
CITATION
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c590t-1ab9d639d02d075b4731b718d2fb3345c4d6ba7e682e7997f9c232e2448baed53
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439401700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Sun Nov 09 09:28:52 EST 2025
Sun Sep 28 11:57:34 EDT 2025
Mon Jul 21 06:00:03 EDT 2025
Sat Nov 29 07:25:29 EST 2025
Tue Nov 18 21:26:47 EST 2025
Fri Feb 23 02:49:13 EST 2024
Tue Oct 14 19:30:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords T1–weighted MRI contrast agents
Acid-enhanced photothermal therapy
Cu-layered double hydroxides
Tumor microenvironment
pH-sensitive theranostic agents
T–weighted MRI contrast agents
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c590t-1ab9d639d02d075b4731b718d2fb3345c4d6ba7e682e7997f9c232e2448baed53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10072/426569
PMID 29883915
PQID 2052806195
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2101353896
proquest_miscellaneous_2052806195
pubmed_primary_29883915
crossref_citationtrail_10_1016_j_biomaterials_2018_05_055
crossref_primary_10_1016_j_biomaterials_2018_05_055
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2018_05_055
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2018_05_055
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Ni, Liu, Yao, Bu, Shi (bib8) 2017; 12
Ito, Fujioka, Yoshida, Wakamatsu, Ito, Yamashita, Jimbow, Honda (bib53) 2007; 98
West, Hampson, Arnold, Kumar (bib55) 1985; 228
Xu, Stevenson, Lu, Lu, Bartlett, Gray (bib20) 2006; 128
Barth, Altinoglu, Shanmugavelandy, Kaiser, Crespo-Gonzalez, DiVittore, McGovern, Goff, Keasey, Adair, Loughran, Claxton, Kester (bib37) 2011; 5
Wei, Shi, Wang, Li, Duan (bib34) 2004; 177
Gatenby, Gillies (bib5) 2004; 4
Gao, Ma, Wu, Qiao, Volinsky, Su (bib40) 2016; 120
An, Zhao, Lin, Liu (bib23) 2014; 15
Kriegel, Rodriguez-Fernandez, Wisnet, Zhang, Waurisch, Eychmuller, Dubavik, Govorov, Feldmann (bib45) 2013; 7
Matsumura, Maeda (bib61) 1986; 46
Pan, Caruthers, Senpan, Yalaz, Stacy, Hu, Marsh, Gaffney, Wickline, Lanza (bib56) 2011; 133
Kamaly, Yameen, Wu, Farokhzad (bib54) 2016; 116
Wang, Riedinger, Li, Fu, Liu, Li, Liu, Tan, Barthel, Pugliese, De Donato, D'Abbusco, Meng, Manna, Meng, Pellegrino (bib32) 2015; 9
Yin, Zhen, Zhao, Tang, Ji, Lyu, Fan, Huang, Pu (bib18) 2017; 9
Zuo, Chen, Li, Xu, Cooper, Gu, Xu (bib22) 2017; 23
Mou, Li, Liu, Xu, Song, Wang, Zhang, Chen, Shi, Chen (bib30) 2015; 11
Anker, Hall, Lyandres, Shah, Zhao, Van Duyne (bib36) 2008; 7
Luther, Jain, Ewers, Alivisatos (bib44) 2011; 10
Wilhelm, Tavares, Dai, Ohta, Audet, Dvorak, Chan (bib62) 2016; 1
Mou, Lin, Huang, Chen, Shi (bib16) 2016; 84
Sun, Gao, Lei, Xie (bib38) 2015; 44
Dai, Xu, Sun, Chen (bib7) 2017; 46
Oh, Choi, Lee, Han, Choy (bib35) 2009; 19
Chen, Lin, Ling (bib4) 2016; 10
Neri, Supuran (bib6) 2011; 10
Yin, Zhen, Fan, Huang, Pu (bib17) 2017; 11
Tian, Hu, Zhu, Zou, Chen, Yang, Li, Su, Han, Liu (bib31) 2013; 135
Manthiram, Alivisatos (bib15) 2012; 134
Park, Cho, Kwon, Yun, Choy (bib25) 2016; 55
Zhang, Fan, Li (bib49) 2013; 15
Kriegel, Jiang, Rodriguez-Fernandez, Schaller, Talapin, Da Como, Feldmann (bib43) 2012; 134
Zhao, Huang, Li, Yang, Ramezani, Lin, Wang, Ma, Zeng, Luo, De Boer, Xie, Thibodeaux, Brekken, Sun, Sumer, Gao (bib1) 2016; 1
Zhang, Sun, Zeng, Sun, Wang, Wang, Wu, Dou, Gao, Li (bib29) 2016; 28
Prinetto, Ghiotti, Durand, Tichit (bib48) 2000; 104
Gu, Yan, Cheong, Cao, Zuo, Thomas, Rolfe, Xu (bib50) 2018; 512
Chen, Shao, Li, Xu, Gu (bib51) 2014; 9
Zhao, Jia, Waterhouse, Wu, Tung, O'Hare, Zhang (bib28) 2016; 6
Zhao, Pan, Lou, Qiu, Zhu, Burda (bib42) 2009; 131
