Effects of incorporating nanosized calcium phosphate particles on properties of whisker-reinforced dental composites

Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically‐strong and caries‐inhibiting dental composites. The specific goal of this pilot study was to understand the relationships betwee...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of biomedical materials research. Part B, Applied biomaterials Ročník 81B; číslo 1; s. 116 - 125
Hlavní autori: Xu, Hockin H. K., Sun, Limin, Weir, Mike D., Takagi, Shozo, Chow, Laurence C., Hockey, Bernard
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2007
Predmet:
ISSN:1552-4973, 1552-4981
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically‐strong and caries‐inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1–56 days to measure Ca and PO4 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean ± SD; n = 5) decreased from 174 ± 26 MPa to 138 ± 9 MPa (p < 0.05). A commercial nonreleasing composite had a strength of 112 ± 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 ± 0.04 mmol/L to 1.74 ± 0.06 mmol/L (p < 0.05). The corresponding PO4 concentration increased from 3.88 ± 0.21 mmol/L to 9.95 ± 0.69 mmol/L (p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction vMCPM in the resin: [Ca]= 42.9 v MCPM2.7, and [PO4] = 48.7 v MCPM1.4. In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca‐ and PO4‐releasing composites with mechanical properties matching or exceeding a commercial stress‐bearing, nonreleasing composite. This method may be applicable to the use of other Ca–PO4 fillers in developing composites with high stress‐bearing and caries‐preventing capabilities, a combination not yet available in any dental materials. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006
AbstractList Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically-strong and caries-inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1-56 days to measure Ca and PO4 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean +/- SD; n = 5) decreased from 174 +/- 26 MPa to 138 +/- 9 MPa (p < 0.05). A commercial nonreleasing composite had a strength of 112 +/- 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 +/- 0.04 mmol/L to 1.74 +/- 0.06 mmol/L (p < 0.05). The corresponding PO4 concentration increased from 3.88 +/- 0.21 mmol/L to 9.95 +/- 0.69 mmol/L (p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction v(MCPM) in the resin: [Ca]= 42.9 v(MCPM) (2.7), and [PO4] = 48.7 v(MCPM) (1.4). In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca- and PO4-releasing composites with mechanical properties matching or exceeding a commercial stress-bearing, nonreleasing composite. This method may be applicable to the use of other Ca-PO4 fillers in developing composites with high stress-bearing and caries-preventing capabilities, a combination not yet available in any dental materials.Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically-strong and caries-inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1-56 days to measure Ca and PO4 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean +/- SD; n = 5) decreased from 174 +/- 26 MPa to 138 +/- 9 MPa (p < 0.05). A commercial nonreleasing composite had a strength of 112 +/- 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 +/- 0.04 mmol/L to 1.74 +/- 0.06 mmol/L (p < 0.05). The corresponding PO4 concentration increased from 3.88 +/- 0.21 mmol/L to 9.95 +/- 0.69 mmol/L (p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction v(MCPM) in the resin: [Ca]= 42.9 v(MCPM) (2.7), and [PO4] = 48.7 v(MCPM) (1.4). In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca- and PO4-releasing composites with mechanical properties matching or exceeding a commercial stress-bearing, nonreleasing composite. This method may be applicable to the use of other Ca-PO4 fillers in developing composites with high stress-bearing and caries-preventing capabilities, a combination not yet available in any dental materials.
Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically‐strong and caries‐inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1–56 days to measure Ca and PO 4 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean ± SD; n = 5) decreased from 174 ± 26 MPa to 138 ± 9 MPa ( p < 0.05). A commercial nonreleasing composite had a strength of 112 ± 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 ± 0.04 mmol/L to 1.74 ± 0.06 mmol/L ( p < 0.05). The corresponding PO 4 concentration increased from 3.88 ± 0.21 mmol/L to 9.95 ± 0.69 mmol/L ( p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction v MCPM in the resin: [Ca]= 42.9 v , and [PO 4 ] = 48.7 v . In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca‐ and PO 4 ‐releasing composites with mechanical properties matching or exceeding a commercial stress‐bearing, nonreleasing composite. This method may be applicable to the use of other Ca–PO 4 fillers in developing composites with high stress‐bearing and caries‐preventing capabilities, a combination not yet available in any dental materials. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006
Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically‐strong and caries‐inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1–56 days to measure Ca and PO4 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean ± SD; n = 5) decreased from 174 ± 26 MPa to 138 ± 9 MPa (p < 0.05). A commercial nonreleasing composite had a strength of 112 ± 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 ± 0.04 mmol/L to 1.74 ± 0.06 mmol/L (p < 0.05). The corresponding PO4 concentration increased from 3.88 ± 0.21 mmol/L to 9.95 ± 0.69 mmol/L (p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction vMCPM in the resin: [Ca]= 42.9 v MCPM2.7, and [PO4] = 48.7 v MCPM1.4. In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca‐ and PO4‐releasing composites with mechanical properties matching or exceeding a commercial stress‐bearing, nonreleasing composite. This method may be applicable to the use of other Ca–PO4 fillers in developing composites with high stress‐bearing and caries‐preventing capabilities, a combination not yet available in any dental materials. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006
Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically-strong and caries-inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1-56 days to measure Ca and P04 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean +/- SD; n = 5) decreased from 174 +/- 26 MPa to 138 +/- 9 MPa (p < 0.05). A commercial nonreleasing composite had a strength of 112 +/- 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 +/- 0.04 mmol/L to 1.74 +/- 0.06 mmol/L (p < 0.05). The corresponding PO4 concentration increased from 3.88 +/- 0.21 mmol/L to 9.95 +/- 0.69 mmol/L (p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction vvwpM in the resin: [Ca] = 42.9 vMCPM2.7, and [PO4] = 48.7 vMCPM1.4. In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca- and PO4-releasing composites with mechanical properties matching or exceeding a commercial stress-bearing, nonreleasing composite. This method may be applicable to the use of other Ca-PO4 fillers in developing composites with high stress-bearing and caries-preventing capabilities, a combination not yet available in any dental materials.
Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically-strong and caries-inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1–56 days to measure Ca and PO4 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean ± SD; n = 5) decreased from 174 ± 26 MPa to 138 ± 9 MPa (p < 0.05). A commercial nonreleasing composite had a strength of 112 ± 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 ± 0.04 mmol/L to 1.74 ± 0.06 mmol/L (p < 0.05). The corresponding PO4 concentration increased from 3.88 ± 0.21 mmol/L to 9.95 ± 0.69 mmol/L (p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction vMCPM in the resin: [Ca]= 42.9 vMCPM2.7, and [PO4] = 48.7 vMCPM1.4. In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca- and PO4-releasing composites with mechanical properties matching or exceeding a commercial stress-bearing, nonreleasing composite. This method may be applicable to the use of other Ca–PO4 fillers in developing composites with high stress-bearing and caries-preventing capabilities, a combination not yet available in any dental materials.
Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically-strong and caries-inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1-56 days to measure Ca and PO4 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean +/- SD; n = 5) decreased from 174 +/- 26 MPa to 138 +/- 9 MPa (p < 0.05). A commercial nonreleasing composite had a strength of 112 +/- 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 +/- 0.04 mmol/L to 1.74 +/- 0.06 mmol/L (p < 0.05). The corresponding PO4 concentration increased from 3.88 +/- 0.21 mmol/L to 9.95 +/- 0.69 mmol/L (p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction v(MCPM) in the resin: [Ca]= 42.9 v(MCPM) (2.7), and [PO4] = 48.7 v(MCPM) (1.4). In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca- and PO4-releasing composites with mechanical properties matching or exceeding a commercial stress-bearing, nonreleasing composite. This method may be applicable to the use of other Ca-PO4 fillers in developing composites with high stress-bearing and caries-preventing capabilities, a combination not yet available in any dental materials.
Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically-strong and caries-inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1-56 days to measure Ca and PO4 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean - SD; n = 5) decreased from 174 - 26 MPa to 138 - 9 MPa (p < 0.05). A commercial nonreleasing composite had a strength of 112 - 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 - 0.04 mmol/L to 1.74 - 0.06 mmol/L (p < 0.05). The corresponding PO4 concentration increased from 3.88 - 0.21 mmol/L to 9.95 - 0.69 mmol/L (p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction vMCPM in the resin: [Ca]= 42.9 v, and [PO4] = 48.7 v. In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca- and PO4-releasing composites with mechanical properties matching or exceeding a commercial stress-bearing, nonreleasing composite. This method may be applicable to the use of other Ca-PO4 fillers in developing composites with high stress-bearing and caries-preventing capabilities, a combination not yet available in any dental materials.
Author Sun, Limin
Hockey, Bernard
Takagi, Shozo
Chow, Laurence C.
Xu, Hockin H. K.
Weir, Mike D.
AuthorAffiliation 2 National Institute of Standards and Technology, Gaithersburg, Maryland, 20899
1 Paffenbarger Research Center, American Dental Association Foundation, Gaithersburg, Maryland, 20899
AuthorAffiliation_xml – name: 1 Paffenbarger Research Center, American Dental Association Foundation, Gaithersburg, Maryland, 20899
– name: 2 National Institute of Standards and Technology, Gaithersburg, Maryland, 20899
Author_xml – sequence: 1
  givenname: Hockin H. K.
  surname: Xu
  fullname: Xu, Hockin H. K.
  email: hockin.xu@nist.gov
  organization: Paffenbarger Research Center, American Dental Association Foundation, Gaithersburg, Maryland, 20899
– sequence: 2
  givenname: Limin
  surname: Sun
  fullname: Sun, Limin
  organization: Paffenbarger Research Center, American Dental Association Foundation, Gaithersburg, Maryland, 20899
– sequence: 3
  givenname: Mike D.
  surname: Weir
  fullname: Weir, Mike D.
  organization: Paffenbarger Research Center, American Dental Association Foundation, Gaithersburg, Maryland, 20899
– sequence: 4
  givenname: Shozo
  surname: Takagi
  fullname: Takagi, Shozo
  organization: Paffenbarger Research Center, American Dental Association Foundation, Gaithersburg, Maryland, 20899
– sequence: 5
  givenname: Laurence C.
  surname: Chow
  fullname: Chow, Laurence C.
  organization: Paffenbarger Research Center, American Dental Association Foundation, Gaithersburg, Maryland, 20899
– sequence: 6
  givenname: Bernard
  surname: Hockey
  fullname: Hockey, Bernard
  organization: National Institute of Standards and Technology, Gaithersburg, Maryland, 20899
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16924611$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB-wYo-yYoMy2IkfyQYJqk4LGkDioXZn2c51x21iBztDW349bqcdHovCyrb8naNzdc8u2vLBA0JPCZ4RjKuXZ3qY6VmNOaUP0A5hrCpp25CtzV3U22g3pbMMc8zqR2ib8LainJAdNB1YC2ZKRbCF8ybEMUQ1OX9aeOVDcj-gK4zqjVsNxbgMaVyqCYpRxcmZHrLMF2MMI-Q33JhcLF06h1hGcN6GaLK-Az-pvjBhGLPjBOkxemhVn-DJ7bmHvs4PvuwflYuPh2_3Xy9KwxpBS21sRWgNCrRgouZCE9J1nHQtsY1pQWtlK9vwPKFusGgtb6paa6aZJZR0ut5Dr9a-40oP0JmcI6pejtENKl7JoJz888e7pTwN32XFKaekyQbPbw1i-LaCNMnBJQN9rzyEVZICV5Qywf8JVk3LuKD_AWJGWoHbDD77Pfsm9N3qMvBiDZgYUopgfyFYXhdD5mJILW-KkWnyF23clBcdrgd3_f2aC9fD1X328t2b93eacq1xaYLLjUbFc8lFLZg8_nAo5yefTubzxWd5XP8EmNnfFA
CitedBy_id crossref_primary_10_1002_app_38125
crossref_primary_10_1007_s40778_016_0039_3
crossref_primary_10_1016_j_jallcom_2021_161379
crossref_primary_10_1007_s10856_013_4898_1
crossref_primary_10_1007_s11106_022_00307_8
crossref_primary_10_1016_j_dental_2013_01_010
crossref_primary_10_1016_j_dental_2016_09_021
crossref_primary_10_3390_nano11123446
crossref_primary_10_1007_s10853_008_3124_x
crossref_primary_10_1016_j_actbio_2019_06_007
crossref_primary_10_1016_j_compositesb_2021_109495
crossref_primary_10_3390_molecules28010345
crossref_primary_10_1016_j_actbio_2009_10_036