Willets, Van Duyne (bib47) 2007; 58
Ding, Liow, Zhang, Huang, Li, Shen, Liu, Zou, Gao, Zhang, Li, Wang, Li, Jiang (bib33) 2014; 136
Zhan, Qian, Liang, Somesfalean, Wang, He, Zhang, Andersson-Engels (bib12) 2011; 5
Angkawinitwong, Awwad, Khaw, Brocchini, Williams (bib11) 2017; 64
Li, Gu, Kurniawan, Chen, Xu (bib21) 2017; 29
Deng, Hou, Deng, Yang, Li, Lin (bib14) 2015; 25
Hijnen, De Smet, Langereis, Heijman, Grüll (bib2) 2017; 114
Brandes, Franceschi, Tosoni, Blatt, Pession, Tallini, Bertorelle, Bartolini, Calbucci, Andreoli, Frezza, Leonardi, Spagnolli, Ermani (bib3) 2008; 26
Hsu, Ngo, Tao (bib41) 2014; 14
Gu, Zuo, Li, Wu, Xu (bib60) 2015; 3
Bao, Haque, Jackson, Hazari, Moroz, Jetly, Dash (bib64) 2011; 178
Dreaden, Alkilany, Huang, Murphy, El-Sayed (bib13) 2012; 41
Zhao, Chen, Bian, Zhou, Waterhouse, Wu, Tung, Smith, O'Hare, Zhang (bib27) 2015; 27
Liu, Swihart (bib39) 2014; 43
Blanco, Shen, Ferrari (bib63) 2015; 33
Hsu, Ng, Zhang, Wong, Bhakoo, Li, Wang (bib9) 2015; 25
Xu, Niebert, Porazik, Walker, Cooper, Middelberg, Gray, Bartlett, Lu (bib19) 2008; 130
Yan, Zhou, Zhang, Huang, Chen, Roy, Zhang, Chen (bib59) 2017; 9
Liu, Wang, Liu, Zou, Wang (bib26) 2017; 29
Zhang, Du, Zhang, Cai, Sun, Zhou, Zhou, Qian, Zhong, Zheng, Kaigler, Liu, Zhang, Zou, Wu (bib10) 2015; 25
Jain, Huang, El-Sayed (bib46) 2007; 7
Ge, Lin, Li, Liu, Wang, Li, Zhang, Liu, Liu, Shi, Sun, Zhang, Yang (bib57) 2017; 9
Mitter, Worrall, Robinson, Li, Jain, Taochy, Fletcher, Carroll, Lu, Xu (bib24) 2017; 3
Longley, Harkin, Johnston (bib52) 2003; 3
Donahue, Burstein, Manning, Gray (bib58) 1994; 32
Tian (10.1016/j.biomaterials.2018.05.055_bib31) 2013; 135
Anker (10.1016/j.biomaterials.2018.05.055_bib36) 2008; 7
Zhao (10.1016/j.biomaterials.2018.05.055_bib28) 2016; 6
Sun (10.1016/j.biomaterials.2018.05.055_bib38) 2015; 44
Xu (10.1016/j.biomaterials.2018.05.055_bib20) 2006; 128
Prinetto (10.1016/j.biomaterials.2018.05.055_bib48) 2000; 104
Dai (10.1016/j.biomaterials.2018.05.055_bib7) 2017; 46
Luther (10.1016/j.biomaterials.2018.05.055_bib44) 2011; 10
Zhang (10.1016/j.biomaterials.2018.05.055_bib49) 2013; 15
Deng (10.1016/j.biomaterials.2018.05.055_bib14) 2015; 25
Hijnen (10.1016/j.biomaterials.2018.05.055_bib2) 2017; 114
Zuo (10.1016/j.biomaterials.2018.05.055_bib22) 2017; 23
Brandes (10.1016/j.biomaterials.2018.05.055_bib3) 2008; 26
Zhao (10.1016/j.biomaterials.2018.05.055_bib27) 2015; 27
Wang (10.1016/j.biomaterials.2018.05.055_bib32) 2015; 9
Longley (10.1016/j.biomaterials.2018.05.055_bib52) 2003; 3
Mou (10.1016/j.biomaterials.2018.05.055_bib30) 2015; 11
Blanco (10.1016/j.biomaterials.2018.05.055_bib63) 2015; 33
Donahue (10.1016/j.biomaterials.2018.05.055_bib58) 1994; 32
Ding (10.1016/j.biomaterials.2018.05.055_bib33) 2014; 136
Hsu (10.1016/j.biomaterials.2018.05.055_bib41) 2014; 14
Angkawinitwong (10.1016/j.biomaterials.2018.05.055_bib11) 2017; 64
Wilhelm (10.1016/j.biomaterials.2018.05.055_bib62) 2016; 1
Pan (10.1016/j.biomaterials.2018.05.055_bib56) 2011; 133
Mou (10.1016/j.biomaterials.2018.05.055_bib16) 2016; 84
Liu (10.1016/j.biomaterials.2018.05.055_bib26) 2017; 29
Kamaly (10.1016/j.biomaterials.2018.05.055_bib54) 2016; 116
Ge (10.1016/j.biomaterials.2018.05.055_bib57) 2017; 9
Li (10.1016/j.biomaterials.2018.05.055_bib21) 2017; 29
Chen (10.1016/j.biomaterials.2018.05.055_bib4) 2016; 10
Matsumura (10.1016/j.biomaterials.2018.05.055_bib61) 1986; 46
Xu (10.1016/j.biomaterials.2018.05.055_bib19) 2008; 130
Wei (10.1016/j.biomaterials.2018.05.055_bib34) 2004; 177
Gu (10.1016/j.biomaterials.2018.05.055_bib50) 2018; 512
Neri (10.1016/j.biomaterials.2018.05.055_bib6) 2011; 10
Jain (10.1016/j.biomaterials.2018.05.055_bib46) 2007; 7
Gu (10.1016/j.biomaterials.2018.05.055_bib60) 2015; 3
Bao (10.1016/j.biomaterials.2018.05.055_bib64) 2011; 178
Zhan (10.1016/j.biomaterials.2018.05.055_bib12) 2011; 5
Yin (10.1016/j.biomaterials.2018.05.055_bib18) 2017; 9
Liu (10.1016/j.biomaterials.2018.05.055_bib39) 2014; 43
Zhang (10.1016/j.biomaterials.2018.05.055_bib10) 2015; 25
Zhang (10.1016/j.biomaterials.2018.05.055_bib29) 2016; 28
Kriegel (10.1016/j.biomaterials.2018.05.055_bib43) 2012; 134
An (10.1016/j.biomaterials.2018.05.055_bib23) 2014; 15
Gao (10.1016/j.biomaterials.2018.05.055_bib40) 2016; 120
Mitter (10.1016/j.biomaterials.2018.05.055_bib24) 2017; 3
Yin (10.1016/j.biomaterials.2018.05.055_bib17) 2017; 11
Ito (10.1016/j.biomaterials.2018.05.055_bib53) 2007; 98
Zhao (10.1016/j.biomaterials.2018.05.055_bib42) 2009; 131
Willets (10.1016/j.biomaterials.2018.05.055_bib47) 2007; 58
Park (10.1016/j.biomaterials.2018.05.055_bib25) 2016; 55
Oh (10.1016/j.biomaterials.2018.05.055_bib35) 2009; 19
Kriegel (10.1016/j.biomaterials.2018.05.055_bib45) 2013; 7
Dreaden (10.1016/j.biomaterials.2018.05.055_bib13) 2012; 41
Yan (10.1016/j.biomaterials.2018.05.055_bib59) 2017; 9
Zhao (10.1016/j.biomaterials.2018.05.055_bib1) 2016; 1
Manthiram (10.1016/j.biomaterials.2018.05.055_bib15) 2012; 134
Chen (10.1016/j.biomaterials.2018.05.055_bib51) 2014; 9
West (10.1016/j.biomaterials.2018.05.055_bib55) 1985; 228
Hsu (10.1016/j.biomaterials.2018.05.055_bib9) 2015; 25
Zhang (10.1016/j.biomaterials.2018.05.055_bib8) 2017; 12
Gatenby (10.1016/j.biomaterials.2018.05.055_bib5) 2004; 4
Barth (10.1016/j.biomaterials.2018.05.055_bib37) 2011; 5
References_xml – volume: 10
  start-page: 767
  year: 2011
  end-page: 777
  ident: bib6
  article-title: Interfering with pH regulation in tumours as a therapeutic strategy
  publication-title: Nat. Rev. Drug Discov.
– volume: 15
  start-page: 9067
  year: 2014
  end-page: 9081
  ident: bib23
  article-title: A pH and redox dual responsive 4-arm poly(ethylene glycol)-block-poly(disulfide histamine) copolymer for non-viral gene transfection in vitro and in vivo
  publication-title: Int. J. Mol. Sci.
– volume: 29
  year: 2017
  ident: bib26
  article-title: Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation
  publication-title: Adv. Mater.
– volume: 4
  start-page: 891
  year: 2004
  end-page: 899
  ident: bib5
  article-title: Why do cancers have high aerobic glycolysis?
  publication-title: Nat. Rev. Cancer
– volume: 130
  start-page: 86
  year: 2008
  end-page: 94
  ident: bib19
  article-title: Subcellular compartment targeting of layered double hydroxide nanoparticles
  publication-title: J. Control Release
– volume: 3
  start-page: 3331
  year: 2015
  end-page: 3339
  ident: bib60
  article-title: Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake
  publication-title: J. Mater. Chem. B
– volume: 26
  start-page: 2192
  year: 2008
  end-page: 2197
  ident: bib3
  article-title: MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients
  publication-title: J. Clin. Oncol.
– volume: 5
  start-page: 3744
  year: 2011
  end-page: 3757
  ident: bib12
  article-title: Using 915 nm laser excited Tm
  publication-title: ACS Nano
– volume: 120
  start-page: 17613
  year: 2016
  end-page: 17619
  ident: bib40
  article-title: Size-dependent vacancy concentration in nickel, copper, gold, and platinum nanoparticles
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 2080
  year: 2007
  end-page: 2088
  ident: bib46
  article-title: On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation
  publication-title: Nano Lett.