crossref_primary_10_1007_s10856_009_3740_2
crossref_primary_10_3390_jfb6030708
crossref_primary_10_3390_nano12244416
crossref_primary_10_3390_ma2041975
crossref_primary_10_1002_adfm_201701219
crossref_primary_10_1016_j_heliyon_2023_e15326
crossref_primary_10_3390_jcs8060218
crossref_primary_10_1111_ijac_13596
crossref_primary_10_1016_j_jmbbm_2020_103817
crossref_primary_10_1016_j_actbio_2009_10_031
crossref_primary_10_1007_s00784_013_1044_x
crossref_primary_10_1038_s41415_022_4240_8
crossref_primary_10_3390_ma16051873
crossref_primary_10_1155_2014_709482
crossref_primary_10_1016_j_dental_2018_01_026
crossref_primary_10_4012_dmj_2024_362
crossref_primary_10_1016_j_jmbbm_2021_105067
crossref_primary_10_1016_j_dental_2015_08_149
crossref_primary_10_1016_j_dental_2011_08_403
crossref_primary_10_1021_acsbiomaterials_9b00226
crossref_primary_10_1177_0885328216680116
Cites_doi 10.1002/1097-4636(20001215)52:4<812::AID-JBM26>3.0.CO;2-Y
10.1016/S0109-5641(02)00034-9
10.1023/A:1016504530133
10.1016/j.biomaterials.2003.12.058
10.1002/9781118406069.ch8
10.1016/S0109-5641(02)00100-8
10.1177/00220345990780021101
10.1016/j.biomaterials.2005.01.015
10.14219/jada.archive.1998.0274
10.1177/00220345840630101701
10.1016/j.biomaterials.2003.10.046
10.1159/000260645
10.1016/0109-5641(93)90123-8
10.1002/(SICI)1097-4636(19981205)42:3<465::AID-JBM17>3.0.CO;2-F
10.1177/00220345960750091001
10.1111/j.1875-595X.2000.tb00569.x
10.1023/A:1018586128257
10.1016/j.dental.2004.10.004
10.1177/154405910408300207
10.1177/00220345840630061101
10.1016/j.dental.2004.10.001
10.1177/154405910308200111
10.6028/jres.109.041
10.1016/S0109-5641(96)80037-6
10.1002/jbm.820280205
10.1002/1097-4636(2000)53:4<381::AID-JBM12>3.0.CO;2-H
10.1146/annurev.ms.06.080176.001241
10.1016/0109-5641(93)90088-8
10.1159/000070866
10.1016/j.dental.2004.10.008
10.1016/S0109-5641(02)00105-7
10.1016/0109-5641(94)90047-7
10.1177/154405910408301208
ContentType Journal Article
Copyright Copyright © 2006 Wiley Periodicals, Inc.
(c) 2006 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2006 Wiley Periodicals, Inc.
– notice: (c) 2006 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7X8
5PM
DOI 10.1002/jbm.b.30644
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Materials Research Database

MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4981
EndPage 125
ExternalDocumentID PMC2646418
16924611
10_1002_jbm_b_30644
JBM30644
ark_67375_WNG_FXRXFFLS_W
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH/NIDCR
  funderid: R01 DE14190
– fundername: ADAF
– fundername: NIST
– fundername: NIDCR NIH HHS
  grantid: R29 DE012476
– fundername: NIDCR NIH HHS
  grantid: R01 DE014190
– fundername: NIDCR NIH HHS
  grantid: R01 DE14190
GroupedDBID -~X
.GA
.Y3
05W
0R~
10A
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
702
7PT
8-1
8-4
8-5
8UM
930
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BRXPI
BSCLL
BY8
CO8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
IX1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
NF~
NNB
O66
P2W
P4D
PQQKQ
QB0
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W99
WBKPD
WFSAM
WJL
WOHZO
WYISQ
XG1
XV2
ZZTAW
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WIH
WRC
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c5874-bcf2143eaeb757367b11dd61d91f8c9ebbaf2f86497b8079f6823bb5b5f141db3
IEDL.DBID DRFUL
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000245140700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-4973
IngestDate Tue Nov 04 01:59:56 EST 2025
Fri Jul 11 16:20:16 EDT 2025
Thu Oct 02 11:47:45 EDT 2025
Mon Oct 06 18:02:15 EDT 2025
Fri May 30 11:00:41 EDT 2025
Sat Nov 29 05:59:25 EST 2025
Tue Nov 18 22:00:43 EST 2025
Wed Jan 22 16:29:34 EST 2025
Tue Sep 09 05:32:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
(c) 2006 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5874-bcf2143eaeb757367b11dd61d91f8c9ebbaf2f86497b8079f6823bb5b5f141db3
Notes ArticleID:JBM30644
ADAF
NIST
istex:430F246962C63FA0EB480F360F70ED23CC4E4AC8
This article is a US Government work and, as such, is in the public domain in the United States of America.
ark:/67375/WNG-FXRXFFLS-W
Certain commercial materials and equipment are identified to specify the experimental procedure. This does not imply recommendation or endorsement by NIST or ADAF or that the material or equipment identified is necessarily the best available for the purpose. One standard deviation was used as the estimated standard uncertainty of the measurements. These values should not be compared with data obtained in other laboratories under different conditions. This is an official contribution of the National Institute of Standards and Technology and is not subjected to copyright in the United States.
NIH/NIDCR - No. R01 DE14190
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://doi.org/10.1002/jbm.b.30644
PMID 16924611
PQID 20519709
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2646418
proquest_miscellaneous_70244576
proquest_miscellaneous_28956746
proquest_miscellaneous_20519709
pubmed_primary_16924611
crossref_primary_10_1002_jbm_b_30644
crossref_citationtrail_10_1002_jbm_b_30644
wiley_primary_10_1002_jbm_b_30644_JBM30644
istex_primary_ark_67375_WNG_FXRXFFLS_W
PublicationCentury 2000
PublicationDate April 2007
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: April 2007
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of biomedical materials research. Part B, Applied biomaterials
PublicationTitleAlternate J. Biomed. Mater. Res
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Xu HHK, Smith DT, Simon CG. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair. Biomaterials 2004; 25: 4615-4626.
Xu HHK, Eichmiller FC, Smith DT, Schumacher GE, Giuseppetti AA, Antonucci JM. Effect of thermal cycling on whisker-reinforced dental resin composites. J Mater Sci: Mater Med 2002; 13: 875-883.
Xu HHK, Quinn JB, Giuseppetti AA. Wear and mechanical properties of nano-silica-fused whisker composites. J Dent Res 2004; 83: 930-935.
Frencken JE, van't Hof MA, van Amerongen WE, Holmgren CJ. Effectiveness of single-surface ART restorations in the permanent dentition: A meta-analysis. J Dent Res 2004; 83: 120-123.
Dickens SH, Flaim GM, Takagi S. Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO4 cements. Dent Mater 2003; 19: 558-566.
Chow LC, Sun L, Hockey B. Properties of nanostructured hydroxyapatite prepared by a spray drying technique. J Res Natl Inst Stand Technol 2004; 109: 543-551.
Marshall GWJr. Dentin: Microstructure and characterization. Quintessence Intl 1993; 24: 606-617.
O'Donnell JNR, Antonucci JM, Skrtic D. Mechanical properties of amorphous calcium phosphate composites. J Dent Res 2005; 84 (IADR Abstract No. 586).
Bayne SC, Thompson JY, Swift EJJr, Stamatiades P, Wilkerson M. A characterization of first-generation flowable composites. J Am Dent Assoc 1998; 129: 567-577.
Dentistry-Polymer-based fillings, restorative and luting materials, 3rd ed., ISO/FDIS 4049, International Organization for Standardization, Geneva, Switzerland, 2000.
Vogel GL, Chow LC, Brown WE. A microanalytical procedure for the determination of calcium, phosphate and fluoride in enamel biopsy samples. Caries Res 1983; 17: 23-31.
Standard test methods for flexural properties of unreinforced and reinforced plastic and electrical insulating materials, ASTM D 790-03, ASTM International, West Conshohocken, PA, 2004.
Sutorik AC, Paras MS, Lawrence D, Kennedy A, Hinklin T. Synthesis, characterization, and sintering behavior of calcium hydroxyapatite powders with average particle diameters of 150 nm. Ceram Trans 2003; 147: 73-82.
Dickens SH, Flaim GM, Floyd CJE. Effect of resin composition on mechanical and physical properties of calcium phosphate filled bonding systems. Polym Prepr 2004; 45: 329-330.
Skrtic D, Hailer AW, Takagi S, Antonucci JM, Eanes ED. Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel. J Dent Res 1996; 75: 1679-1686.
Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water-Effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res 1998; 42: 465-472.
Agarwal BD, Broutman LJ. Analysis and Performance of Fiber Composites, 2nd ed. New York: Wiley; 1990.
Ferracane JL. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater 2005; 21: 36-42.
Xu HHK, Martin TA, Antonucci JM, Eichmiller FC. Ceramic whisker reinforcement of dental composite resins. J Dent Res 1999; 78: 706-712.
Söderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Bergman M. Hydrolytic degradation of dental composites. J Dent Res 1984; 63: 1248-1254.
Chow LC, Brown WE. A physiochemical bench-scale caries model. J Dent Res 1984; 63: 868-873.
Xu HHK. Long-term water aging of whisker-reinforced polymer-matrix composites. J Dent Res 2003; 82: 48-52.
Drummond JL, Bapna MS. Static and cyclic loading of fiber-reinforced dental resin. Dent Mater 2003; 19: 226-231.
Xu HHK, Smith DT, Schumacher GE, Eichmiller FC. Whisker-reinforced dental core buildup composites: Effect of filler level on mechanical properties. J Biomed Mater Res A 2000; 52: 812-818.
Xu HHK, Eichmiller FC, Antonucci JM, Flaim GM. Single-crystalline ceramic whisker-reinforced carboxylic acid-resin composites with fluoride release. Oper Dent 2000; 25: 90-97.
Carey LE, Xu HHK, Simon CG, Takagi S, Chow LC. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005; 26: 5002-5014.
Xu HHK, Schumacher GE, Eichmiller FC, Peterson RC, Antonucci JM, Mueller HJ. Continuous-fiber preform reinforcement of dental resin composite restorations. Dent Mater 2003; 19: 523-530.
Brown WE, Chow LC. Chemical properties of bone mineral. Ann Rev Mater Sci 1976; 6: 213-236.
Skrtic D, Antonucci JM, Eanes ED, Eichmiller FC, Schumacher GE. Physiological evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates. J Biomed Mater Res 2000; 53: 381-391.
Eick JD, Byerley TJ, Chappell RP, Chen GR, Bowles CQ, Chappelow CC. Properties of expanding SOC/epoxy copolymers for dental use in dental composites. Dent Mater 1993; 9: 123-127.
Skrtic D, Antonucci JM, Eanes ED. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent Mater 1996; 12: 295-301.
Bow JS, Liou SC, Chen SY. Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate. Biomaterials 2004; 25: 3155-3161.
Drummond JL, Savers EE. In vitro aging of a heat/pressure-cured composite. Dent Mater 1993; 9: 214-216.
Goldberg AJ, Burstone CJ, Hadjinikolaou I, Jancar J. Screening of matrices and fibers for reinforced thermoplastics intended for dental applications. J Biomed Mater Res 1994; 28: 167-173.
Mandari GJ, Frencken JE, van't Hof MA. Six-year success rates of occlusal amalgam and glass-ionomer restorations placed using three minimally intervention approaches. Caries Res 2002; 37: 246-253.
Sakaguchi RL. Review of the current status and challenges for dental posterior restorative composites: Clinical, chemistry, and physical behavior considerations. Dent Mater 2005; 21: 3-6.
Zhang S, Gonsalves KE. Preparation and characterization of thermally stable nanohydroxyapatite. J Mater Sci: Mater Med 1997; 8: 25-28.
Mjör IA, Moorhead JE, Dahl JE. Reasons for replacement of restorations in permanent teeth in general dental practice. Int Dent J 2000; 50: 361-366.
Sarrett DC. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater 2005; 21: 9-20.
Ferracane JL, Mitchem JC. Properties of posterior composites: Results of a round robin testing for a specification. Dent Mater 1994; 10: 92-99.
1984; 63
1993; 9
1993; 24
2002; 37
2004; 83
2000; 25
2004; 25
2002; 13
2004; 45
2000; 50
2005; 84
2005; 21
2005
2004
2003; 19
1994; 28
2005; 26
2004; 109
1983; 17
1998; 42
1976; 6
1996; 75
1996; 12
1999
1997; 8
1990
2000
2000; 52
2000; 53
1998; 129
1999; 78
2003; 82
2003; 147
1994; 10
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
O'Donnell JNR (e_1_2_7_38_2) 2005; 84
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_10_2
Marshall GW (e_1_2_7_37_2) 1993; 24
e_1_2_7_26_2
e_1_2_7_27_2
Dickens SH (e_1_2_7_39_2) 2004; 45
Chow LC (e_1_2_7_20_2) 1999
(e_1_2_7_28_2) 2000
Xu HHK (e_1_2_7_40_2) 2000; 25
e_1_2_7_25_2
e_1_2_7_24_2
(e_1_2_7_29_2) 2004
e_1_2_7_30_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
Agarwal BD (e_1_2_7_33_2) 1990
Sutorik AC (e_1_2_7_23_2) 2003; 147
References_xml – reference: Söderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Bergman M. Hydrolytic degradation of dental composites. J Dent Res 1984; 63: 1248-1254.