– volume: 6
  year: 2016
  ident: bib28
  article-title: Layered double hydroxide nanostructured photocatalysts for renewable energy production
  publication-title: Adv. Energy Mater.
– volume: 134
  start-page: 3995
  year: 2012
  end-page: 3998
  ident: bib15
  article-title: Tunable localized surface plasmon resonances in tungsten oxide nanocrystals
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 361
  year: 2011
  end-page: 366
  ident: bib44
  article-title: Localized surface plasmon resonances arising from free carriers in doped quantum dots
  publication-title: Nat. Mater.
– volume: 9
  start-page: 34185
  year: 2017
  end-page: 34193
  ident: bib59
  article-title: A novel type of aqueous dispersible ultrathin-layered double hydroxide nanosheets for in vivo bioimaging and drug delivery
  publication-title: ACS Appl. Mater. Interfaces
– volume: 104
  start-page: 11117
  year: 2000
  end-page: 11126
  ident: bib48
  article-title: Investigation of acid-base properties of catalysts obtained from layered double hydroxides
  publication-title: J. Phys. Chem. B
– volume: 512
  start-page: 404
  year: 2018
  end-page: 410
  ident: bib50
  article-title: Layered double hydroxide nanoparticles: impact on vascular cells, blood cells and the complement system
  publication-title: J. Colloid Interface Sci.
– volume: 134
  start-page: 1583
  year: 2012
  end-page: 1590
  ident: bib43
  article-title: Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib62
  article-title: Analysis of nanoparticle delivery to tumours
  publication-title: Nat. Rev. Mater.
– volume: 3
  start-page: 330
  year: 2003
  end-page: 338
  ident: bib52
  article-title: 5-Fluorouracil: mechanisms of action and clinical strategies
  publication-title: Nat. Rev. Cancer
– volume: 128
  start-page: 36
  year: 2006
  end-page: 37
  ident: bib20
  article-title: Stable suspension of layered double hydroxide nanoparticles in aqueous solution
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 2389
  year: 2013
  end-page: 2393
  ident: bib49
  article-title: Lewis-base-promoted copper-based catalyst for highly efficient hydrogenation of dimethyl 1,4-cyclohexane dicarboxylate
  publication-title: Green Chem.
– volume: 9
  start-page: 3403
  year: 2014
  end-page: 3411
  ident: bib51
  article-title: Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways
  publication-title: Int. J. Nanomed.
– volume: 178
  start-page: 838
  year: 2011
  end-page: 852
  ident: bib64
  article-title: Increased expression of p-glycoprotein is associated with doxorubicin chemoresistance in the metastatic 4T1 breast cancer model
  publication-title: Am. J. Pathol.
– volume: 3
  start-page: 16207
  year: 2017
  ident: bib24
  article-title: Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses
  publication-title: Nat. Plants
– volume: 84
  start-page: 13
  year: 2016
  end-page: 24
  ident: bib16
  article-title: Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT
  publication-title: Biomaterials
– volume: 9
  start-page: 12332
  year: 2017
  end-page: 12339
  ident: bib18
  article-title: Amphiphilic semiconducting oligomer for near-infrared photoacoustic and fluorescence imaging
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 3830
  year: 2017
  end-page: 3852
  ident: bib7
  article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 1788
  year: 2015
  end-page: 1800
  ident: bib32
  article-title: Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects
  publication-title: ACS Nano
– volume: 19
  start-page: 1617
  year: 2009
  end-page: 1624
  ident: bib35
  article-title: Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 442
  year: 2008
  end-page: 453
  ident: bib36
  article-title: Biosensing with plasmonic nanosensors
  publication-title: Nat. Mater.
– volume: 25
  start-page: 6101
  year: 2015
  end-page: 6111
  ident: bib10
  article-title: Gadolinium-doped iron oxide nanoprobe as multifunctional bioimaging agent and drug Delivery system
  publication-title: Adv. Funct. Mater.
– volume: 114
  start-page: 4802
  year: 2017
  end-page: 4811
  ident: bib2
  article-title: Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9
  start-page: 19706
  year: 2017
  end-page: 19716
  ident: bib57
  article-title: Cu
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  year: 2017
  ident: bib21
  article-title: Manganese-based layered double hydroxide nanoparticles as a T
  publication-title: Adv. Mater.
– volume: 25
  start-page: 5269
  year: 2015
  end-page: 5276
  ident: bib9
  article-title: A hybrid silica nanoreactor framework for encapsulation of hollow manganese oxide nanoparticles of superior T-1 magnetic resonance relaxivity
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 14299
  year: 2017
  end-page: 14306
  ident: bib22
  article-title: MnAl layered double hydroxide nanoparticles as a dual-functional platform for magnetic resonance imaging and siRNA delivery
  publication-title: Chem. Eur J.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib1
  article-title: A transistor-like pH nanoprobe for tumour detection and image-guided surgery
  publication-title: Nat. Biomed. Eng.
– volume: 11
  start-page: 4174
  year: 2017
  end-page: 4182
  ident: bib17
  article-title: Degradable semiconducting oligomer amphiphile for ratiometric photoacoustic imaging of hypochlorite
  publication-title: ACS Nano
– volume: 32
  start-page: 66
  year: 1994
  end-page: 76
  ident: bib58
  article-title: Studies of Gd-DTPA relaxivity and proton exchange rates in tissue
  publication-title: Magn. Reson. Med.