– reference: Xu HHK, Quinn JB, Giuseppetti AA. Wear and mechanical properties of nano-silica-fused whisker composites. J Dent Res 2004; 83: 930-935.
– reference: Skrtic D, Antonucci JM, Eanes ED. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent Mater 1996; 12: 295-301.
– reference: Dickens SH, Flaim GM, Takagi S. Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO4 cements. Dent Mater 2003; 19: 558-566.
– reference: Chow LC, Brown WE. A physiochemical bench-scale caries model. J Dent Res 1984; 63: 868-873.
– reference: Drummond JL, Bapna MS. Static and cyclic loading of fiber-reinforced dental resin. Dent Mater 2003; 19: 226-231.
– reference: Skrtic D, Hailer AW, Takagi S, Antonucci JM, Eanes ED. Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel. J Dent Res 1996; 75: 1679-1686.
– reference: Skrtic D, Antonucci JM, Eanes ED, Eichmiller FC, Schumacher GE. Physiological evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates. J Biomed Mater Res 2000; 53: 381-391.
– reference: Frencken JE, van't Hof MA, van Amerongen WE, Holmgren CJ. Effectiveness of single-surface ART restorations in the permanent dentition: A meta-analysis. J Dent Res 2004; 83: 120-123.
– reference: Mjör IA, Moorhead JE, Dahl JE. Reasons for replacement of restorations in permanent teeth in general dental practice. Int Dent J 2000; 50: 361-366.
– reference: O'Donnell JNR, Antonucci JM, Skrtic D. Mechanical properties of amorphous calcium phosphate composites. J Dent Res 2005; 84 (IADR Abstract No. 586).
– reference: Bayne SC, Thompson JY, Swift EJJr, Stamatiades P, Wilkerson M. A characterization of first-generation flowable composites. J Am Dent Assoc 1998; 129: 567-577.
– reference: Xu HHK, Eichmiller FC, Smith DT, Schumacher GE, Giuseppetti AA, Antonucci JM. Effect of thermal cycling on whisker-reinforced dental resin composites. J Mater Sci: Mater Med 2002; 13: 875-883.
– reference: Xu HHK, Schumacher GE, Eichmiller FC, Peterson RC, Antonucci JM, Mueller HJ. Continuous-fiber preform reinforcement of dental resin composite restorations. Dent Mater 2003; 19: 523-530.
– reference: Marshall GWJr. Dentin: Microstructure and characterization. Quintessence Intl 1993; 24: 606-617.
– reference: Xu HHK, Smith DT, Schumacher GE, Eichmiller FC. Whisker-reinforced dental core buildup composites: Effect of filler level on mechanical properties. J Biomed Mater Res A 2000; 52: 812-818.
– reference: Ferracane JL, Mitchem JC. Properties of posterior composites: Results of a round robin testing for a specification. Dent Mater 1994; 10: 92-99.
– reference: Ferracane JL. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater 2005; 21: 36-42.
– reference: Xu HHK, Smith DT, Simon CG. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair. Biomaterials 2004; 25: 4615-4626.
– reference: Agarwal BD, Broutman LJ. Analysis and Performance of Fiber Composites, 2nd ed. New York: Wiley; 1990.
– reference: Xu HHK, Martin TA, Antonucci JM, Eichmiller FC. Ceramic whisker reinforcement of dental composite resins. J Dent Res 1999; 78: 706-712.
– reference: Xu HHK, Eichmiller FC, Antonucci JM, Flaim GM. Single-crystalline ceramic whisker-reinforced carboxylic acid-resin composites with fluoride release. Oper Dent 2000; 25: 90-97.
– reference: Bow JS, Liou SC, Chen SY. Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate. Biomaterials 2004; 25: 3155-3161.
– reference: Chow LC, Sun L, Hockey B. Properties of nanostructured hydroxyapatite prepared by a spray drying technique. J Res Natl Inst Stand Technol 2004; 109: 543-551.
– reference: Sarrett DC. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater 2005; 21: 9-20.
– reference: Drummond JL, Savers EE. In vitro aging of a heat/pressure-cured composite. Dent Mater 1993; 9: 214-216.
– reference: Xu HHK. Long-term water aging of whisker-reinforced polymer-matrix composites. J Dent Res 2003; 82: 48-52.
– reference: Sutorik AC, Paras MS, Lawrence D, Kennedy A, Hinklin T. Synthesis, characterization, and sintering behavior of calcium hydroxyapatite powders with average particle diameters of 150 nm. Ceram Trans 2003; 147: 73-82.
– reference: Eick JD, Byerley TJ, Chappell RP, Chen GR, Bowles CQ, Chappelow CC. Properties of expanding SOC/epoxy copolymers for dental use in dental composites. Dent Mater 1993; 9: 123-127.
– reference: Dickens SH, Flaim GM, Floyd CJE. Effect of resin composition on mechanical and physical properties of calcium phosphate filled bonding systems. Polym Prepr 2004; 45: 329-330.
– reference: Vogel GL, Chow LC, Brown WE. A microanalytical procedure for the determination of calcium, phosphate and fluoride in enamel biopsy samples. Caries Res 1983; 17: 23-31.
– reference: Sakaguchi RL. Review of the current status and challenges for dental posterior restorative composites: Clinical, chemistry, and physical behavior considerations. Dent Mater 2005; 21: 3-6.
– reference: Standard test methods for flexural properties of unreinforced and reinforced plastic and electrical insulating materials, ASTM D 790-03, ASTM International, West Conshohocken, PA, 2004.
– reference: Zhang S, Gonsalves KE. Preparation and characterization of thermally stable nanohydroxyapatite. J Mater Sci: Mater Med 1997; 8: 25-28.
– reference: Dentistry-Polymer-based fillings, restorative and luting materials, 3rd ed., ISO/FDIS 4049, International Organization for Standardization, Geneva, Switzerland, 2000.
– reference: Brown WE, Chow LC. Chemical properties of bone mineral. Ann Rev Mater Sci 1976; 6: 213-236.
– reference: Goldberg AJ, Burstone CJ, Hadjinikolaou I, Jancar J. Screening of matrices and fibers for reinforced thermoplastics intended for dental applications. J Biomed Mater Res 1994; 28: 167-173.