– volume: 64
  start-page: 126
  year: 2017
  end-page: 136
  ident: bib11
  article-title: Electrospun formulations of bevacizumab for sustained release in the eye
  publication-title: Acta Biomater.
– volume: 11
  start-page: 2275
  year: 2015
  end-page: 2283
  ident: bib30
  article-title: Ultrasmall Cu
  publication-title: Small
– volume: 135
  start-page: 8571
  year: 2013
  end-page: 8577
  ident: bib31
  article-title: Sub-10 nm Fe
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 623
  year: 2015
  end-page: 636
  ident: bib38
  article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis
  publication-title: Chem. Soc. Rev.
– volume: 41
  start-page: 2740
  year: 2012
  end-page: 2779
  ident: bib13
  article-title: The golden age: gold nanoparticles for biomedicine
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 4582
  year: 2016
  end-page: 4586
  ident: bib25
  article-title: Biodegradable inorganic nanovector: passive versus active tumor targeting in siRNA transportation
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 7824
  year: 2015
  end-page: 7831
  ident: bib27
  article-title: Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO
  publication-title: Adv. Mater.
– volume: 46
  start-page: 6387
  year: 1986
  end-page: 6392
  ident: bib61
  article-title: A new concept for macromolecular therapeutics in cancer-chemotherapy- mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs
  publication-title: Cancer Res.
– volume: 33
  start-page: 941
  year: 2015
  end-page: 951
  ident: bib63
  article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery
  publication-title: Nat. Biotechnol.
– volume: 28
  start-page: 8927
  year: 2016
  end-page: 8936
  ident: bib29
  article-title: Ambient aqueous synthesis of ultrasmall PEGylated Cu
  publication-title: Adv. Mater.
– volume: 98
  start-page: 424
  year: 2007
  end-page: 430
  ident: bib53
  article-title: 4-S-cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma
  publication-title: Cancer Sci.
– volume: 25
  start-page: 7280
  year: 2015
  end-page: 7290
  ident: bib14
  article-title: Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 378
  year: 2017
  end-page: 386
  ident: bib8
  article-title: Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 4367
  year: 2013
  end-page: 4377
  ident: bib45
  article-title: Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances
  publication-title: ACS Nano
– volume: 14
  start-page: 2372
  year: 2014
  end-page: 2380
  ident: bib41
  article-title: Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies
  publication-title: Nano Lett.
– volume: 10
  start-page: 93
  year: 2016
  end-page: 101
  ident: bib4
  article-title: Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy
  publication-title: ACS Nano
– volume: 131
  start-page: 4253
  year: 2009
  end-page: 4261
  ident: bib42
  article-title: Plasmonic Cu
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 267
  year: 2007
  end-page: 297
  ident: bib47
  article-title: Localized surface plasmon resonance spectroscopy and sensing
  publication-title: Annu. Rev. Phys. Chem.
– volume: 228
  start-page: 1324
  year: 1985
  end-page: 1326
  ident: bib55
  article-title: Angiogenesis induced by degradation products of hyaluronic-acid
  publication-title: Science
– volume: 136
  start-page: 15684
  year: 2014
  end-page: 15693
  ident: bib33
  article-title: Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 3908
  year: 2014
  end-page: 3920
  ident: bib39
  article-title: Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials
  publication-title: Chem. Soc. Rev.
– volume: 116
  start-page: 2602
  year: 2016
  end-page: 2663
  ident: bib54
  article-title: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release
  publication-title: Chem. Rev.
– volume: 133
  start-page: 9168
  year: 2011
  end-page: 9171
  ident: bib56
  article-title: Synthesis of nanoQ, a copper-based contrast agent for high-resolution magnetic resonance imaging characterization of human thrombus
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 5325
  year: 2011
  end-page: 5337
  ident: bib37
  article-title: Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia
  publication-title: ACS Nano
– volume: 177
  start-page: 2534
  year: 2004
  end-page: 2541
  ident: bib34
  article-title: Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD
  publication-title: J. Solid State Chem.
– volume: 9
  start-page: 19706
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib57
  article-title: Cu2+-loaded polydopamine nanoparticles for magnetic resonance imaging-guided pH- and near-infrared-light-stimulated thermochemotherapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05583
– volume: 43
  start-page: 3908
  year: 2014
  ident: 10.1016/j.biomaterials.2018.05.055_bib39
  article-title: Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60417A
– volume: 135
  start-page: 8571
  year: 2013
  ident: 10.1016/j.biomaterials.2018.05.055_bib31
  article-title: Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4013497
– volume: 3
  start-page: 16207
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib24
  article-title: Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2016.207
– volume: 5
  start-page: 5325
  year: 2011
  ident: 10.1016/j.biomaterials.2018.05.055_bib37
  article-title: Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia
  publication-title: ACS Nano
  doi: 10.1021/nn2005766
– volume: 14
  start-page: 2372
  year: 2014
  ident: 10.1016/j.biomaterials.2018.05.055_bib41
  article-title: Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies
  publication-title: Nano Lett.
  doi: 10.1021/nl404777h
– volume: 134
  start-page: 1583
  year: 2012
  ident: 10.1016/j.biomaterials.2018.05.055_bib43
  article-title: Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207798q
– volume: 26
  start-page: 2192
  year: 2008
  ident: 10.1016/j.biomaterials.2018.05.055_bib3
  article-title: MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2007.14.8163
– volume: 29
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib26
  article-title: Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701546
– volume: 9
  start-page: 12332
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib18
  article-title: Amphiphilic semiconducting oligomer for near-infrared photoacoustic and fluorescence imaging
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02014
– volume: 29
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib21
  article-title: Manganese-based layered double hydroxide nanoparticles as a T1 -MRI contrast agent with ultrasensitive pH response and high relaxivity
  publication-title: Adv. Mater.