– reference: Carey LE, Xu HHK, Simon CG, Takagi S, Chow LC. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005; 26: 5002-5014.
– reference: Mandari GJ, Frencken JE, van't Hof MA. Six-year success rates of occlusal amalgam and glass-ionomer restorations placed using three minimally intervention approaches. Caries Res 2002; 37: 246-253.
– reference: Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water-Effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res 1998; 42: 465-472.
– volume: 21
  start-page: 36
  year: 2005
  end-page: 42
  article-title: Developing a more complete understanding of stresses produced in dental composites during polymerization
  publication-title: Dent Mater
– volume: 21
  start-page: 3
  year: 2005
  end-page: 6
  article-title: Review of the current status and challenges for dental posterior restorative composites: Clinical, chemistry, and physical behavior considerations
  publication-title: Dent Mater
– volume: 53
  start-page: 381
  year: 2000
  end-page: 391
  article-title: Physiological evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates
  publication-title: J Biomed Mater Res
– volume: 45
  start-page: 329
  year: 2004
  end-page: 330
  article-title: Effect of resin composition on mechanical and physical properties of calcium phosphate filled bonding systems
  publication-title: Polym Prepr
– year: 2005
– start-page: 2152
  year: 1999
  end-page: 2238
– volume: 12
  start-page: 295
  year: 1996
  end-page: 301
  article-title: Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites
  publication-title: Dent Mater
– volume: 109
  start-page: 543
  year: 2004
  end-page: 551
  article-title: Properties of nanostructured hydroxyapatite prepared by a spray drying technique
  publication-title: J Res Natl Inst Stand Technol
– volume: 25
  start-page: 90
  year: 2000
  end-page: 97
  article-title: Single‐crystalline ceramic whisker‐reinforced carboxylic acid‐resin composites with fluoride release
  publication-title: Oper Dent
– volume: 25
  start-page: 3155
  year: 2004
  end-page: 3161
  article-title: Structural characterization of room‐temperature synthesized nano‐sized β‐tricalcium phosphate
  publication-title: Biomaterials
– volume: 13
  start-page: 875
  year: 2002
  end-page: 883
  article-title: Effect of thermal cycling on whisker‐reinforced dental resin composites
  publication-title: J Mater Sci: Mater Med
– volume: 83
  start-page: 930
  year: 2004
  end-page: 935
  article-title: Wear and mechanical properties of nano‐silica‐fused whisker composites
  publication-title: J Dent Res
– volume: 8
  start-page: 25
  year: 1997
  end-page: 28
  article-title: Preparation and characterization of thermally stable nanohydroxyapatite
  publication-title: J Mater Sci: Mater Med
– year: 2000
– volume: 25
  start-page: 4615
  year: 2004
  end-page: 4626
  article-title: Strong and bioactive composites containing nano‐silica‐fused whiskers for bone repair
  publication-title: Biomaterials
– volume: 147
  start-page: 73
  year: 2003
  end-page: 82
  article-title: Synthesis, characterization, and sintering behavior of calcium hydroxyapatite powders with average particle diameters of 150 nm
  publication-title: Ceram Trans
– volume: 50
  start-page: 361
  year: 2000
  end-page: 366
  article-title: Reasons for replacement of restorations in permanent teeth in general dental practice
  publication-title: Int Dent J
– volume: 78
  start-page: 706
  year: 1999
  end-page: 712
  article-title: Ceramic whisker reinforcement of dental composite resins
  publication-title: J Dent Res
– year: 1990
– volume: 75
  start-page: 1679
  year: 1996
  end-page: 1686
  article-title: Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries‐like lesions artificially produced in bovine enamel
  publication-title: J Dent Res
– volume: 52
  start-page: 812
  year: 2000
  end-page: 818
  article-title: Whisker‐reinforced dental core buildup composites: Effect of filler level on mechanical properties
  publication-title: J Biomed Mater Res A
– volume: 21
  start-page: 9
  year: 2005
  end-page: 20
  article-title: Clinical challenges and the relevance of materials testing for posterior composite restorations
  publication-title: Dent Mater
– volume: 9
  start-page: 123
  year: 1993
  end-page: 127
  article-title: Properties of expanding SOC/epoxy copolymers for dental use in dental composites
  publication-title: Dent Mater
– volume: 10
  start-page: 92
  year: 1994
  end-page: 99
  article-title: Properties of posterior composites: Results of a round robin testing for a specification
  publication-title: Dent Mater
– volume: 6
  start-page: 213
  year: 1976
  end-page: 236
  article-title: Chemical properties of bone mineral
  publication-title: Ann Rev Mater Sci
– volume: 84
  year: 2005
  article-title: Mechanical properties of amorphous calcium phosphate composites
  publication-title: J Dent Res
– volume: 83
  start-page: 120
  year: 2004
  end-page: 123
  article-title: Effectiveness of single‐surface ART restorations in the permanent dentition: A meta‐analysis
  publication-title: J Dent Res
– volume: 19
  start-page: 226
  year: 2003
  end-page: 231
  article-title: Static and cyclic loading of fiber‐reinforced dental resin
  publication-title: Dent Mater
– volume: 28
  start-page: 167
  year: 1994
  end-page: 173
  article-title: Screening of matrices and fibers for reinforced thermoplastics intended for dental applications
  publication-title: J Biomed Mater Res
– volume: 9
  start-page: 214
  year: 1993
  end-page: 216
  article-title: In vitro aging of a heat/pressure‐cured composite
  publication-title: Dent Mater
– volume: 82
  start-page: 48
  year: 2003
  end-page: 52
  article-title: Long‐term water aging of whisker‐reinforced polymer‐matrix composites
  publication-title: J Dent Res
– volume: 26
  start-page: 5002
  year: 2005
  end-page: 5014
  article-title: Premixed rapid‐setting calcium phosphate composites for bone repair
  publication-title: Biomaterials
– volume: 19
  start-page: 523
  year: 2003
  end-page: 530
  article-title: Continuous‐fiber preform reinforcement of dental resin composite restorations
  publication-title: Dent Mater
– year: 2004
– volume: 24
  start-page: 606
  year: 1993
  end-page: 617
  article-title: Dentin: Microstructure and characterization
  publication-title: Quintessence Intl
– volume: 63
  start-page: 1248
  year: 1984
  end-page: 1254
  article-title: Hydrolytic degradation of dental composites
  publication-title: J Dent Res
– volume: 19
  start-page: 558
  year: 2003
  end-page: 566
  article-title: Mechanical properties and biochemical activity of remineralizing resin‐based Ca‐PO cements
  publication-title: Dent Mater
– volume: 129
  start-page: 567
  year: 1998
  end-page: 577
  article-title: A characterization of first‐generation flowable composites
  publication-title: J Am Dent Assoc
– volume: 17
  start-page: 23
  year: 1983
  end-page: 31
  article-title: A microanalytical procedure for the determination of calcium, phosphate and fluoride in enamel biopsy samples
  publication-title: Caries Res
– volume: 42
  start-page: 465
  year: 1998
  end-page: 472
  article-title: In vitro aging of dental composites in water—Effect of degree of conversion, filler volume, and filler/matrix coupling
  publication-title: J Biomed Mater Res
– volume: 63
  start-page: 868
  year: 1984
  end-page: 873
  article-title: A physiochemical bench‐scale caries model
  publication-title: J Dent Res
– volume: 37
  start-page: 246
  year: 2002
  end-page: 253
  article-title: Six‐year success rates of occlusal amalgam and glass‐ionomer restorations placed using three minimally intervention approaches
  publication-title: Caries Res
– volume-title: Dentistry—Polymer‐based fillings, restorative and luting materials
  year: 2000
  ident: e_1_2_7_28_2
– volume-title: Standard test methods for flexural properties of unreinforced and reinforced plastic and electrical insulating materials
  year: 2004
  ident: e_1_2_7_29_2
– ident: e_1_2_7_36_2
  doi: 10.1002/1097-4636(20001215)52:4<812::AID-JBM26>3.0.CO;2-Y
– ident: e_1_2_7_5_2
  doi: 10.1016/S0109-5641(02)00034-9
– ident: e_1_2_7_16_2
  doi: 10.1023/A:1016504530133
– ident: e_1_2_7_19_2
  doi: 10.1016/j.biomaterials.2003.12.058
– volume: 147
  start-page: 73
  year: 2003
  ident: e_1_2_7_23_2
  article-title: Synthesis, characterization, and sintering behavior of calcium hydroxyapatite powders with average particle diameters of 150 nm
  publication-title: Ceram Trans
  doi: 10.1002/9781118406069.ch8
– ident: e_1_2_7_41_2
  doi: 10.1016/S0109-5641(02)00100-8
– ident: e_1_2_7_15_2
  doi: 10.1177/00220345990780021101
– ident: e_1_2_7_21_2
  doi: 10.1016/j.biomaterials.2005.01.015
– ident: e_1_2_7_7_2
  doi: 10.14219/jada.archive.1998.0274
– ident: e_1_2_7_2_2
  doi: 10.1177/00220345840630101701
– ident: e_1_2_7_24_2
  doi: 10.1016/j.biomaterials.2003.10.046
– ident: e_1_2_7_30_2
  doi: 10.1159/000260645
– ident: e_1_2_7_35_2
  doi: 10.1016/0109-5641(93)90123-8
– ident: e_1_2_7_4_2
  doi: 10.1002/(SICI)1097-4636(19981205)42:3<465::AID-JBM17>3.0.CO;2-F
– ident: e_1_2_7_12_2
  doi: 10.1177/00220345960750091001
– ident: e_1_2_7_11_2
  doi: 10.1111/j.1875-595X.2000.tb00569.x
– start-page: 2152
  volume-title: Cements Research Progress
  year: 1999
  ident: e_1_2_7_20_2
– ident: e_1_2_7_22_2
  doi: 10.1023/A:1018586128257
– volume: 24
  start-page: 606
  year: 1993
  ident: e_1_2_7_37_2
  article-title: Dentin: Microstructure and characterization
  publication-title: Quintessence Intl
– volume: 84
  year: 2005
  ident: e_1_2_7_38_2
  article-title: Mechanical properties of amorphous calcium phosphate composites
  publication-title: J Dent Res
– volume: 25
  start-page: 90
  year: 2000
  ident: e_1_2_7_40_2
  article-title: Single‐crystalline ceramic whisker‐reinforced carboxylic acid‐resin composites with fluoride release
  publication-title: Oper Dent
– ident: e_1_2_7_8_2
  doi: 10.1016/j.dental.2004.10.004
– ident: e_1_2_7_43_2
  doi: 10.1177/154405910408300207
– ident: e_1_2_7_26_2
– ident: e_1_2_7_31_2
  doi: 10.1177/00220345840630061101
– ident: e_1_2_7_9_2
  doi: 10.1016/j.dental.2004.10.001
– ident: e_1_2_7_17_2
  doi: 10.1177/154405910308200111
– ident: e_1_2_7_25_2
  doi: 10.6028/jres.109.041
– ident: e_1_2_7_27_2
  doi: 10.1016/S0109-5641(96)80037-6
– ident: e_1_2_7_3_2
  doi: 10.1002/jbm.820280205
– ident: e_1_2_7_14_2
  doi: 10.1002/1097-4636(2000)53:4<381::AID-JBM12>3.0.CO;2-H
– ident: e_1_2_7_32_2
  doi: 10.1146/annurev.ms.06.080176.001241
– ident: e_1_2_7_6_2
  doi: 10.1016/0109-5641(93)90088-8
– ident: e_1_2_7_42_2
  doi: 10.1159/000070866
– ident: e_1_2_7_10_2
  doi: 10.1016/j.dental.2004.10.008
– ident: e_1_2_7_13_2
  doi: 10.1016/S0109-5641(02)00105-7
– volume: 45
  start-page: 329
  year: 2004
  ident: e_1_2_7_39_2
  article-title: Effect of resin composition on mechanical and physical properties of calcium phosphate filled bonding systems
  publication-title: Polym Prepr
– ident: e_1_2_7_34_2
  doi: 10.1016/0109-5641(94)90047-7
– ident: e_1_2_7_18_2
  doi: 10.1177/154405910408301208
– volume-title: Analysis and Performance of Fiber Composites
  year: 1990
  ident: e_1_2_7_33_2
SSID ssj0026053
Score 2.0978825
Snippet Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116
SubjectTerms Ca and PO4 release
Calcium Phosphates - chemistry
Carbon Compounds, Inorganic - chemistry
Composite Resins - chemistry
Dental Caries - prevention & control
dental composite
Dental Materials - chemistry
elastic modulus
Elasticity
flexural strength
Materials Testing
nanoparticles
Nanoparticles - chemistry
Particle Size
Silicon Compounds - chemistry
Tensile Strength
tooth caries
whisker reinforcement
Title Effects of incorporating nanosized calcium phosphate particles on properties of whisker-reinforced dental composites
URI https://api.istex.fr/ark:/67375/WNG-FXRXFFLS-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.b.30644
https://www.ncbi.nlm.nih.gov/pubmed/16924611
https://www.proquest.com/docview/20519709
https://www.proquest.com/docview/28956746
https://www.proquest.com/docview/70244576
https://pubmed.ncbi.nlm.nih.gov/PMC2646418
Volume 81B
WOSCitedRecordID wos000245140700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1552-4981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026053
  issn: 1552-4973
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLXoDAtY8H6ER_GiYoGUduJJYnvJKyA0jFChanZWHNuaUJpESacgVnwC38iX4Otk0hlRKiE2USTfRMl92Mf2vccI7UxkyO3IbHs_ZZQf5iz2uWHGJzLOVZbJwBhHmT-j8zlLU_6hz82BWpiOH2JYcIPIcP01BHgm270z0tDP8nhX7gKADrfQmFjPDUdo_Go_OZgNMy6L1V2GfRQROEpt2hfo2Za9tcc3hqQxaPfbeXjzz7TJdTjrxqPk-n_-yQ10rQei-HnnOTfRJV3eQlfX6Alvo9OO2rjFlcFA4tBxHtsmXGZl1RbftcLWxHmxPMb1omrrhQWuuF7l2uGqxDWs9TdA2gov-boo2iPd_Prxs9GOsTW3b1CuIBNDbjskkOn2DjpIXn96-dbvz2nw84jR0Je5IRZ26UxLGtFpTGUQKBUHigeG5VxLmRliWGwtINmEchMzMpUykpEJwkDJ6V00KqtS30dYKcJh45YorUNFJOf2IjkU8NIsV8pDz1amEnlPYg5naXwRHf0yEVaZQgqnTA_tDMJ1x91xvthTZ_NBJmuOIN2NRuJw_kYk6X6aJLOP4tBDT1ZOIWwQws5KVupq2QoCQJhO-AUSzE5EaRj_XYJatBTa2Z-H7nVudvbNMQfWv8BDdMMBBwGgCN9sKYuFowq3cDcOA2bV5hzwIjWIdy_eu5sH_yL8EF3pVrshl-kRGp00S_0YXc5PT4q22UZbNGXbfVT-BmC_QYM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVgBglY8CwlvOpFxQIp7SSTxPGSVyiQjlBp1dlZ8UuTliZR0imIFZ_AN_Il-DqZdEaUSohNFMk3UXIf9vH19TFCmyMeUDMym95PaukGIo5cqmPt-jwSMsu4p7WlzE_JZBJPp_RTl3CDvTAtP0SfcIPIsP01BDgkpLfPWUOP-MkW3wIEHVxFw8A4UjhAwzd7yUHaT7kMWLcl9mHow1lq426HnmnZXnp8ZUwagnq_XQQ4_6ybXMazdkBKbv_vr9xBtzooil-2vnMXXVHFPXRziaDwPjpryY0bXGoMNA4t67FpwkVWlE3-XUlsjCzy-QmuZmVTzQx0xdWi2g6XBa4g218DbSu85Ossb45V_evHz1pZzlZh3iDtlkwM1e1QQqaaNXSQvN1_veN2JzW4IoxJ4HKhfQO8VKY4Cck4ItzzpIw8ST0dC6o4z7Sv48iYgMcjQnUU-2POQx5qL_AkHz9Ag6Is1EOEpfQpLN36UqlA-pxSc-EUtvCSTEjpoBcLWzHR0ZjDaRpfWEvA7DOjTMaZVaaDNnvhqmXvuFjsuTV6L5PVx1DwRkJ2OHnHkuneNEnSz-zQQRsLr2AmDGFtJStUOW-YD1CYjOglErGZipIg-rsEMXgpMPM_B623fnb-zREF3j_PQWTFA3sBIAlfbSnymSULN4A3CrzYqM164GVqYB9e7dqbR_8ivIGu7-zvpix9P_n4GN1oc99Q2fQEDU7ruXqKromz07ypn3XB-Rvf9USL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWggxAseFPCq15ULJDSTjKOHS-BEl7DqCpUnZ0Vx7YmtE2ipFMQKz6Bb-RL8HUy6YwolRCbKJJvouQ-7OPr62OENoeScDsy295PGeWTLKY-N7HxQ0kzlaYyMMZR5o_ZZBJPp3y3S7jBXpiWH6JPuEFkuP4aAlxXymyfsYZ-kcdbcgsQNLmMBiTi1AbmYGcv2R_3Uy4L1l2JfRSFcJbaqNuhZ1u2lx5fGZMGoN5v5wHOP-sml_GsG5CSm__7K7fQjQ6K4het79xGl3RxB11fIii8i05bcuMGlwYDjUPLemybcJEWZZN_1wpbI2f5_BhXs7KpZha64mpRbYfLAleQ7a-BthVe8nWWN4e6_vXjZ60dZ2tm36DclkwM1e1QQqabe2g_ef351Vu_O6nBz6KYEV9mJrTAS6dasoiNKJNBoBQNFA9MnHEtZWpCE1NrAhkPGTc0DkdSRjIyAQmUHN1Ha0VZ6AcIKxVyWLoNldZEhZJze5EctvCyNFPKQ88XthJZR2MOp2kciZaAORRWmUIKp0wPbfbCVcvecb7YM2f0XiatD6HgjUXiYPJGJNO9aZKMP4kDD20svELYMIS1lbTQ5bwRIUBhNuQXSMR2KsoI_bsEs3iJ2Pmfh9ZbPzv7ZsqB9y_wEFvxwF4ASMJXW4p85sjCLeClJIit2pwHXqQG8f7lR3fz8F-EN9DV3Z1EjN9NPjxC19rUNxQ2PUZrJ_VcP0FXstOTvKmfdrH5GwuzRAY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+incorporating+nanosized+calcium+phosphate+particles+on+properties+of+whisker-reinforced+dental+composites&rft.jtitle=Journal+of+biomedical+materials+research.+Part+B%2C+Applied+biomaterials&rft.au=Xu%2C+Hockin+H+K&rft.au=Sun%2C+Limin&rft.au=Weir%2C+Mike+D&rft.au=Takagi%2C+Shozo&rft.date=2007-04-01&rft.issn=1552-4973&rft.volume=81&rft.issue=1&rft.spage=116&rft_id=info:doi/10.1002%2Fjbm.b.30644&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4973&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4973&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4973&client=summon