– volume: 10
  start-page: 93
  year: 2016
  ident: 10.1016/j.biomaterials.2018.05.055_bib4
  article-title: Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05043
– volume: 11
  start-page: 4174
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib17
  article-title: Degradable semiconducting oligomer amphiphile for ratiometric photoacoustic imaging of hypochlorite
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01092
– volume: 28
  start-page: 8927
  year: 2016
  ident: 10.1016/j.biomaterials.2018.05.055_bib29
  article-title: Ambient aqueous synthesis of ultrasmall PEGylated Cu2-xSe nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602193
– volume: 64
  start-page: 126
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib11
  article-title: Electrospun formulations of bevacizumab for sustained release in the eye
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.10.015
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2018.05.055_bib62
  article-title: Analysis of nanoparticle delivery to tumours
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.14
– volume: 120
  start-page: 17613
  year: 2016
  ident: 10.1016/j.biomaterials.2018.05.055_bib40
  article-title: Size-dependent vacancy concentration in nickel, copper, gold, and platinum nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b05712
– volume: 130
  start-page: 86
  year: 2008
  ident: 10.1016/j.biomaterials.2018.05.055_bib19
  article-title: Subcellular compartment targeting of layered double hydroxide nanoparticles
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2008.05.021
– volume: 3
  start-page: 330
  year: 2003
  ident: 10.1016/j.biomaterials.2018.05.055_bib52
  article-title: 5-Fluorouracil: mechanisms of action and clinical strategies
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1074
– volume: 15
  start-page: 9067
  year: 2014
  ident: 10.1016/j.biomaterials.2018.05.055_bib23
  article-title: A pH and redox dual responsive 4-arm poly(ethylene glycol)-block-poly(disulfide histamine) copolymer for non-viral gene transfection in vitro and in vivo
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15059067
– volume: 9
  start-page: 1788
  year: 2015
  ident: 10.1016/j.biomaterials.2018.05.055_bib32
  article-title: Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects
  publication-title: ACS Nano
  doi: 10.1021/nn506687t
– volume: 33
  start-page: 941
  year: 2015
  ident: 10.1016/j.biomaterials.2018.05.055_bib63
  article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3330
– volume: 11
  start-page: 2275
  year: 2015
  ident: 10.1016/j.biomaterials.2018.05.055_bib30
  article-title: Ultrasmall Cu2-xS nanodots for highly efficient photoacoustic imaging-guided photothermal therapy
  publication-title: Small
  doi: 10.1002/smll.201403249
– volume: 10
  start-page: 767
  year: 2011
  ident: 10.1016/j.biomaterials.2018.05.055_bib6
  article-title: Interfering with pH regulation in tumours as a therapeutic strategy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3554
– volume: 25
  start-page: 6101
  year: 2015
  ident: 10.1016/j.biomaterials.2018.05.055_bib10
  article-title: Gadolinium-doped iron oxide nanoprobe as multifunctional bioimaging agent and drug Delivery system
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502868
– volume: 25
  start-page: 7280
  year: 2015
  ident: 10.1016/j.biomaterials.2018.05.055_bib14
  article-title: Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503046
– volume: 114
  start-page: 4802
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib2
  article-title: Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1700790114
– volume: 3
  start-page: 3331
  year: 2015
  ident: 10.1016/j.biomaterials.2018.05.055_bib60
  article-title: Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00248F
– volume: 23
  start-page: 14299
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib22
  article-title: MnAl layered double hydroxide nanoparticles as a dual-functional platform for magnetic resonance imaging and siRNA delivery
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201702835
– volume: 41
  start-page: 2740
  year: 2012
  ident: 10.1016/j.biomaterials.2018.05.055_bib13
  article-title: The golden age: gold nanoparticles for biomedicine
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15237H
– volume: 6
  year: 2016
  ident: 10.1016/j.biomaterials.2018.05.055_bib28
  article-title: Layered double hydroxide nanostructured photocatalysts for renewable energy production
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501974
– volume: 104
  start-page: 11117
  year: 2000
  ident: 10.1016/j.biomaterials.2018.05.055_bib48
  article-title: Investigation of acid-base properties of catalysts obtained from layered double hydroxides
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp002715u
– volume: 19
  start-page: 1617
  year: 2009
  ident: 10.1016/j.biomaterials.2018.05.055_bib35
  article-title: Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801127
– volume: 10
  start-page: 361
  year: 2011
  ident: 10.1016/j.biomaterials.2018.05.055_bib44
  article-title: Localized surface plasmon resonances arising from free carriers in doped quantum dots
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3004
– volume: 32
  start-page: 66
  year: 1994
  ident: 10.1016/j.biomaterials.2018.05.055_bib58
  article-title: Studies of Gd-DTPA relaxivity and proton exchange rates in tissue
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910320110
– volume: 7
  start-page: 4367
  year: 2013
  ident: 10.1016/j.biomaterials.2018.05.055_bib45
  article-title: Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances
  publication-title: ACS Nano
  doi: 10.1021/nn400894d
– volume: 116
  start-page: 2602
  year: 2016
  ident: 10.1016/j.biomaterials.2018.05.055_bib54
  article-title: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00346
– volume: 228
  start-page: 1324
  year: 1985
  ident: 10.1016/j.biomaterials.2018.05.055_bib55
  article-title: Angiogenesis induced by degradation products of hyaluronic-acid
  publication-title: Science
  doi: 10.1126/science.2408340
– volume: 5
  start-page: 3744
  year: 2011
  ident: 10.1016/j.biomaterials.2018.05.055_bib12
  article-title: Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation
  publication-title: ACS Nano
  doi: 10.1021/nn200110j
– volume: 44
  start-page: 623
  year: 2015
  ident: 10.1016/j.biomaterials.2018.05.055_bib38
  article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00236A
– volume: 98
  start-page: 424
  year: 2007
  ident: 10.1016/j.biomaterials.2018.05.055_bib53
  article-title: 4-S-cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma
  publication-title: Cancer Sci.
  doi: 10.1111/j.1349-7006.2006.00382.x
– volume: 178
  start-page: 838
  year: 2011
  ident: 10.1016/j.biomaterials.2018.05.055_bib64
  article-title: Increased expression of p-glycoprotein is associated with doxorubicin chemoresistance in the metastatic 4T1 breast cancer model
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2010.10.029
– volume: 512
  start-page: 404
  year: 2018
  ident: 10.1016/j.biomaterials.2018.05.055_bib50
  article-title: Layered double hydroxide nanoparticles: impact on vascular cells, blood cells and the complement system
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.10.069
– volume: 134
  start-page: 3995
  year: 2012
  ident: 10.1016/j.biomaterials.2018.05.055_bib15
  article-title: Tunable localized surface plasmon resonances in tungsten oxide nanocrystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211363w
– volume: 7
  start-page: 2080
  year: 2007
  ident: 10.1016/j.biomaterials.2018.05.055_bib46
  article-title: On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation
  publication-title: Nano Lett.
  doi: 10.1021/nl071008a
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2018.05.055_bib1
  article-title: A transistor-like pH nanoprobe for tumour detection and image-guided surgery
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-016-0006
– volume: 46
  start-page: 6387
  year: 1986
  ident: 10.1016/j.biomaterials.2018.05.055_bib61
  article-title: A new concept for macromolecular therapeutics in cancer-chemotherapy- mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs
  publication-title: Cancer Res.
– volume: 55
  start-page: 4582
  year: 2016
  ident: 10.1016/j.biomaterials.2018.05.055_bib25
  article-title: Biodegradable inorganic nanovector: passive versus active tumor targeting in siRNA transportation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201510844
– volume: 4
  start-page: 891
  year: 2004
  ident: 10.1016/j.biomaterials.2018.05.055_bib5
  article-title: Why do cancers have high aerobic glycolysis?
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1478
– volume: 133
  start-page: 9168
  year: 2011
  ident: 10.1016/j.biomaterials.2018.05.055_bib56
  article-title: Synthesis of nanoQ, a copper-based contrast agent for high-resolution magnetic resonance imaging characterization of human thrombus
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201918u
– volume: 15
  start-page: 2389
  year: 2013
  ident: 10.1016/j.biomaterials.2018.05.055_bib49
  article-title: Lewis-base-promoted copper-based catalyst for highly efficient hydrogenation of dimethyl 1,4-cyclohexane dicarboxylate
  publication-title: Green Chem.
  doi: 10.1039/c3gc40658j
– volume: 9
  start-page: 3403
  year: 2014
  ident: 10.1016/j.biomaterials.2018.05.055_bib51
  article-title: Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways
  publication-title: Int. J. Nanomed.
– volume: 25
  start-page: 5269
  year: 2015
  ident: 10.1016/j.biomaterials.2018.05.055_bib9
  article-title: A hybrid silica nanoreactor framework for encapsulation of hollow manganese oxide nanoparticles of superior T-1 magnetic resonance relaxivity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501269
– volume: 46
  start-page: 3830
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib7
  article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00592F
– volume: 136
  start-page: 15684
  year: 2014
  ident: 10.1016/j.biomaterials.2018.05.055_bib33
  article-title: Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508641z
– volume: 9
  start-page: 34185
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib59
  article-title: A novel type of aqueous dispersible ultrathin-layered double hydroxide nanosheets for in vivo bioimaging and drug delivery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05294
– volume: 84
  start-page: 13
  year: 2016
  ident: 10.1016/j.biomaterials.2018.05.055_bib16
  article-title: Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.009
– volume: 7
  start-page: 442
  year: 2008
  ident: 10.1016/j.biomaterials.2018.05.055_bib36
  article-title: Biosensing with plasmonic nanosensors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2162
– volume: 131
  start-page: 4253
  year: 2009
  ident: 10.1016/j.biomaterials.2018.05.055_bib42
  article-title: Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja805655b
– volume: 12
  start-page: 378
  year: 2017
  ident: 10.1016/j.biomaterials.2018.05.055_bib8
  article-title: Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.280
– volume: 27
  start-page: 7824
  year: 2015
  ident: 10.1016/j.biomaterials.2018.05.055_bib27
  article-title: Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503730
– volume: 128
  start-page: 36
  year: 2006
  ident: 10.1016/j.biomaterials.2018.05.055_bib20
  article-title: Stable suspension of layered double hydroxide nanoparticles in aqueous solution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056652a
– volume: 177
  start-page: 2534
  year: 2004
  ident: 10.1016/j.biomaterials.2018.05.055_bib34
  article-title: Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2004.03.041
– volume: 58
  start-page: 267
  year: 2007
  ident: 10.1016/j.biomaterials.2018.05.055_bib47
  article-title: Localized surface plasmon resonance spectroscopy and sensing
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.58.032806.104607
SSID ssj0014042
Score 2.567998
Snippet Non-invasive imaging-guided tumor therapy requires new-generation bio-nanomaterials to sensitively respond to the unique tumor microenvironment for precise...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 40
SubjectTerms Acid-enhanced photothermal therapy
Animals
Antimetabolites, Antineoplastic - therapeutic use
cations
copper
Copper - therapeutic use
Cu-layered double hydroxides
drug therapy
Female
Fluorouracil - therapeutic use
geometry
Hydroxides - therapeutic use
Hyperthermia, Induced - methods
magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mice
Mice, Inbred BALB C
Mice, Nude
microstructure
nanoparticles
Nanoparticles - therapeutic use
Neoplasms - diagnostic imaging
Neoplasms - therapy
pH-sensitive theranostic agents
Phototherapy - methods
T1–weighted MRI contrast agents
Theranostic Nanomedicine - methods
tissues
Tumor microenvironment
X-ray photoelectron spectroscopy
Title Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961218304125
https://dx.doi.org/10.1016/j.biomaterials.2018.05.055
https://www.ncbi.nlm.nih.gov/pubmed/29883915
https://www.proquest.com/docview/2052806195
https://www.proquest.com/docview/2101353896
Volume 177
WOSCitedRecordID wos000439401700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSF4QDAYlMtkJN6iQBLnYgvxMKYhQKxC04C-RU7ssExtUo20Go_8EX4rx5ekKahQkJAqy4piK875evzZ-XwOQk94wbMCeKtLSBG7IczJLs1Y6BY0KIgsuJfoXIcf3yWjER2P2fvB4Ht7FmYxSaqKXl6y2X81NVwDY6ujs39h7q5TuAB1MDqUYHYoNzL8qF7IiaPPVVW1isLsVFCZTXij-KmWFWodObBlR-Wid5r5VIX9nuj8XhoOi5I7xydOOdUpjNzP81IAL-V5KVxZnRnNwOysbvTprWntwsOC7aHS9GIUtF-KyxpIsRl4p_7REoKXslzuG1hhcNnh7NAeG_kky6_zpZ_UO7uA68petBsWPu0UWcs9zMBlsb_qhG0yF-NGTQQnOyGbgLS_uHqz63D-NOsNQ0n1qI7EamL_rsbX_mne69SIrdDtPO33laq-Ui-CX7SFdoIkYuA1dw7eHI3fdt-pQk-nZ-qG1Ia11QrCdU-2jgKtW-JoqnN6E92waxR8YLB1Cw1ktYuu9yJX7qKrx1aTcRt904DDPcDhPuAwFLgFHFaAwxpwuAc4DIDDxyd4FXB4BXC4D7hnK3C7gz68Ojo9fO3axB5uHjGvcX2eMQHUWHiBAMqahQnxMyBJIigyQsIoD0Wc8UTGNJAJY0nBciD-EpgozbgUEdlD21VdyXsIC6K8EKxqmJAho14WFiRmkWAZpTzx_CFi7btOcxv1XiVfmaR_tvoQka7tzMR-2ajV89akaXu6GebjFHC7UesXXWvLgQ233bj94xZFKUwU6usfr2Q9VzdFSkXhs9_dA70ToEAsHqK7BoLdyANGqcomcf-f3soDdG3pCx6i7eZiLh-hK_miKb9c7KOtZEz37Z_rB_EqAk8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+theranostic+nanoplatform+for+complete+mice+tumor+elimination+via+MR+imaging-guided+acid-enhanced+photothermo-%2Fchemo-therapy&rft.jtitle=Biomaterials&rft.au=Li%2C+Bei&rft.au=Tang%2C+Jie&rft.au=Chen%2C+Weiyu&rft.au=Hao%2C+Guanyu&rft.date=2018-09-01&rft.issn=0142-9612&rft.volume=177&rft.spage=40&rft.epage=51&rft_id=info:doi/10.1016%2Fj.biomaterials.2018.05.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2018_05_055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon