Cell death pathways: intricate connections and disease implications

Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways—apoptosis, necroptosis, and pyroptosis—other forms of regul...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The EMBO journal Ročník 40; číslo 5; s. e106700 - n/a
Hlavní autoři: Kist, Matthias, Vucic, Domagoj
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.03.2021
Springer Nature B.V
John Wiley and Sons Inc
Témata:
ISSN:0261-4189, 1460-2075, 1460-2075
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways—apoptosis, necroptosis, and pyroptosis—other forms of regulated cell death including autophagy‐dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)‐mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs. Graphical Abstract This review provides an overview of the different forms of cell death and how they are related to each other, as well as the role of cell death regulators in several pathophysiological processes.
AbstractList Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs.Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs.
Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways—apoptosis, necroptosis, and pyroptosis—other forms of regulated cell death including autophagy‐dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)‐mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs. This review provides an overview of the different forms of cell death and how they are related to each other, as well as the role of cell death regulators in several pathophysiological processes.
Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs.
Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways—apoptosis, necroptosis, and pyroptosis—other forms of regulated cell death including autophagy‐dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)‐mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs. This review provides an overview of the different forms of cell death and how they are related to each other, as well as the role of cell death regulators in several pathophysiological processes.
Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways—apoptosis, necroptosis, and pyroptosis—other forms of regulated cell death including autophagy‐dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)‐mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs. Graphical Abstract This review provides an overview of the different forms of cell death and how they are related to each other, as well as the role of cell death regulators in several pathophysiological processes.
Author Kist, Matthias
Vucic, Domagoj
AuthorAffiliation 1 Department of Early Discovery Biochemistry Genentech South San Francisco USA
AuthorAffiliation_xml – name: 1 Department of Early Discovery Biochemistry Genentech South San Francisco USA
Author_xml – sequence: 1
  givenname: Matthias
  surname: Kist
  fullname: Kist, Matthias
  organization: Department of Early Discovery Biochemistry, Genentech
– sequence: 2
  givenname: Domagoj
  orcidid: 0000-0003-3614-8093
  surname: Vucic
  fullname: Vucic, Domagoj
  email: domagoj@gene.com
  organization: Department of Early Discovery Biochemistry, Genentech
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33439509$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtP3DAUhS1EVQbaPasqEptuQq_fSYUqtSP6ElU3ZW05zg14lNhDnCmaf18PA-UhlW7shb9zfO65-2Q3xICEHFI4ppJJ9g6HZnHMgAEFpQF2yIwKBSUDLXfJDJiipaBVvUf2U1oAgKw0fUn2OBe8llDPyHyOfV-0aKfLYpmPa7tO7wsfptE7O2HhYgjoJh9DKmxoi9YntAkLPyz7DbF5eEVedLZP-Pr2PiDnn09_zb-WZz-_fJt_PCudrCSUjVBCV7XlDXUVo9oJJaFzWDVgO8pVpZxtVYfciVo10jl0jXJdjaiolpzyA_Jh67tcNQO2DnNK25vl6Ac7rk203jx-Cf7SXMTfRtfZQIps8PbWYIxXK0yTGXxyuQAbMK6SYUJrCVwBy-jRE3QRV2PI42WqFrlfLnWm3jxM9DfKXb8ZUFvAjTGlETvj_HTTWg7oe0PB3CzSbBZp7heZhfBEeOf9jORkK7n2Pa7_y5vTH5--P5LTrTxlZbjA8X7if375B6Towgs
CitedBy_id crossref_primary_10_1016_j_intimp_2024_112886
crossref_primary_10_1289_EHP10800
crossref_primary_10_1002_adfm_202112000
crossref_primary_10_2147_JIR_S463042
crossref_primary_10_1002_cbdv_202301898
crossref_primary_10_1016_j_bbcan_2025_189265
crossref_primary_10_1016_j_heliyon_2024_e35657
crossref_primary_10_3389_fimmu_2024_1503087
crossref_primary_10_3390_biomedicines9040376
crossref_primary_10_71051_jnlm_1595473
crossref_primary_10_1007_s12672_024_01319_z
crossref_primary_10_3389_fendo_2024_1349000
crossref_primary_10_7554_eLife_93621_4
crossref_primary_10_1016_j_nantod_2025_102874
crossref_primary_10_1016_j_ijbiomac_2024_130173
crossref_primary_10_1096_fba_2024_00067
crossref_primary_10_1016_j_bcp_2025_116951
crossref_primary_10_3390_toxins15080502
crossref_primary_10_1093_ofid_ofad539
crossref_primary_10_3389_fgene_2023_1120827
crossref_primary_10_3390_cells12101409
crossref_primary_10_1038_s41419_024_07244_x
crossref_primary_10_7554_eLife_93621
crossref_primary_10_1016_j_bioorg_2025_108304
crossref_primary_10_1038_s12276_023_01046_5
crossref_primary_10_1186_s10020_024_00901_z
crossref_primary_10_3390_biom12070924
crossref_primary_10_1371_journal_pone_0266774
crossref_primary_10_1155_2022_7043431
crossref_primary_10_31083_j_fbl2906222
crossref_primary_10_1038_s41420_022_01272_2
crossref_primary_10_1002_mco2_70357
crossref_primary_10_1002_mco2_70116
crossref_primary_10_1038_s41420_024_02120_1
crossref_primary_10_1371_journal_pone_0317416
crossref_primary_10_1007_s00467_023_06162_y
crossref_primary_10_1042_BST20220925
crossref_primary_10_1155_2021_8900122
crossref_primary_10_3389_fcimb_2025_1625928
crossref_primary_10_1007_s10495_024_02002_y
crossref_primary_10_1038_s12276_021_00590_2
crossref_primary_10_1016_j_toxicon_2025_108555
crossref_primary_10_1111_febs_16346
crossref_primary_10_3390_biomedicines13092177
crossref_primary_10_1093_toxsci_kfad008
crossref_primary_10_1016_j_ctrv_2024_102773
crossref_primary_10_1089_dna_2023_0188
crossref_primary_10_1136_jitc_2022_004763
crossref_primary_10_1016_j_heliyon_2023_e18036
crossref_primary_10_1007_s10495_023_01927_0
crossref_primary_10_1038_s41435_022_00184_6
crossref_primary_10_3390_ijms252111478
crossref_primary_10_1016_j_intimp_2024_112321
crossref_primary_10_3390_ijms26010220
crossref_primary_10_2147_JIR_S304492
crossref_primary_10_1038_s42003_024_05980_6
crossref_primary_10_3390_antiox14050561
crossref_primary_10_1016_j_cbi_2023_110427
crossref_primary_10_1073_pnas_2425802122
crossref_primary_10_1016_j_ejmech_2023_116076
crossref_primary_10_3390_jdb11040043
crossref_primary_10_1007_s10495_023_01811_x
crossref_primary_10_1016_j_cytogfr_2023_06_002
crossref_primary_10_3390_nu14010076
crossref_primary_10_3390_biom13050820
crossref_primary_10_1016_j_devcel_2024_06_018
crossref_primary_10_1007_s10522_025_10243_w
crossref_primary_10_1002_art_42071
crossref_primary_10_1042_BCJ20210450
crossref_primary_10_1016_j_yjmcc_2022_03_010
crossref_primary_10_1016_j_heliyon_2024_e37089
crossref_primary_10_1089_jir_2024_0195
crossref_primary_10_1002_tox_23658
crossref_primary_10_1155_2022_8624318
crossref_primary_10_1097_CM9_0000000000001589
crossref_primary_10_1016_j_bbrc_2023_08_032
crossref_primary_10_3390_antiox13030298
crossref_primary_10_3390_ijms23094723
crossref_primary_10_1007_s10238_024_01491_0
crossref_primary_10_1016_j_bcp_2022_115241
crossref_primary_10_1002_biot_202300257
crossref_primary_10_1111_odi_15248
crossref_primary_10_3389_fimmu_2024_1330461
crossref_primary_10_1016_j_adcanc_2025_100139
crossref_primary_10_1002_ardp_202500010
crossref_primary_10_1016_j_apsb_2022_08_022
crossref_primary_10_3390_cells10030515
crossref_primary_10_1016_j_phymed_2024_156088
crossref_primary_10_1016_j_ccr_2022_214908
crossref_primary_10_1128_spectrum_02049_21
crossref_primary_10_1016_j_jare_2024_09_029
crossref_primary_10_1016_j_biopha_2023_115802
crossref_primary_10_1158_1541_7786_MCR_23_0290
crossref_primary_10_1002_cso2_1017
crossref_primary_10_1007_s11064_025_04452_5
crossref_primary_10_1007_s12035_022_02851_1
crossref_primary_10_1016_j_ejmcr_2025_100250
crossref_primary_10_1016_j_yexcr_2025_114688
crossref_primary_10_1038_s41418_025_01564_x
crossref_primary_10_3389_fphys_2021_690423
crossref_primary_10_1016_j_jnha_2024_100408
crossref_primary_10_1016_j_jpha_2025_101356
crossref_primary_10_1002_jcp_31087
crossref_primary_10_1038_s41573_023_00749_8
crossref_primary_10_3389_fphar_2024_1443422
crossref_primary_10_1134_S0022093025020085
crossref_primary_10_1007_s10495_024_02041_5
crossref_primary_10_1016_j_tice_2025_102897
crossref_primary_10_3390_ijms231810453
crossref_primary_10_1080_15548627_2021_1995151
crossref_primary_10_1134_S1021443724609443
crossref_primary_10_1371_journal_pcbi_1010626
crossref_primary_10_3389_fpls_2022_1044896
crossref_primary_10_3390_bioengineering10040496
crossref_primary_10_3390_gastroent15020022
crossref_primary_10_1016_j_lfs_2024_122525
crossref_primary_10_1038_s41418_023_01153_w
crossref_primary_10_1038_s41467_025_56711_2
crossref_primary_10_1016_j_isci_2023_107806
crossref_primary_10_1155_2021_4665632
crossref_primary_10_1007_s12664_025_01849_6
crossref_primary_10_1093_biolre_ioaf060
crossref_primary_10_3389_fnut_2025_1626020
crossref_primary_10_3390_md19080459
crossref_primary_10_1097_CM9_0000000000002096
crossref_primary_10_3389_fimmu_2025_1567994
crossref_primary_10_1038_s41598_023_33557_6
crossref_primary_10_14348_molcells_2021_0193
crossref_primary_10_3390_biom13010101
crossref_primary_10_3892_ijmm_2023_5301
crossref_primary_10_2174_1874467215666220822110855
crossref_primary_10_3390_cancers13122974
crossref_primary_10_3390_molecules27134181
crossref_primary_10_1016_j_crpvbd_2025_100260
crossref_primary_10_1016_j_biopha_2022_112893
crossref_primary_10_1007_s00204_023_03625_x
crossref_primary_10_1038_s42003_024_05852_z
crossref_primary_10_1186_s11658_024_00602_9
crossref_primary_10_1016_j_mam_2022_101157
crossref_primary_10_1038_s41419_023_05716_0
crossref_primary_10_3389_fphar_2025_1567552
crossref_primary_10_3389_fonc_2022_830561
crossref_primary_10_1016_j_bbrc_2024_150177
crossref_primary_10_3389_fimmu_2023_1297408
crossref_primary_10_1016_j_jtbi_2023_111562
crossref_primary_10_1002_ppap_202200095
crossref_primary_10_1016_j_csbj_2024_04_057
crossref_primary_10_1007_s10565_024_09907_z
crossref_primary_10_1016_j_heliyon_2023_e17764
crossref_primary_10_1038_s41598_022_25286_z
crossref_primary_10_3389_fphar_2023_1224151
crossref_primary_10_1007_s13273_021_00129_6
crossref_primary_10_3389_fphar_2025_1542204
crossref_primary_10_1093_humupd_dmad005
crossref_primary_10_1111_jnc_16131
crossref_primary_10_1016_j_molcel_2022_03_022
crossref_primary_10_3390_cells11060983
crossref_primary_10_1016_j_bbamcr_2021_119191
crossref_primary_10_3390_biomedicines12030473
crossref_primary_10_1016_j_exer_2025_110299
crossref_primary_10_1007_s40495_023_00339_7
crossref_primary_10_1016_j_heliyon_2024_e35920
crossref_primary_10_1093_brain_awad375
crossref_primary_10_1096_fj_202300600RR
crossref_primary_10_1042_BCJ20210725
crossref_primary_10_1007_s12035_025_04848_y
crossref_primary_10_1038_s41419_024_06652_3
crossref_primary_10_3389_fonc_2022_717926
crossref_primary_10_1515_dmpt_2024_0073
crossref_primary_10_3390_v14092049
crossref_primary_10_3389_fphar_2021_817364
crossref_primary_10_1039_D2FO02284B
crossref_primary_10_3389_fgene_2022_988606
crossref_primary_10_1007_s10495_025_02081_5
crossref_primary_10_3389_fmed_2025_1608975
crossref_primary_10_3892_etm_2021_10705
crossref_primary_10_1007_s10495_022_01785_2
crossref_primary_10_1126_scitranslmed_adf8366
crossref_primary_10_1007_s10495_023_01890_w
crossref_primary_10_1002_1878_0261_13582
crossref_primary_10_1016_j_phymed_2023_154777
crossref_primary_10_1016_j_fgb_2022_103730
crossref_primary_10_1073_pnas_2406715122
crossref_primary_10_1161_CIRCRESAHA_124_323508
crossref_primary_10_1016_j_biopha_2023_115419
crossref_primary_10_1016_j_cbpc_2022_109444
crossref_primary_10_3390_ijms26083600
crossref_primary_10_3390_cancers14122928
crossref_primary_10_1016_j_ecoenv_2024_117268
crossref_primary_10_1186_s12967_024_05752_0
crossref_primary_10_1111_cpr_13644
crossref_primary_10_1007_s00109_025_02525_0
crossref_primary_10_3390_antiox11112162
crossref_primary_10_3389_fimmu_2023_1198053
crossref_primary_10_3389_fmed_2021_826557
crossref_primary_10_1111_febs_17404
crossref_primary_10_1016_j_bbamcr_2022_119341
crossref_primary_10_1155_2022_8726564
crossref_primary_10_1016_j_intimp_2022_108885
crossref_primary_10_1371_journal_pone_0297043
crossref_primary_10_3389_fonc_2022_980620
crossref_primary_10_3389_fmed_2023_1084129
crossref_primary_10_1016_j_phrs_2024_107394
crossref_primary_10_1186_s43556_023_00142_2
crossref_primary_10_1016_j_biopha_2024_116238
crossref_primary_10_1038_s41418_023_01187_0
crossref_primary_10_3389_fimmu_2022_896473
crossref_primary_10_3390_biom12060828
crossref_primary_10_1002_med_21817
Cites_doi 10.1038/emboj.2010.300
10.1126/science.aam7344
10.1016/j.cell.2014.04.018
10.1016/j.freeradbiomed.2018.09.008
10.1038/nnano.2016.164
10.1038/356768a0
10.1074/jbc.C500089200
10.1016/j.redox.2017.11.001
10.1016/j.redox.2019.101239
10.1080/15548627.2017.1343770
10.1016/j.cell.2013.12.010
10.1016/S0092-8674(00)80501-2
10.1073/pnas.0711122105
10.1002/path.1711050103
10.1016/S0092-8674(03)00521-X
10.1038/cr.2015.139
10.1111/j.1600-6143.2006.01595.x
10.1073/pnas.0505294102
10.2147/CMAR.S200524
10.1016/j.cell.2012.07.007
10.1073/pnas.1217823110
10.1038/s41586-019-1828-5
10.1002/eji.201747404
10.1038/ng1954
10.1084/jem.20170558
10.1038/s41586-019-1548-x
10.1038/s41583-018-0093-1
10.1158/2159-8290.CD-18-0387
10.1038/nature03579
10.1083/jcb.124.4.619
10.3390/cells9020406
10.1146/annurev-biochem-060815-014830
10.1158/0008-5472.CAN-12-2753
10.1016/j.celrep.2014.04.026
10.1038/35070009
10.1158/0008-5472.CAN-07-5836
10.1016/S1097-2765(00)80032-5
10.1038/nature07383
10.1016/S0092-8674(00)81266-0
10.1016/j.ccr.2007.08.029
10.1016/j.celrep.2014.06.044
10.1038/nri3839
10.4049/jimmunol.1302839
10.1073/pnas.1319661110
10.1038/nature20558
10.1155/2019/3403075
10.1038/ncb3064
10.1016/j.chom.2018.09.007
10.1038/s41418-018-0252-y
10.1038/nature09852
10.3389/fphar.2020.00239
10.1038/s41467-019-09397-2
10.4049/jimmunol.181.9.6427
10.1038/nm.3048
10.1073/pnas.1613305114
10.1038/nature19830
10.1016/j.molcel.2008.05.014
10.1074/jbc.273.5.2926
10.1038/40657
10.1038/35070019
10.1074/jbc.M111.239921
10.1016/j.immuni.2012.01.012
10.1073/pnas.1603244113
10.1038/emboj.2012.18
10.1016/j.immuni.2020.04.010
10.1038/s41586-019-1752-8
10.1111/j.1365-2036.2010.04264.x
10.1186/s40779-015-0039-0
10.1073/pnas.1407001111
10.1038/cdd.2016.46
10.1016/j.devcel.2016.04.018
10.4049/jimmunol.1600035
10.1016/j.molcel.2009.10.013
10.1038/ni.1714
10.1016/j.bbamcr.2013.06.026
10.1083/jcb.201006052
10.4049/jimmunol.1202756
10.1007/s10120-016-0610-8
10.15252/embj.201694696
10.1016/j.celrep.2018.02.067
10.1016/j.tcb.2016.04.006
10.1038/nature07416
10.1016/S0092-8674(00)81590-1
10.1038/ncomms14128
10.1038/s41419-019-1490-8
10.1038/ncb2883
10.1038/nature18629
10.1101/cshperspect.a036376
10.1073/pnas.88.19.8661
10.1182/blood.2019004116
10.1016/j.jmb.2017.10.028
10.1016/S1097-2765(01)00214-3
10.1146/annurev.immunol.23.021704.115653
10.1038/sj.cdd.4402289
10.1042/BJ20101738
10.1074/jbc.M115.687731
10.1016/j.cell.2016.02.026
10.1111/apt.15030
10.1021/jm300060k
10.1074/jbc.272.28.17255
10.1182/blood-2013-04-457671
10.1038/386517a0
10.1126/scisignal.aax8295
10.1038/s41586-019-1705-2
10.1021/acs.jmedchem.9b00318
10.1101/gad.14.16.2060
10.1016/j.molcel.2014.10.021
10.1158/0008-5472.CAN-08-2655
10.1038/s41418-019-0347-0
10.1038/s41586-020-1951-3
10.1038/s41598-018-26775-w
10.1038/s41418-018-0106-7
10.1038/nchembio711
10.1038/nature13683
10.1074/jbc.272.32.19641
10.1681/ASN.2015121376
10.1016/j.cell.2007.10.037
10.1073/pnas.1607769113
10.1038/s41467-019-09753-2
10.1016/j.bbabio.2009.06.009
10.1016/j.cell.2007.10.030
10.1182/blood-2016-03-704908
10.1038/nature15541
10.1038/nrm3722
10.1083/jcb.144.5.891
10.1038/sj.cdd.4401723
10.1126/science.275.5297.206
10.1038/cdd.2017.46
10.1016/S1097-2765(00)00136-2
10.1016/S1097-2765(02)00599-3
10.1196/annals.1427.014
10.1074/jbc.M111.222919
10.1038/s41589-019-0278-6
10.1038/nm.4229
10.1038/cdd.2013.37
10.1016/j.cell.2012.03.042
10.1038/34112
10.1126/sciimmunol.aar6689
10.1038/34214
10.1038/nri.2017.105
10.1016/j.tcb.2019.12.009
10.1073/pnas.1909546117
10.1016/S1074-7613(00)80609-3
10.1038/nature09857
10.1038/s41586-019-1770-6
10.1101/gad.13.19.2514
10.1073/pnas.1822157116
10.1161/ATVBAHA.117.309575
10.1073/pnas.1708247114
10.1038/nature15514
10.1172/JCI39987
10.3389/fcell.2020.00365
10.1007/s00018-017-2547-4
10.1038/cdd.2017.84
10.1038/nature03434
10.1111/imr.12908
10.1038/cr.2013.171
10.1021/ja074725f
10.1146/annurev-cancerbio-030518-055844
10.1038/ki.2011.450
10.1038/s41580-018-0003-4
10.1016/j.cell.2019.05.026
10.3390/ijms20133328
10.1016/j.chembiol.2020.03.016
10.1016/0092-8674(95)90071-3
10.1073/pnas.94.21.11333
10.1038/s41418-017-0012-4
10.4161/cc.11.3.19060
10.1126/science.aad6872
10.1016/j.tips.2020.01.002
10.3389/fimmu.2014.00461
10.1002/cpt.1615
10.1083/jcb.200903124
10.1074/jbc.272.30.18542
10.1074/jbc.M109.040139
10.1242/jcs.215152
10.1002/JLB.3MA1219-398R
10.4161/cc.23599
10.1002/eji.201545615
10.1053/j.gastro.2013.08.035
10.1016/j.it.2017.11.002
10.1038/nm.3547
10.1016/S0092-8674(00)00008-8
10.1038/s41586-019-1707-0
10.1038/cdd.2017.80
10.4049/jimmunol.1400590
10.1038/s41573-020-0071-y
10.1038/nature22393
10.1073/pnas.1305538110
10.3390/v12080901
10.5414/CPP41441
10.1016/S0092-8674(00)00009-X
10.1093/emboj/16.10.2794
10.1126/science.1207862
10.1002/eji.201747053
10.1016/S1074-7613(00)80450-1
10.1042/EBC20170021
10.1016/j.immuni.2013.06.018
10.12688/f1000research.21571.1
10.1038/cdd.2013.45
10.1083/jcb.201611168
10.1038/nature10273
10.1158/1078-0432.CCR-15-0685
10.1016/S0092-8674(00)81265-9
10.1016/j.cell.2018.04.036
10.1074/jbc.273.42.27084
10.1126/scitranslmed.aad3099
10.1038/nature13044
10.1038/nature18590
10.1038/nature10558
10.1155/2019/6175804
10.1371/journal.ppat.1005910
10.1038/sj.cdd.4400370
10.1038/335440a0
10.1038/386619a0
10.1038/s41598-017-15106-0
10.1016/j.chom.2017.12.017
10.1073/pnas.1716578115
10.1038/s41467-018-07551-w
10.1038/labinvest.2009.91
10.1038/nature03317
10.1073/pnas.1809548115
10.1096/fasebj.7.5.8462789
10.1007/s12035-012-8304-7
10.1016/j.celrep.2020.03.032
10.1038/nrd3627
10.1016/j.immuni.2017.11.013
10.1126/science.1249361
10.1038/nature08229
10.1016/j.tibs.2016.10.004
10.1126/science.6093263
10.15252/emmm.201810248
10.1038/s41467-020-16887-1
10.1200/JCO.2011.34.7898
10.1016/S1074-7613(00)80213-7
10.1016/j.cell.2015.05.056
10.1038/nrc2615
10.1111/bph.12416
10.3390/cancers12010164
10.1517/13543770903567077
10.1016/j.immuni.2018.06.011
10.1126/science.8080500
10.1038/s41598-018-32576-y
10.1074/jbc.M109488200
10.1126/science.1059108
10.1093/jnci/89.23.1789
10.1038/s41580-018-0089-8
10.1038/s41586-020-2129-8
10.1002/eji.201545605
10.1016/j.molcel.2020.05.014
10.1038/s41590-017-0042-6
10.1073/pnas.0438011100
10.1104/pp.121.1.71
10.1038/s41586-019-1830-y
10.4049/jimmunol.1400499
10.1016/j.molcel.2016.02.023
10.1038/cdd.2017.186
10.1073/pnas.94.20.10717
10.1016/j.celrep.2016.06.103
10.1002/prp2.365
10.1016/j.chembiol.2008.02.010
10.1038/nrm.2017.53
10.1021/acs.jmedchem.6b01751
10.1084/jem.20170347
10.1046/j.1471-4159.2003.02299.x
10.1038/cddis.2016.437
10.1126/science.aau2818
10.1016/j.cell.2011.11.031
10.1083/jcb.201002060
10.1016/j.smim.2014.05.004
10.1016/j.cell.2009.05.021
10.1073/pnas.1708194114
10.1158/0008-5472.CAN-07-5173
10.1126/science.1092385
10.1083/jcb.200806072
10.1038/s41589-019-0277-7
10.1002/hep.24747
10.1038/nature20559
10.1002/jnr.20289
10.1038/s41419-018-0394-3
10.1074/jbc.C800128200
10.1002/med.21635
10.1016/j.cell.2014.04.019
10.1124/jpet.103.062034
10.1016/0140-6736(91)92978-B
10.1038/nature03443
10.1101/cshperspect.a036368
10.1073/pnas.1414055112
10.4049/jimmunol.174.8.4942
10.1016/j.cell.2009.05.037
10.1038/nature03445
10.1074/jbc.M113.462341
10.1073/pnas.1403477111
10.1016/j.immuni.2016.02.020
10.1126/sciimmunol.aar6676
10.7554/eLife.44452
10.1016/j.jhep.2019.12.010
10.1038/nature03029
10.1124/pr.54.3.375
10.1073/pnas.0511288103
10.1007/s40265-018-1026-z
10.1002/hep.27597
10.1016/S0092-8674(00)80434-1
10.1016/0092-8674(89)90174-8
ContentType Journal Article
Copyright The Author(s) 2021
2021 The Authors
2021 The Authors.
2021 EMBO
Copyright_xml – notice: The Author(s) 2021
– notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 EMBO
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.2020106700
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Matthias Kist & Domagoj Vucic
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC7917554
33439509
10_15252_embj_2020106700
EMBJ2020106700
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAIHA
AAJSJ
AAMMB
AANLZ
AAONW
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AFBPY
AFFNX
AFGKR
AFRAH
AFWVQ
AFZJQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O8X
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
YSK
ZCA
ZZTAW
~KM
24P
AAHHS
ABJNI
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
RHF
WYJ
-Q-
.55
3O-
4.4
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
AANHP
AASGY
AAYXX
ABUWG
ACBWZ
ACKIV
ACRPL
ACYXJ
ADNMO
AEUYN
AFFHD
AFKRA
AGQPQ
AI.
ASPBG
AVWKF
AZQEC
BBNVY
BHPHI
BKSAR
BPHCQ
BVXVI
C1A
CAG
CCPQU
CITATION
COF
D1J
DWQXO
EJD
FA8
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
H13
HCIFZ
HMCUK
HVGLF
H~9
LH4
LK8
LW6
M1P
M2O
M7P
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNI
RZO
UKHRP
VH1
WOQ
X7M
XSW
Y6R
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
ESTFP
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5850-b464789a3b1c8217c4650fce8b0af13686cad6fe3c496b5ccecb6cf9ee6175313
IEDL.DBID WIN
ISICitedReferencesCount 234
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0261-4189
1460-2075
IngestDate Tue Sep 30 16:09:50 EDT 2025
Sat Sep 27 17:49:59 EDT 2025
Mon Oct 06 17:49:09 EDT 2025
Mon Jul 21 06:01:47 EDT 2025
Sat Nov 29 03:03:09 EST 2025
Tue Nov 18 21:29:46 EST 2025
Wed Jan 22 16:31:51 EST 2025
Sat Nov 29 01:24:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords pyroptosis
apoptosis
RIPK1
caspase
necroptosis
Language English
License 2021 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5850-b464789a3b1c8217c4650fce8b0af13686cad6fe3c496b5ccecb6cf9ee6175313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3614-8093
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7917554
PMID 33439509
PQID 2494075357
PQPubID 35985
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7917554
proquest_miscellaneous_2477503602
proquest_journals_2494075357
pubmed_primary_33439509
crossref_citationtrail_10_15252_embj_2020106700
crossref_primary_10_15252_embj_2020106700
wiley_primary_10_15252_embj_2020106700_EMBJ2020106700
springer_journals_10_15252_embj_2020106700
PublicationCentury 2000
PublicationDate 01 March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 01 March 2021
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2021
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References 2009; 89
2011; 479
2011; 477
2005; 174
2019; 11
2019; 10
2019; 15
2013; 122
2016; 540
2020; 13
2008; 105
2020; 12
2008; 30
2020; 11
2011; 471
1997; 6
2012; 11
2016; 37
2016a; 23
2016; 35
2020; 19
1998; 273
2017; 74
2019; 20
2000; 14
2020; 297
2000; 12
1994; 263
2019; 26
1992; 356
2013; 110
2010; 190
2010; 191
2016; 46
2016; 44
2017; 61
2004; 303
2017; 60
2020; 41
2020; 40
2019a; 574
2012; 36
2016; 16
2007; 12
2012; 31
2004; 309
2016; 12
2012; 30
2016; 11
1998; 391
2004; 432
2020; 30
2015; 112
2018; 115
2009; 187
2020; 27
2019; 49
1996; 85
2005; 1
2009; 184
1998; 1
2012; 46
1998; 5
2016; 26
2016; 8
2019; 177
1998; 9
2006; 103
2016; 22
2007; 39
2011; 433
2017; 42
2013; 20
2002; 54
1997; 89
1999; 121
2014; 171
2017; 355
2017; 114
1997; 91
2013; 19
2020; 8
2019b; 575
1997; 90
2014; 5
1997; 94
2015; 290
2019; 62
2017; 37
2020; 52
2013; 12
2017; 38
2007; 131
2020; 9
2016; 113
1999; 13
2016; 354
2008; 68
2020; 135
2018; 78
2014; 8
2014; 7
2014; 56
2014; 514
2015; 162
2015; 2
2009; 1787
2011; 334
2017; 20
2007; 129
2020; 580
2017; 28
2017; 24
2010; 120
2020; 107
2016; 128
2020; 78
2014; 192
1999; 144
2014; 193
2017; 214
2017; 216
1994; 124
2005; 280
2018; 430
2013; 39
2014; 506
2020; 72
2017; 13
2009; 9
2020; 117
2008; 456
2017; 18
2019; 2019
2002; 19
1997; 272
1997; 275
2002; 10
2002; 277
2014; 26
2014; 24
2018; 49
2018; 48
2014; 20
1997; 388
2018; 9
2018; 8
2010; 20
2018; 39
2018; 3
2018; 173
2009; 10
2010; 29
2005; 102
1991; 88
1997; 386
2014; 16
2020; 578
2014; 15
2020; 577
2007; 7
1998; 94
2007; 67
2003; 41
2013; 190
1988; 335
2019; 8
2010; 31
2019; 3
2019; 2
1984; 226
2016; 165
2015; 526
2018; 23
2018; 22
1991; 337
2018; 25
2014; 156
2018; 24
2014; 157
2018; 19
2018; 18
2000; 102
2015; 62
2019; 575
2009; 460
1989; 57
2003; 100
2005; 12
2018; 14
2017; 547
2018; 362
2017; 5
1993; 7
2017; 7
2017; 8
2000; 6
2013; 288
2003; 114
2012; 55
2005; 23
2018; 131
2012; 72
2001; 292
2019; 116
2016; 85
1997; 16
2009; 284
2016; 197
2011; 286
2013; 1833
2012; 81
2015; 15
2020a; 9
2002; 297
2005; 434
2015; 11
2005; 435
2013; 145
2006; 8
2008; 15
2014; 111
2012; 148
2012; 149
2009; 137
2008; 283
1972; 26
2008; 181
2012; 150
2009; 36
2015; 25
2008; 1147
1995; 81
2001; 7
2016; 538
2016b; 540
2015; 21
2001; 3
2016; 535
2016; 61
2020b; 12
2019; 133
2014; 343
e_1_2_4_217_1
e_1_2_4_172_1
e_1_2_4_232_1
e_1_2_4_255_1
e_1_2_4_278_1
e_1_2_4_80_1
e_1_2_4_281_1
e_1_2_4_42_1
e_1_2_4_65_1
e_1_2_4_27_1
e_1_2_4_88_1
e_1_2_4_108_1
e_1_2_4_100_1
e_1_2_4_123_1
e_1_2_4_146_1
e_1_2_4_169_1
e_1_2_4_161_1
e_1_2_4_184_1
e_1_2_4_228_1
e_1_2_4_205_1
e_1_2_4_220_1
e_1_2_4_243_1
e_1_2_4_266_1
e_1_2_4_289_1
e_1_2_4_9_1
e_1_2_4_92_1
e_1_2_4_303_1
e_1_2_4_31_1
e_1_2_4_77_1
e_1_2_4_54_1
e_1_2_4_292_1
e_1_2_4_16_1
e_1_2_4_112_1
e_1_2_4_135_1
e_1_2_4_158_1
e_1_2_4_39_1
e_1_2_4_194_1
e_1_2_4_196_1
e_1_2_4_218_1
e_1_2_4_171_1
e_1_2_4_210_1
e_1_2_4_256_1
e_1_2_4_279_1
e_1_2_4_81_1
e_1_2_4_233_1
e_1_2_4_20_1
e_1_2_4_66_1
e_1_2_4_43_1
e_1_2_4_282_1
e_1_2_4_107_1
e_1_2_4_89_1
e_1_2_4_28_1
e_1_2_4_145_1
e_1_2_4_168_1
e_1_2_4_122_1
e_1_2_4_206_1
e_1_2_4_229_1
e_1_2_4_183_1
e_1_2_4_160_1
e_1_2_4_2_1
e_1_2_4_70_1
e_1_2_4_93_1
e_1_2_4_221_1
e_1_2_4_267_1
e_1_2_4_244_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_78_1
Taabazuing CY (e_1_2_4_257_1) 2017; 24
e_1_2_4_270_1
e_1_2_4_293_1
e_1_2_4_304_1
e_1_2_4_119_1
e_1_2_4_17_1
e_1_2_4_157_1
e_1_2_4_111_1
e_1_2_4_195_1
Srinivasula SM (e_1_2_4_247_1) 2002; 19
e_1_2_4_215_1
e_1_2_4_238_1
Lee BL (e_1_2_4_134_1) 2018; 8
e_1_2_4_170_1
Hout GP (e_1_2_4_97_1) 2017; 38
e_1_2_4_82_1
e_1_2_4_230_1
e_1_2_4_299_1
e_1_2_4_253_1
e_1_2_4_276_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_67_1
e_1_2_4_106_1
e_1_2_4_129_1
e_1_2_4_29_1
Malhotra R (e_1_2_4_153_1) 2015; 11
e_1_2_4_167_1
e_1_2_4_121_1
e_1_2_4_144_1
e_1_2_4_313_1
e_1_2_4_182_1
e_1_2_4_249_1
e_1_2_4_226_1
e_1_2_4_7_1
e_1_2_4_94_1
e_1_2_4_241_1
e_1_2_4_203_1
e_1_2_4_264_1
e_1_2_4_287_1
e_1_2_4_71_1
e_1_2_4_10_1
e_1_2_4_56_1
e_1_2_4_33_1
e_1_2_4_290_1
e_1_2_4_118_1
e_1_2_4_309_1
e_1_2_4_79_1
e_1_2_4_18_1
e_1_2_4_156_1
e_1_2_4_179_1
e_1_2_4_192_1
e_1_2_4_110_1
e_1_2_4_133_1
e_1_2_4_301_1
e_1_2_4_239_1
e_1_2_4_216_1
e_1_2_4_83_1
e_1_2_4_277_1
e_1_2_4_60_1
e_1_2_4_254_1
e_1_2_4_45_1
e_1_2_4_280_1
e_1_2_4_22_1
e_1_2_4_105_1
e_1_2_4_128_1
e_1_2_4_68_1
e_1_2_4_189_1
e_1_2_4_120_1
e_1_2_4_166_1
e_1_2_4_143_1
e_1_2_4_204_1
e_1_2_4_227_1
e_1_2_4_181_1
e_1_2_4_242_1
e_1_2_4_288_1
e_1_2_4_95_1
e_1_2_4_8_1
Schwarzer R (e_1_2_4_231_1) 2020; 52
e_1_2_4_72_1
e_1_2_4_265_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_291_1
e_1_2_4_117_1
e_1_2_4_57_1
e_1_2_4_19_1
e_1_2_4_178_1
e_1_2_4_155_1
e_1_2_4_193_1
e_1_2_4_132_1
e_1_2_4_302_1
e_1_2_4_199_1
e_1_2_4_259_1
e_1_2_4_84_1
e_1_2_4_213_1
e_1_2_4_236_1
e_1_2_4_251_1
e_1_2_4_274_1
e_1_2_4_297_1
e_1_2_4_61_1
e_1_2_4_23_1
e_1_2_4_127_1
e_1_2_4_46_1
e_1_2_4_69_1
e_1_2_4_104_1
e_1_2_4_142_1
e_1_2_4_165_1
e_1_2_4_188_1
e_1_2_4_311_1
e_1_2_4_5_1
e_1_2_4_209_1
e_1_2_4_96_1
e_1_2_4_262_1
e_1_2_4_285_1
e_1_2_4_73_1
e_1_2_4_224_1
e_1_2_4_50_1
e_1_2_4_201_1
e_1_2_4_12_1
e_1_2_4_250_1
e_1_2_4_116_1
e_1_2_4_139_1
e_1_2_4_307_1
e_1_2_4_35_1
e_1_2_4_58_1
e_1_2_4_190_1
e_1_2_4_131_1
e_1_2_4_154_1
e_1_2_4_177_1
e_1_2_4_237_1
e_1_2_4_85_1
e_1_2_4_62_1
e_1_2_4_214_1
e_1_2_4_252_1
e_1_2_4_298_1
e_1_2_4_275_1
e_1_2_4_24_1
e_1_2_4_149_1
e_1_2_4_47_1
e_1_2_4_126_1
e_1_2_4_103_1
e_1_2_4_141_1
e_1_2_4_187_1
e_1_2_4_312_1
e_1_2_4_164_1
e_1_2_4_248_1
e_1_2_4_6_1
e_1_2_4_240_1
e_1_2_4_51_1
e_1_2_4_74_1
e_1_2_4_202_1
e_1_2_4_225_1
e_1_2_4_263_1
e_1_2_4_286_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_59_1
e_1_2_4_308_1
e_1_2_4_115_1
e_1_2_4_191_1
e_1_2_4_130_1
e_1_2_4_176_1
e_1_2_4_300_1
e_1_2_4_151_1
e_1_2_4_197_1
Li J (e_1_2_4_138_1) 2020; 11
e_1_2_4_219_1
e_1_2_4_40_1
e_1_2_4_63_1
e_1_2_4_211_1
e_1_2_4_234_1
e_1_2_4_295_1
e_1_2_4_260_1
e_1_2_4_283_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_86_1
Murthy P (e_1_2_4_180_1) 2019; 2
e_1_2_4_125_1
e_1_2_4_148_1
e_1_2_4_102_1
e_1_2_4_163_1
e_1_2_4_186_1
e_1_2_4_207_1
e_1_2_4_140_1
e_1_2_4_3_1
e_1_2_4_268_1
e_1_2_4_52_1
e_1_2_4_90_1
e_1_2_4_222_1
e_1_2_4_245_1
e_1_2_4_294_1
e_1_2_4_305_1
e_1_2_4_75_1
e_1_2_4_271_1
e_1_2_4_14_1
e_1_2_4_98_1
e_1_2_4_37_1
e_1_2_4_114_1
e_1_2_4_137_1
e_1_2_4_152_1
e_1_2_4_175_1
e_1_2_4_150_1
e_1_2_4_173_1
e_1_2_4_198_1
e_1_2_4_258_1
e_1_2_4_41_1
e_1_2_4_235_1
e_1_2_4_273_1
e_1_2_4_212_1
e_1_2_4_296_1
e_1_2_4_109_1
e_1_2_4_64_1
e_1_2_4_261_1
e_1_2_4_49_1
e_1_2_4_87_1
e_1_2_4_26_1
e_1_2_4_124_1
e_1_2_4_147_1
e_1_2_4_310_1
e_1_2_4_101_1
e_1_2_4_185_1
e_1_2_4_162_1
e_1_2_4_208_1
e_1_2_4_4_1
e_1_2_4_269_1
e_1_2_4_246_1
e_1_2_4_284_1
e_1_2_4_30_1
e_1_2_4_91_1
e_1_2_4_200_1
e_1_2_4_223_1
e_1_2_4_53_1
e_1_2_4_76_1
e_1_2_4_272_1
e_1_2_4_306_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_99_1
e_1_2_4_113_1
e_1_2_4_159_1
e_1_2_4_136_1
e_1_2_4_174_1
References_xml – volume: 297
  start-page: 123
  year: 2020
  end-page: 138
  article-title: Therapeutic modulation of inflammasome pathways
  publication-title: Immunol Rev
– volume: 110
  start-page: 20364
  year: 2013
  end-page: 20371
  article-title: Autosis is a Na+, K+‐ATPase‐regulated form of cell death triggered by autophagy‐inducing peptides, starvation, and hypoxia‐ischemia
  publication-title: Proc Natl Acad Sci USA
– volume: 157
  start-page: 1175
  year: 2014
  end-page: 1188
  article-title: RIPK1 regulates RIPK3‐MLKL‐driven systemic inflammation and emergency hematopoiesis
  publication-title: Cell
– volume: 49
  start-page: 64
  year: 2019
  end-page: 73
  article-title: Randomised clinical trial: emricasan versus placebo significantly decreases ALT and caspase 3/7 activation in subjects with non‐alcoholic fatty liver disease
  publication-title: Aliment Pharmacol Ther
– volume: 49
  start-page: 221
  year: 2019
  end-page: 227
  article-title: Untangling "NETosis" from NETs
  publication-title: Eur J Immunol
– volume: 12
  start-page: 1473
  issue: Suppl 2
  year: 2005
  end-page: 1477
  article-title: Anoikis
  publication-title: Cell Death Differ
– volume: 120
  start-page: 1310
  year: 2010
  end-page: 1323
  article-title: Induction of autophagy‐dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance
  publication-title: J Clin Invest
– volume: 27
  start-page: 161
  year: 2020
  end-page: 175
  article-title: RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases
  publication-title: Cell Death Differ
– volume: 8
  year: 2019
  article-title: Autophagy regulates inflammatory programmed cell death via turnover of RHIM‐domain proteins
  publication-title: Elife
– volume: 10
  start-page: 2091
  year: 2019
  article-title: Caspase‐1 initiates apoptosis in the absence of gasdermin D
  publication-title: Nat Commun
– volume: 343
  start-page: 1357
  year: 2014
  end-page: 1360
  article-title: Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis
  publication-title: Science
– volume: 187
  start-page: 61
  year: 2009
  end-page: 70
  article-title: Glyburide inhibits the Cryopyrin/Nalp3 inflammasome
  publication-title: J Cell Biol
– volume: 91
  start-page: 479
  year: 1997
  end-page: 489
  article-title: Cytochrome c and dATP‐dependent formation of Apaf‐1/caspase‐9 complex initiates an apoptotic protease cascade
  publication-title: Cell
– volume: 273
  start-page: 2926
  year: 1998
  end-page: 2930
  article-title: An induced proximity model for caspase‐8 activation
  publication-title: J Biol Chem
– volume: 15
  start-page: 49
  year: 2014
  end-page: 63
  article-title: Control of apoptosis by the BCL‐2 protein family: implications for physiology and therapy
  publication-title: Nat Rev Mol Cell Biol
– volume: 102
  start-page: 12005
  year: 2005
  end-page: 12010
  article-title: Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 971
  year: 2014
  end-page: 981
  article-title: MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates
  publication-title: Cell Rep
– volume: 37
  start-page: 337
  year: 2016
  end-page: 349
  article-title: The autophagy machinery controls cell death switching between apoptosis and necroptosis
  publication-title: Dev Cell
– volume: 115
  start-page: E10888
  year: 2018
  end-page: E10897
  article-title: Caspase‐8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection
  publication-title: Proc Natl Acad Sci USA
– volume: 157
  start-page: 1189
  year: 2014
  end-page: 1202
  article-title: RIPK1 blocks early postnatal lethality mediated by caspase‐8 and RIPK3
  publication-title: Cell
– volume: 26
  start-page: 101239
  year: 2019
  article-title: Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos
  publication-title: Redox Biol
– volume: 506
  start-page: 456
  year: 2014
  end-page: 462
  article-title: A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3
  publication-title: Nature
– volume: 388
  start-page: 190
  year: 1997
  end-page: 195
  article-title: Inhibition of death receptor signals by cellular FLIP
  publication-title: Nature
– volume: 20
  start-page: 251
  year: 2010
  end-page: 267
  article-title: Small‐molecule pan‐IAP antagonists: a patent review
  publication-title: Expert Opin Ther Pat
– volume: 535
  start-page: 153
  year: 2016
  end-page: 158
  article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
– volume: 36
  start-page: 215
  year: 2012
  end-page: 227
  article-title: Inhibitor of apoptosis proteins limit RIP3 kinase‐dependent interleukin‐1 activation
  publication-title: Immunity
– volume: 190
  start-page: 377
  year: 2010
  end-page: 389
  article-title: Model‐based dissection of CD95 signaling dynamics reveals both a pro‐ and antiapoptotic role of c‐FLIPL
  publication-title: J Cell Biol
– volume: 284
  start-page: 34553
  year: 2009
  end-page: 34560
  article-title: X chromosome‐linked inhibitor of apoptosis regulates cell death induction by proapoptotic receptor agonists
  publication-title: J Biol Chem
– volume: 16
  start-page: 2794
  year: 1997
  end-page: 2804
  article-title: FLICE is activated by association with the CD95 death‐inducing signaling complex (DISC)
  publication-title: Embo J
– volume: 23
  start-page: 191
  issue: 2
  year: 2018
  end-page: 202.e4
  article-title: Intestinal epithelial cell autophagy is required to protect against TNF‐induced apoptosis during chronic colitis in mice
  publication-title: Cell Host Microbe
– volume: 456
  start-page: 259
  year: 2008
  end-page: 263
  article-title: A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
  publication-title: Nature
– volume: 137
  start-page: 1112
  year: 2009
  end-page: 1123
  article-title: Phosphorylation‐driven assembly of the RIP1‐RIP3 complex regulates programmed necrosis and virus‐induced inflammation
  publication-title: Cell
– volume: 12
  start-page: 445
  year: 2007
  end-page: 456
  article-title: Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac‐mimetic‐induced apoptosis
  publication-title: Cancer Cell
– volume: 25
  start-page: 486
  year: 2018
  end-page: 541
  article-title: Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018
  publication-title: Cell Death Differ
– volume: 12
  start-page: 164
  year: 2020
  article-title: Ferroptosis in cancer cell biology
  publication-title: Cancers
– volume: 27
  start-page: 448
  year: 2020
  end-page: 462
  article-title: Ferroptosis and necroptosis in the kidney
  publication-title: Cell Chem Biol
– volume: 114
  start-page: E961
  year: 2017
  end-page: E969
  article-title: Active MLKL triggers the NLRP3 inflammasome in a cell‐intrinsic manner
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  year: 2019
  article-title: Inflammasomes in neuroinflammatory and neurodegenerative diseases
  publication-title: EMBO Mol Med
– volume: 1787
  start-page: 1395
  year: 2009
  end-page: 1401
  article-title: Mitochondrial calcium and the permeability transition in cell death
  publication-title: Biochim Biophys Acta
– volume: 114
  start-page: E9618
  year: 2017
  end-page: E9625
  article-title: Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis
  publication-title: Proc Natl Acad Sci U S A
– volume: 3
  start-page: 339
  year: 2001
  end-page: 345
  article-title: Membrane blebbing during apoptosis results from caspase‐mediated activation of ROCK I
  publication-title: Nat Cell Biol
– volume: 12
  start-page: a036376
  year: 2020
  article-title: The killer pseudokinase mixed lineage kinase domain‐like protein (MLKL)
  publication-title: Cold Spring Harbor Perspect Biol
– volume: 116
  start-page: 16497
  year: 2019
  end-page: 16506
  article-title: Autophagy genes in myeloid cells counteract IFNgamma‐induced TNF‐mediated cell death and fatal TNF‐induced shock
  publication-title: Proc Natl Acad Sci USA
– volume: 386
  start-page: 619
  year: 1997
  end-page: 623
  article-title: Caspase‐1 processes IFN‐gamma‐inducing factor and regulates LPS‐induced IFN‐gamma production
  publication-title: Nature
– volume: 8
  start-page: 1582
  year: 2018
  end-page: 1597
  article-title: AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies
  publication-title: Cancer Discov
– volume: 41
  start-page: 209
  year: 2020
  end-page: 224
  article-title: Inhibitors targeting RIPK1/RIPK3: old and new drugs
  publication-title: Trends Pharmacol Sci
– volume: 286
  start-page: 17015
  year: 2011
  end-page: 17028
  article-title: Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization
  publication-title: J Biol Chem
– volume: 216
  start-page: 4073
  year: 2017
  end-page: 4090
  article-title: ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation
  publication-title: J Cell Biol
– volume: 12
  start-page: 674
  year: 2013
  end-page: 683
  article-title: Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition
  publication-title: Cell Cycle
– volume: 11
  start-page: 145
  year: 2015
  end-page: 154
  article-title: Loss of Atg12, but not Atg5, in pro‐opiomelanocortin neurons exacerbates diet‐induced obesity
  publication-title: Autophagy
– volume: 434
  start-page: 917
  year: 2005
  end-page: 921
  article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
  publication-title: Nature
– volume: 434
  start-page: 652
  year: 2005
  end-page: 658
  article-title: Cyclophilin D‐dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death
  publication-title: Nature
– volume: 22
  start-page: 1411
  year: 2016
  end-page: 1420
  article-title: IAP antagonists induce anti‐tumor immunity in multiple myeloma
  publication-title: Nat Med
– volume: 181
  start-page: 6427
  year: 2008
  end-page: 6434
  article-title: Receptor‐interacting protein homotypic interaction motif‐dependent control of NF‐kappa B activation via the DNA‐dependent activator of IFN regulatory factors
  publication-title: J Immunol
– volume: 26
  start-page: 655
  year: 2016
  end-page: 667
  article-title: Mitochondrial permeability transition: new findings and persisting uncertainties
  publication-title: Trends Cell Biol
– volume: 68
  start-page: 3421
  year: 2008
  end-page: 3428
  article-title: ABT‐263: a potent and orally bioavailable Bcl‐2 family inhibitor
  publication-title: Cancer Res
– volume: 15
  start-page: 234
  year: 2008
  end-page: 245
  article-title: Synthetic lethal screening identifies compounds activating iron‐dependent, nonapoptotic cell death in oncogenic‐RAS‐harboring cancer cells
  publication-title: Chem Biol
– volume: 23
  start-page: 1565
  year: 2016a
  end-page: 1576
  article-title: RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury
  publication-title: Cell Death Differ
– volume: 272
  start-page: 19641
  year: 1997
  end-page: 19644
  article-title: CASH, a novel caspase homologue with death effector domains
  publication-title: J Biol Chem
– volume: 165
  start-page: 421
  year: 2016
  end-page: 433
  article-title: BOK is a non‐canonical BCL‐2 family effector of apoptosis regulated by ER‐associated degradation
  publication-title: Cell
– volume: 16
  start-page: 55
  year: 2014
  end-page: 65
  article-title: Plasma membrane translocation of trimerized MLKL protein is required for TNF‐induced necroptosis
  publication-title: Nat Cell Biol
– volume: 471
  start-page: 368
  year: 2011
  end-page: 372
  article-title: RIP3 mediates the embryonic lethality of caspase‐8‐deficient mice
  publication-title: Nature
– volume: 100
  start-page: 2432
  year: 2003
  end-page: 2437
  article-title: JNK phosphorylation of Bim‐related members of the Bcl2 family induces Bax‐dependent apoptosis
  publication-title: Proc Natl Acad Sci USA
– volume: 2
  start-page: 665
  year: 2019
  end-page: 679
  article-title: PARP inhibitors: clinical development, emerging differences, and the current therapeutic issues
  publication-title: Cancer Drug Resist
– volume: 574
  start-page: 428
  year: 2019a
  end-page: 431
  article-title: Cleavage of RIPK1 by caspase‐8 is crucial for limiting apoptosis and necroptosis
  publication-title: Nature
– volume: 391
  start-page: 43
  year: 1998
  end-page: 50
  article-title: A caspase‐activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD
  publication-title: Nature
– volume: 55
  start-page: 4101
  year: 2012
  end-page: 4113
  article-title: Discovery of a potent small‐molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC‐0152)
  publication-title: J Med Chem
– volume: 8
  start-page: 1348
  year: 2006
  end-page: 1358
  article-title: Hierarchical regulation of mitochondrion‐dependent apoptosis by BCL‐2 subfamilies
  publication-title: Nat Cell Biol
– volume: 514
  start-page: 187
  year: 2014
  end-page: 192
  article-title: Inflammatory caspases are innate immune receptors for intracellular LPS
  publication-title: Nature
– volume: 110
  start-page: 12024
  year: 2013
  end-page: 12029
  article-title: Two independent pathways of regulated necrosis mediate ischemia‐reperfusion injury
  publication-title: Proc Natl Acad Sci USA
– volume: 88
  start-page: 8661
  year: 1991
  end-page: 8665
  article-title: Enforced BCL2 expression in B‐lymphoid cells prolongs antibody responses and elicits autoimmune disease
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 883
  year: 2014
  end-page: 896
  article-title: A myeloperoxidase‐containing complex regulates neutrophil elastase release and actin dynamics during NETosis
  publication-title: Cell Rep
– volume: 526
  start-page: 660
  year: 2015
  end-page: 665
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
– volume: 2
  start-page: 12
  year: 2015
  article-title: Programmed cell death and its role in inflammation
  publication-title: Mil Med Res
– volume: 288
  start-page: 31268
  year: 2013
  end-page: 31279
  article-title: Toll‐like receptor 3‐mediated necrosis via TRIF, RIP3, and MLKL
  publication-title: J Biol Chem
– volume: 15
  start-page: 567
  year: 2008
  end-page: 579
  article-title: Granzyme B‐induced cell death exerted by ex vivo CTL: discriminating requirements for cell death and some of its signs
  publication-title: Cell Death Differ
– volume: 48
  start-page: 35
  year: 2018
  end-page: 44.e36
  article-title: The pore‐forming protein gasdermin D regulates interleukin‐1 secretion from living macrophages
  publication-title: Immunity
– volume: 111
  start-page: 7391
  year: 2014
  end-page: 7396
  article-title: Caspase‐8 and RIP kinases regulate bacteria‐induced innate immune responses and cell death
  publication-title: Proc Natl Acad Sci U S A
– volume: 7
  start-page: 218
  year: 2007
  end-page: 225
  article-title: Clinical trial of the pan‐caspase inhibitor, IDN‐6556, in human liver preservation injury
  publication-title: Am J Transplant
– volume: 3
  start-page: 346
  year: 2001
  end-page: 352
  article-title: Caspase‐3‐mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing
  publication-title: Nat Cell Biol
– volume: 226
  start-page: 1097
  year: 1984
  end-page: 1099
  article-title: Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation
  publication-title: Science
– volume: 12
  start-page: 621
  year: 2000
  end-page: 632
  article-title: DFF45/ICAD Can Be Directly Processed by Granzyme B during the Induction of Apoptosis
  publication-title: Immunity
– volume: 20
  start-page: 3328
  year: 2019
  article-title: The NLRP3 inflammasome: an overview of mechanisms of activation and regulation
  publication-title: Int J Mol Sci
– volume: 46
  start-page: 217
  year: 2012
  end-page: 220
  article-title: Multi‐target, neuroprotective and neurorestorative M30 improves cognitive impairment and reduces Alzheimer's‐like neuropathology and age‐related alterations in mice
  publication-title: Mol Neurobiol
– volume: 81
  start-page: 751
  year: 2012
  end-page: 761
  article-title: Rip1 (receptor‐interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury
  publication-title: Kidney Int
– volume: 49
  start-page: 42
  issue: 1
  year: 2018
  end-page: 55.e6
  article-title: Caspase‐8 collaborates with caspase‐11 to drive tissue damage and execution of endotoxic shock
  publication-title: Immunity
– volume: 9
  start-page: 406
  year: 2020a
  article-title: Future therapeutic directions for Smac‐mimetics
  publication-title: Cells
– volume: 24
  start-page: 689
  year: 2018
  end-page: 702
  article-title: SMAC mimetics induce autophagy‐dependent apoptosis of HIV‐1‐infected resting memory CD4+ T cells
  publication-title: Cell Host Microbe
– volume: 36
  start-page: 831
  year: 2009
  end-page: 844
  article-title: Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF‐R1 signaling complex and is required for TNF‐mediated gene induction
  publication-title: Mol Cell
– volume: 29
  start-page: 4198
  year: 2010
  end-page: 4209
  article-title: c‐IAP1 and UbcH5 promote K11‐linked polyubiquitination of RIP1 in TNF signalling
  publication-title: EMBO J
– volume: 9
  start-page: 359
  year: 2018
  article-title: Phenytoin inhibits necroptosis
  publication-title: Cell Death Dis
– volume: 9
  start-page: 321
  year: 2009
  end-page: 326
  article-title: Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics
  publication-title: Nat Rev Cancer
– volume: 94
  start-page: 491
  year: 1998
  end-page: 501
  article-title: Cleavage of BID by caspase 8 mediatesthe mitochondrial damage in the faspathway of apoptosis
  publication-title: Cell
– volume: 5
  start-page: 1
  year: 2014
  end-page: 8
  article-title: Toll‐like receptor signaling pathways
  publication-title: Front Immunol
– volume: 13
  start-page: eaax8295
  year: 2020
  article-title: SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases
  publication-title: Sci Signal
– volume: 102
  start-page: 43
  year: 2000
  end-page: 53
  article-title: Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins
  publication-title: Cell
– volume: 44
  start-page: 553
  year: 2016
  end-page: 567
  article-title: NEMO Prevents RIP Kinase 1‐Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF‐kappaB‐Dependent and ‐Independent Functions
  publication-title: Immunity
– volume: 41
  start-page: 441
  year: 2003
  end-page: 449
  article-title: First clinical trial of a novel caspase inhibitor: anti‐apoptotic caspase inhibitor, IDN‐6556, improves liver enzymes
  publication-title: Int J Clin Pharmacol Ther
– volume: 42
  start-page: 245
  year: 2017
  end-page: 254
  article-title: Pyroptosis: Gasdermin‐Mediated Programmed Necrotic Cell Death
  publication-title: Trends Biochem Sci
– volume: 46
  start-page: 223
  year: 2016
  end-page: 229
  article-title: PMA and crystal‐induced neutrophil extracellular trap formation involves RIPK1‐RIPK3‐MLKL signaling
  publication-title: Eur J Immunol
– volume: 460
  start-page: 1035
  year: 2009
  end-page: 1039
  article-title: XIAP discriminates between type I and type II FAS‐induced apoptosis
  publication-title: Nature
– volume: 56
  start-page: 481
  year: 2014
  end-page: 495
  article-title: RIP3 induces apoptosis independent of pronecrotic kinase activity
  publication-title: Mol Cell
– volume: 362
  start-page: 1064
  year: 2018
  end-page: 1069
  article-title: Pathogen blockade of TAK1 triggers caspase‐8‐dependent cleavage of gasdermin D and cell death
  publication-title: Science
– volume: 115
  start-page: 4182
  year: 2018
  end-page: 4187
  article-title: TWEAK and RIPK1 mediate a second wave of cell death during AKI
  publication-title: Proc Natl Acad Sci USA
– volume: 122
  start-page: 2784
  year: 2013
  end-page: 2794
  article-title: NETosis: how vital is it?
  publication-title: Blood
– volume: 12
  start-page: 901
  year: 2020b
  article-title: Combinatorial treatment of birinapant and zosuquidar enhances effective control of HBV replication in vivo
  publication-title: Viruses
– volume: 214
  start-page: 3171
  year: 2017
  end-page: 3182
  article-title: RIPK1‐dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense
  publication-title: J Exp Med
– volume: 8
  year: 2018
  article-title: ASC‐ and caspase‐8‐dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages
  publication-title: Sci Rep
– volume: 26
  start-page: 239
  year: 1972
  end-page: 257
  article-title: Apoptosis: a basic biological phenomenon with wide‐ranging implications in tissue kinetics
  publication-title: Br J Cancer
– volume: 434
  start-page: 658
  year: 2005
  end-page: 662
  article-title: Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death
  publication-title: Nature
– volume: 81
  start-page: 505
  year: 1995
  end-page: 512
  article-title: FADD, a novel death domain‐containing protein, interacts with the death domain of Fas and initiates apoptosis
  publication-title: Cell
– volume: 24
  start-page: 105
  year: 2014
  end-page: 121
  article-title: Translocation of mixed lineage kinase domain‐like protein to plasma membrane leads to necrotic cell death
  publication-title: Cell Res
– volume: 214
  start-page: 3687
  year: 2017
  end-page: 3705
  article-title: Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium
  publication-title: J Exp Med
– volume: 272
  start-page: 18542
  year: 1997
  end-page: 18545
  article-title: FLAME‐1, a novel FADD‐like anti‐apoptotic molecule that regulates Fas/TNFR1‐induced apoptosis
  publication-title: J Biol Chem
– volume: 11
  start-page: 109
  year: 2012
  end-page: 124
  article-title: Targeting IAP proteins for therapeutic intervention in cancer
  publication-title: Nat Rev Drug Discov
– volume: 74
  start-page: 3631
  year: 2017
  end-page: 3645
  article-title: Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure
  publication-title: Cell Mol Life Sci
– volume: 107
  start-page: 941
  year: 2020
  end-page: 952
  article-title: RIP1 kinase activity is critical for skin inflammation but not for viral propagation
  publication-title: J Leukoc Biol
– volume: 277
  start-page: 9505
  year: 2002
  end-page: 9511
  article-title: Identification of a novel homotypic interaction motif required for the phosphorylation of receptor‐interacting protein (RIP) by RIP3
  publication-title: J Biol Chem
– volume: 354
  start-page: aad6872
  year: 2016
  article-title: A nuclease that mediates cell death induced by DNA damage and poly(ADP‐ribose) polymerase‐1
  publication-title: Science
– volume: 107
  start-page: 406
  year: 2020
  end-page: 414
  article-title: DNL104, a centrally penetrant RIPK1 inhibitor, inhibits rip1 kinase phosphorylation in a randomized phase I ascending dose study in healthy volunteers
  publication-title: Clin Pharmacol Ther
– volume: 30
  start-page: 4343
  year: 2020
  end-page: 4354.e4
  article-title: Targeting the extrinsic pathway of hepatocyte apoptosis promotes clearance of plasmodium liver infection
  publication-title: Cell Rep
– volume: 124
  start-page: 619
  year: 1994
  end-page: 626
  article-title: Disruption of epithelial cell‐matrix interactions induces apoptosis
  publication-title: J Cell Biol
– volume: 11
  year: 2020
  article-title: Ferroptosis: past, present and future
  publication-title: Cell Death Dis
– volume: 57
  start-page: 79
  year: 1989
  end-page: 88
  article-title: bcl‐2‐Immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation
  publication-title: Cell
– volume: 11
  year: 2020
  article-title: MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis
  publication-title: Nat Commun
– volume: 113
  start-page: E4966
  year: 2016
  end-page: 4975
  article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
  publication-title: Proc Natl Acad Sci U S A
– volume: 150
  start-page: 606
  year: 2012
  end-page: 619
  article-title: TRIF licenses caspase‐11‐dependent NLRP3 inflammasome activation by gram‐negative bacteria
  publication-title: Cell
– volume: 54
  start-page: 375
  year: 2002
  end-page: 429
  article-title: The Therapeutic Potential of Poly(ADP‐Ribose) Polymerase Inhibitors
  publication-title: Pharmacol Rev
– volume: 78
  start-page: 1939
  year: 2018
  end-page: 1946
  article-title: Talazoparib: first global approval
  publication-title: Drugs
– volume: 62
  start-page: 657
  year: 2015
  end-page: 658
  article-title: Autosis occurs in the liver of patients with severe anorexia nervosa
  publication-title: Hepatology
– volume: 24
  start-page: 1598
  year: 2017
  end-page: 1608
  article-title: Role of Atg5‐dependent cell death in the embryonic development of Bax/Bak double‐knockout mice
  publication-title: Cell Death Differ
– volume: 110
  start-page: 5887
  year: 2013
  end-page: 5892
  article-title: Dimers of mitochondrial ATP synthase form the permeability transition pore
  publication-title: Proc Natl Acad Sci USA
– volume: 192
  start-page: 5476
  year: 2014
  end-page: 5480
  article-title: Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN‐deficient mice
  publication-title: J Immunol
– volume: 24
  start-page: 1172
  year: 2017
  end-page: 1183
  article-title: CYLD, A20 and OTULIN deubiquitinases in NF‐kappaB signaling and cell death: so similar, yet so different
  publication-title: Cell Death Differ
– volume: 5
  year: 2017
  article-title: Randomized clinical study of safety, pharmacokinetics, and pharmacodynamics of RIPK1 inhibitor GSK2982772 in healthy volunteers
  publication-title: Pharmacol Res Perspect
– volume: 90
  start-page: 405
  year: 1997
  end-page: 413
  article-title: Apaf‐1, a human protein homologous to CED‐4, participates in cytochrome c‐dependent activation of caspase‐3
  publication-title: Cell
– volume: 273
  start-page: 27084
  year: 1998
  end-page: 27090
  article-title: Pro‐caspase‐3 is a major physiologic target of caspase‐8
  publication-title: J Biol Chem
– volume: 103
  start-page: 4952
  year: 2006
  end-page: 4957
  article-title: Autophagic programmed cell death by selective catalase degradation
  publication-title: Proc Natl Acad Sci U S A
– volume: 16
  start-page: 3247
  year: 2016
  end-page: 3259
  article-title: MLKL and FADD are critical for suppressing progressive lymphoproliferative disease and activating the NLRP3 inflammasome
  publication-title: Cell Rep
– volume: 535
  start-page: 111
  year: 2016
  end-page: 116
  article-title: Pore‐forming activity and structural autoinhibition of the gasdermin family
  publication-title: Nature
– volume: 46
  start-page: 178
  year: 2016
  end-page: 184
  article-title: NET formation can occur independently of RIPK3 and MLKL signaling
  publication-title: Eur J Immunol
– volume: 335
  start-page: 440
  year: 1988
  end-page: 442
  article-title: Bcl‐2 gene promotes haemopoietic cell survival and cooperates with c‐myc to immortalize pre‐B cells
  publication-title: Nature
– volume: 19
  start-page: 553
  year: 2020
  end-page: 571
  article-title: Receptor‐interacting protein kinase 1 (RIPK1) as a therapeutic target
  publication-title: Nat Rev Drug Discov
– volume: 72
  start-page: 5588
  year: 2012
  end-page: 5599
  article-title: Trapping of PARP1 and PARP2 by clinical PARP inhibitors
  publication-title: Cancer Res
– volume: 37
  start-page: 1457
  year: 2017
  end-page: 1461
  article-title: NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E‐deficient mice‐brief report
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 575
  start-page: 683
  year: 2019
  end-page: 687
  article-title: Caspase‐8 is the molecular switch for apoptosis, necroptosis and pyroptosis
  publication-title: Nature
– volume: 23
  start-page: 197
  year: 2005
  end-page: 223
  article-title: How neutrophils kill microbes
  publication-title: Annu Rev Immunol
– volume: 580
  start-page: 391
  year: 2020
  end-page: 395
  article-title: Z‐nucleic‐acid sensing triggers ZBP1‐dependent necroptosis and inflammation
  publication-title: Nature
– volume: 89
  start-page: 1789
  year: 1997
  end-page: 1796
  article-title: Phase I study of continuous‐infusion L‐S, R‐buthionine sulfoximine with intravenous melphalan
  publication-title: J Natl Cancer Inst
– volume: 280
  start-page: 18558
  year: 2005
  end-page: 18561
  article-title: Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D
  publication-title: J Biol Chem
– volume: 434
  start-page: 913
  year: 2005
  end-page: 917
  article-title: Specific killing of BRCA2‐deficient tumours with inhibitors ofpoly(ADP‐ribose) polymerase
  publication-title: Nature
– volume: 435
  start-page: 677
  year: 2005
  end-page: 681
  article-title: An inhibitor of Bcl‐2 family proteins induces regression of solid tumours
  publication-title: Nature
– volume: 337
  start-page: 1304
  year: 1991
  end-page: 1308
  article-title: Intramuscular desferrioxamine in patients with Alzheimer's disease
  publication-title: The Lancet
– volume: 21
  start-page: 5047
  year: 2015
  end-page: 5056
  article-title: How do cytotoxic lymphocytes kill cancer cells?
  publication-title: Clin Cancer Res
– volume: 1833
  start-page: 3481
  year: 2013
  end-page: 3498
  article-title: Anoikis molecular pathways and its role in cancer progression
  publication-title: Biochim Biophys Acta
– volume: 85
  start-page: 743
  year: 2016
  end-page: 763
  article-title: Necroptosis and Inflammation
  publication-title: Annu Rev Biochem
– volume: 3
  start-page: 1
  year: 2018
  end-page: 11
  article-title: Noncanonical inflammasome signaling elicits gasdermin D‐dependent neutrophil extracellular traps
  publication-title: Sci Immunol
– volume: 114
  start-page: 10642
  year: 2017
  end-page: 10647
  article-title: Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: eaar6689
  year: 2018
  article-title: Gasdermin D plays a vital role in the generation of neutrophil extracellular traps
  publication-title: Sci Immunol
– volume: 8
  start-page: 365
  year: 2020
  article-title: The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues
  publication-title: Front Cell Dev Biol
– volume: 12
  start-page: a036368
  year: 2020
  article-title: Multitasking kinase RIPK1 regulates cell death and inflammation
  publication-title: Cold Spring Harbor Perspect Biol
– volume: 538
  start-page: 477
  year: 2016
  end-page: 482
  article-title: The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models
  publication-title: Nature
– volume: 334
  start-page: 376
  year: 2011
  end-page: 380
  article-title: Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination
  publication-title: Science
– volume: 26
  start-page: 146
  year: 2019
  end-page: 161
  article-title: Single‐cell analysis of pyroptosis dynamics reveals conserved GSDMD‐mediated subcellular events that precede plasma membrane rupture
  publication-title: Cell Death Differ
– volume: 477
  start-page: 330
  year: 2011
  end-page: 334
  article-title: FADD prevents RIP3‐mediated epithelial cell necrosis and chronic intestinal inflammation
  publication-title: Nature
– volume: 547
  start-page: 99
  year: 2017
  end-page: 103
  article-title: Chemotherapy drugs induce pyroptosis through caspase‐3 cleavage of a gasdermin
  publication-title: Nature
– volume: 135
  start-page: 2388
  year: 2020
  end-page: 2401
  article-title: An intestinal organoid‐based platform that recreates susceptibility to T‐cell‐mediated tissue injury
  publication-title: Blood
– volume: 355
  start-page: 1152
  year: 2017
  end-page: 1158
  article-title: PARP inhibitors: synthetic lethality in the clinic
  publication-title: Science
– volume: 297
  start-page: 259
  year: 2002
  end-page: 263
  article-title: Mediation of poly(ADP‐ribose) polymerase‐1‐dependent cell death by apoptosis‐inducing factor
  publication-title: Science
– volume: 149
  start-page: 1060
  year: 2012
  end-page: 1072
  article-title: Ferroptosis: an iron‐dependent form of nonapoptotic cell death
  publication-title: Cell
– volume: 11
  start-page: 977
  year: 2016
  end-page: 985
  article-title: Ultrasmall nanoparticles induce ferroptosis in nutrient‐deprived cancer cells and suppress tumour growth
  publication-title: Nat Nanotechnol
– volume: 11
  start-page: 4371
  year: 2019
  end-page: 4390
  article-title: Current status and future prospects of PARP inhibitor clinical trials in ovarian cancer
  publication-title: Cancer Manag Res
– volume: 190
  start-page: 418
  year: 2013
  end-page: 427
  article-title: TLR3, TRIF, and caspase 8 determine double‐stranded RNA‐induced epithelial cell death and survival in vivo
  publication-title: J Immunol
– volume: 20
  start-page: 1161
  year: 2013
  end-page: 1173
  article-title: Obatoclax (GX15‐070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes
  publication-title: Cell Death Differ
– volume: 22
  start-page: 2924
  year: 2018
  end-page: 2936
  article-title: Gasdermin D exerts anti‐inflammatory effects by promoting neutrophil death
  publication-title: Cell Rep
– volume: 286
  start-page: 34851
  year: 2011
  end-page: 34857
  article-title: Protective role of transient pore openings in calcium handling by cardiac mitochondria
  publication-title: J Biol Chem
– volume: 177
  start-page: 1682
  year: 2019
  end-page: 1699
  article-title: Autophagy‐independent functions of the autophagy machinery
  publication-title: Cell
– volume: 309
  start-page: 634
  year: 2004
  end-page: 640
  article-title: Characterization of IDN‐6556 (3‐[2‐(2‐tert‐butyl‐phenylaminooxalyl)‐amino]‐propionylamino]‐4‐oxo‐5‐(2,3,5,6‐te trafluoro‐phenoxy)‐pentanoic acid): a liver‐targeted caspase inhibitor
  publication-title: J Pharmacol Exp Ther
– volume: 3
  start-page: 35
  year: 2019
  end-page: 54
  article-title: The hallmarks of ferroptosis
  publication-title: Annu Rev Cancer Biol
– volume: 578
  start-page: 160
  year: 2020
  end-page: 165
  article-title: Systemic HIV and SIV latency reversal via non‐canonical NF‐kappaB signalling in vivo
  publication-title: Nature
– volume: 131
  start-page: 682
  year: 2007
  end-page: 693
  article-title: IAP antagonists target cIAP1 to induce TNFalpha‐dependent apoptosis
  publication-title: Cell
– volume: 156
  start-page: 317
  year: 2014
  end-page: 331
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
– volume: 11
  start-page: 239
  year: 2020
  article-title: Ferroptosis and its potential role in human diseases
  publication-title: Front Pharmacol
– volume: 15
  start-page: 560
  year: 2019
  end-page: 564
  article-title: MCC950 closes the active conformation of NLRP3 to an inactive state
  publication-title: Nat Chem Biol
– volume: 13
  start-page: 1619
  year: 2017
  end-page: 1628
  article-title: Autophagy‐monitoring and autophagy‐deficient mice
  publication-title: Autophagy
– volume: 68
  start-page: 9384
  year: 2008
  end-page: 9393
  article-title: SM‐164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP‐1/2 and XIAP
  publication-title: Cancer Res
– volume: 174
  start-page: 4942
  year: 2005
  end-page: 4952
  article-title: Apoptosis induced by the toll‐like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif
  publication-title: J Immunol
– volume: 55
  start-page: 419
  year: 2012
  end-page: 428
  article-title: A phase 2, randomized, double‐blind, placebo‐controlled study of GS‐9450 in subjects with nonalcoholic steatohepatitis
  publication-title: Hepatology
– volume: 133
  start-page: 153
  year: 2019
  end-page: 161
  article-title: Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction?
  publication-title: Free Radic Biol Med
– volume: 19
  start-page: 246
  year: 2018
  end-page: 254
  article-title: Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling
  publication-title: Nat Immunol
– volume: 6
  start-page: 1389
  year: 2000
  end-page: 1399
  article-title: The combined functions of proapoptotic Bcl‐2 family members bak and bax are essential for normal development of multiple tissues
  publication-title: Mol Cell
– volume: 14
  start-page: 535
  year: 2018
  end-page: 548
  article-title: alpha‐Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice
  publication-title: Redox Biol
– volume: 16
  start-page: 1180
  year: 2014
  end-page: 1191
  article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
  publication-title: Nat Cell Biol
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 17
  article-title: ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells
  publication-title: Oxidative Medicine and Cellular Longevity
– volume: 15
  start-page: 556
  year: 2019
  end-page: 559
  article-title: MCC950 directly targets the NLRP3 ATP‐hydrolysis motif for inflammasome inhibition
  publication-title: Nat Chem Biol
– volume: 61
  start-page: 585
  year: 2017
  end-page: 596
  article-title: The mammalian ULK1 complex and autophagy initiation
  publication-title: Essays Biochem
– volume: 8
  start-page: 8618
  year: 2018
  article-title: MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice
  publication-title: Sci Rep
– volume: 129
  start-page: 15279
  year: 2007
  end-page: 15294
  article-title: Design, synthesis, and characterization of a potent, nonpeptide, cell‐permeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP
  publication-title: J Am Chem Soc
– volume: 303
  start-page: 1532
  year: 2004
  end-page: 1535
  article-title: Neutrophil extracellular traps kill bacteria
  publication-title: Science
– volume: 290
  start-page: 29217
  year: 2015
  end-page: 29230
  article-title: The Inflammasome Adaptor ASC Induces Procaspase‐8 Death Effector Domain Filaments
  publication-title: J Biol Chem
– volume: 12
  year: 2016
  article-title: Activity of uncleaved caspase‐8 controls anti‐bacterial immune defense and TLR‐induced cytokine production independent of cell death
  publication-title: PLoS Pathog
– volume: 20
  start-page: 175
  year: 2019
  end-page: 193
  article-title: Regulation of apoptosis in health and disease: the balancing act of BCL‐2 family proteins
  publication-title: Nat Rev Mol Cell Biol
– volume: 386
  start-page: 517
  year: 1997
  end-page: 521
  article-title: Viral FLICE‐inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors
  publication-title: Nature
– volume: 275
  start-page: 206
  year: 1997
  end-page: 209
  article-title: Activation of interferon‐gamma inducing factor mediated by interleukin‐1beta converting enzyme
  publication-title: Science
– volume: 25
  start-page: 65
  year: 2018
  end-page: 80
  article-title: BCL‐2 family proteins: changing partners in the dance towards death
  publication-title: Cell Death Differ
– volume: 10
  start-page: 348
  year: 2009
  end-page: 355
  article-title: Death receptor signal transducers: nodes of coordination in immune signaling networks
  publication-title: Nat Immunol
– volume: 391
  start-page: 96
  year: 1998
  end-page: 99
  article-title: Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis
  publication-title: Nature
– volume: 52
  start-page: e976
  issue: 978–993
  year: 2020
  article-title: FADD and Caspase‐8 Regulate Gut Homeostasis and Inflammation by Controlling MLKL‐ and GSDMD‐Mediated Death of Intestinal Epithelial Cells
  publication-title: Immunity
– volume: 31
  start-page: 969
  year: 2010
  end-page: 978
  article-title: Clinical trial: the efficacy and safety of oral PF‐03491390, a pancaspase inhibitor ‐ a randomized placebo‐controlled study in patients with chronic hepatitis C
  publication-title: Aliment Pharmacol Ther
– volume: 197
  start-page: 2421
  year: 2016
  end-page: 2433
  article-title: Efficacy and pharmacology of the NLRP3 Inflammasome inhibitor CP‐456,773 (CRID3) in murine models of dermal and pulmonary inflammation
  publication-title: J Immunol
– volume: 39
  start-page: 123
  year: 2018
  end-page: 134
  article-title: ZBP1: innate sensor regulating cell death and inflammation
  publication-title: Trends Immunol
– volume: 102
  start-page: 33
  year: 2000
  end-page: 42
  article-title: Smac, a Mitochondrial protein that promotes cytochrome c–dependent caspase activation by eliminating IAP inhibition
  publication-title: Cell
– volume: 39
  start-page: 207
  year: 2007
  end-page: 211
  article-title: A genome‐wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1
  publication-title: Nat Genet
– volume: 8
  year: 2017
  article-title: AIF‐independent parthanatos in the pathogenesis of dry age‐related macular degeneration
  publication-title: Cell Death Dis
– volume: 15
  start-page: 388
  year: 2015
  end-page: 400
  article-title: Perforin and granzymes: function, dysfunction and human pathology
  publication-title: Nat Rev Immunol
– volume: 20
  start-page: 341
  year: 2017
  end-page: 349
  article-title: Dose‐escalation study for the targeting of CD44v(+) cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205)
  publication-title: Gastric Cancer
– volume: 85
  start-page: 803
  year: 1996
  end-page: 815
  article-title: Involvement of MACH, a novel MORT1/FADD‐interacting protease, in Fas/APO‐1‐ and TNF receptor‐induced cell death
  publication-title: Cell
– volume: 479
  start-page: 117
  year: 2011
  end-page: 121
  article-title: Non‐canonical inflammasome activation targets caspase‐11
  publication-title: Nature
– volume: 471
  start-page: 363
  year: 2011
  end-page: 367
  article-title: Catalytic activity of the caspase‐8‐FLIP(L) complex inhibits RIPK3‐dependent necrosis
  publication-title: Nature
– volume: 30
  start-page: 488
  year: 2012
  end-page: 496
  article-title: Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease
  publication-title: J Clin Oncol
– volume: 30
  start-page: 689
  year: 2008
  end-page: 700
  article-title: cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination
  publication-title: Mol Cell
– volume: 105
  start-page: 11778
  year: 2008
  end-page: 11783
  article-title: Both cIAP1 and cIAP2 regulate TNFalpha‐mediated NF‐kappaB activation
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 253
  year: 2014
  end-page: 266
  article-title: Regulation of NF‐kappaB by TNF family cytokines
  publication-title: Semin Immunol
– volume: 38
  start-page: 828
  year: 2017
  end-page: 836
  article-title: The selective NLRP3‐inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction
  publication-title: Eur Heart J
– volume: 9
  start-page: 148
  year: 2020
  article-title: The essentials of developmental apoptosis
  publication-title: F1000Res
– volume: 7
  start-page: 470
  year: 1993
  end-page: 478
  article-title: Delayed mternucleosomal DNA fragmentation in programmed cell death
  publication-title: Faseb J
– volume: 25
  start-page: 1285
  year: 2015
  end-page: 1298
  article-title: Gasdermin D is an executor of pyroptosis and required for interleukin‐1beta secretion
  publication-title: Cell Res
– volume: 575
  start-page: 693
  year: 2019
  end-page: 698
  article-title: FSP1 is a glutathione‐independent ferroptosis suppressor
  publication-title: Nature
– volume: 128
  start-page: 1834
  year: 2016
  end-page: 1844
  article-title: Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1
  publication-title: Blood
– volume: 193
  start-page: 1539
  year: 2014
  end-page: 1543
  article-title: Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF‐induced necroptosis in vivo
  publication-title: J Immunol
– volume: 575
  start-page: 688
  year: 2019
  end-page: 692
  article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
  publication-title: Nature
– volume: 18
  start-page: 134
  year: 2018
  end-page: 147
  article-title: Neutrophil extracellular traps in immunity and disease
  publication-title: Nat Rev Immunol
– volume: 111
  start-page: 7741
  year: 2014
  end-page: 7746
  article-title: Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense
  publication-title: Proc Natl Acad Sci USA
– volume: 40
  start-page: 811
  year: 2020
  end-page: 817
  article-title: The mitochondrial permeability transition pore in cell death: a promising drug binding bioarchitecture
  publication-title: Med Res Rev
– volume: 263
  start-page: 687
  year: 1994
  end-page: 689
  article-title: Nitric oxide activation of poly(ADP‐ribose) synthetase in neurotoxicity
  publication-title: Science
– volume: 10
  start-page: 417
  year: 2002
  end-page: 426
  article-title: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL‐beta
  publication-title: Mol Cell
– volume: 8
  start-page: 14166
  year: 2018
  article-title: Respiratory syncytial virus induces the classical ROS‐dependent NETosis through PAD‐4 and necroptosis pathways activation
  publication-title: Sci Rep
– volume: 39
  start-page: 443
  year: 2013
  end-page: 453
  article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism
  publication-title: Immunity
– volume: 5
  start-page: 271
  year: 1998
  end-page: 288
  article-title: Cell death attenuation by `Usurpin', a mammalian DEDcaspase homologue that precludes caspase‐8 recruitment and activation by the CD‐95 (Fas, APO‐1) receptor complex
  publication-title: Cell Death Differ
– volume: 78
  start-page: 1045
  year: 2020
  end-page: 1054
  article-title: Cell Death in the Origin and Treatment of Cancer
  publication-title: Mol Cell
– volume: 94
  start-page: 10717
  year: 1997
  end-page: 10722
  article-title: CLARP, a death effector domain‐containing protein interacts with caspase‐8 and regulates apoptosis
  publication-title: Proc Natl Acad Sci USA
– volume: 114
  start-page: 181
  year: 2003
  end-page: 190
  article-title: Induction of TNF receptor I‐mediated apoptosis via two sequential signaling complexes
  publication-title: Cell
– volume: 18
  start-page: 610
  year: 2017
  end-page: 621
  article-title: The multifaceted roles of PARP1 in DNA repair and chromatin remodelling
  publication-title: Nat Rev Mol Cell Biol
– volume: 62
  start-page: 5096
  year: 2019
  end-page: 5110
  article-title: Discovery and lead‐optimization of 4,5‐dihydropyrazoles as mono‐kinase selective, orally bioavailable and efficacious inhibitors of receptor interacting protein 1 (RIP1) kinase
  publication-title: J Med Chem
– volume: 121
  start-page: 71
  year: 1999
  end-page: 80
  article-title: Mannose induces an endonuclease responsible for DNA laddering in plant cells
  publication-title: Plant Physiol
– volume: 272
  start-page: 17255
  year: 1997
  end-page: 17257
  article-title: I‐FLICE, a novel inhibitor of tumor necrosis factor receptor‐1‐ and CD‐ 95‐induced apoptosis
  publication-title: J Biol Chem
– volume: 432
  start-page: 1032
  year: 2004
  end-page: 1036
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
– volume: 19
  start-page: 202
  year: 2013
  end-page: 208
  article-title: ABT‐199, a potent and selective BCL‐2 inhibitor, achieves antitumor activity while sparing platelets
  publication-title: Nat Med
– volume: 540
  start-page: 124
  year: 2016
  end-page: 128
  article-title: RIPK1 counteracts ZBP1‐mediated necroptosis to inhibit inflammation
  publication-title: Nature
– volume: 148
  start-page: 213
  year: 2012
  end-page: 227
  article-title: Mixed lineage kinase domain‐like protein mediates necrosis signaling downstream of RIP3 kinase
  publication-title: Cell
– volume: 137
  start-page: 1100
  year: 2009
  end-page: 1111
  article-title: Receptor interacting protein kinase‐3 determines cellular necrotic response to TNF‐alpha
  publication-title: Cell
– volume: 89
  start-page: 1195
  year: 2009
  end-page: 1220
  article-title: Intracellular versus extracellular granzyme B in immunity and disease: challenging the dogma
  publication-title: Lab Invest
– volume: 14
  start-page: 2060
  year: 2000
  end-page: 2071
  article-title: tBID, a membrane‐targeted death ligand, oligomerizes BAK to release cytochrome c
  publication-title: Genes Dev
– volume: 113
  start-page: 7858
  year: 2016
  end-page: 7863
  article-title: GsdmD p30 elicited by caspase‐11 during pyroptosis forms pores in membranes
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 1
  year: 2017
  end-page: 10
  article-title: Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap‐like chromatin
  publication-title: Sci Rep
– volume: 144
  start-page: 891
  year: 1999
  end-page: 901
  article-title: Bid‐induced conformational change of bax is responsible for mitochondrial cytochrome c release during apoptosis
  publication-title: J Cell Biol
– volume: 131
  start-page: 669
  year: 2007
  end-page: 681
  article-title: IAP antagonists induce autoubiquitination of c‐IAPs, NF‐kappaB activation, and TNFalpha‐dependent apoptosis
  publication-title: Cell
– volume: 526
  start-page: 666
  year: 2015
  end-page: 671
  article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling
  publication-title: Nature
– volume: 430
  start-page: 238
  year: 2018
  end-page: 247
  article-title: Caspase‐1 is an apical caspase leading to caspase‐3 cleavage in the AIM2 inflammasome response, independent of caspase‐8
  publication-title: J Mol Biol
– volume: 19
  start-page: 19
  year: 2002
  article-title: The PYRIN‐CARD protein ASC is an activating adaptor for caspase‐1
  publication-title: J Biol Chem
– volume: 2019
  start-page: 3403075
  year: 2019
  article-title: The Mitochondrial Permeability Transition in Mitochondrial Disorders
  publication-title: Oxid Med Cell Longev
– volume: 9
  start-page: 5341
  year: 2018
  article-title: Discovery of Mcl‐1‐specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia
  publication-title: Nat Commun
– volume: 10
  start-page: 245
  year: 2019
  article-title: RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development
  publication-title: Cell Death Dis
– volume: 9
  start-page: 267
  year: 1998
  end-page: 276
  article-title: Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally
  publication-title: Immunity
– volume: 540
  start-page: 129
  year: 2016b
  end-page: 133
  article-title: RIPK1 inhibits ZBP1‐driven necroptosis during development
  publication-title: Nature
– volume: 456
  start-page: 264
  year: 2008
  end-page: 268
  article-title: Loss of the autophagy protein Atg16L1 enhances endotoxin‐induced IL‐1beta production
  publication-title: Nature
– volume: 13
  start-page: 2514
  year: 1999
  end-page: 2526
  article-title: Cleavage of the death domain kinase RIP by caspase‐8 prompts TNF‐induced apoptosis
  publication-title: Genes Dev
– volume: 31
  start-page: 1679
  year: 2012
  end-page: 1691
  article-title: IAPs limit activation of RIP kinases by TNF receptor 1 during development
  publication-title: EMBO J
– volume: 171
  start-page: 2000
  year: 2014
  end-page: 2016
  article-title: Parthanatos: mitochondrial‐linked mechanisms and therapeutic opportunities
  publication-title: Br J Pharmacol
– volume: 60
  start-page: 1247
  year: 2017
  end-page: 1261
  article-title: Discovery of a first‐in‐class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases
  publication-title: J Med Chem
– volume: 184
  start-page: 205
  year: 2009
  end-page: 213
  article-title: Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation
  publication-title: J Cell Biol
– volume: 117
  start-page: 7326
  year: 2020
  end-page: 7337
  article-title: NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4‐mediated chromatin decondensation and nuclear envelope rupture
  publication-title: Proc Natl Acad Sci U S A
– volume: 131
  start-page: jcs215152
  year: 2018
  article-title: Autophagy‐dependent cell death ‐ where, how and why a cell eats itself to death
  publication-title: J Cell Sci
– volume: 292
  start-page: 727
  year: 2001
  end-page: 730
  article-title: Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death
  publication-title: Science
– volume: 7
  start-page: 683
  year: 2001
  end-page: 694
  article-title: PUMA, a novel proapoptotic gene, is induced by p53
  publication-title: Mol Cell
– volume: 20
  start-page: 511
  year: 2014
  end-page: 517
  article-title: Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines
  publication-title: Nat Med
– volume: 19
  start-page: 349
  year: 2018
  end-page: 364
  article-title: Mechanism and medical implications of mammalian autophagy
  publication-title: Nat Rev Mol Cell Biol
– volume: 67
  start-page: 11493
  year: 2007
  end-page: 11498
  article-title: A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor‐alpha signaling
  publication-title: Cancer Res
– volume: 85
  start-page: 817
  year: 1996
  end-page: 827
  article-title: FLICE, a novel FADD‐Homologous ICE/CED‐3–like protease, is recruited to the CD95 (Fas/APO‐1) death‐inducing signaling complex
  publication-title: Cell
– volume: 162
  start-page: 441
  year: 2015
  end-page: 451
  article-title: Elucidating Compound Mechanism of Action by Network Perturbation Analysis
  publication-title: Cell
– volume: 8
  start-page: 339ra369
  year: 2016
  article-title: The caspase‐8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia
  publication-title: Sci Transl Med
– volume: 145
  start-page: 1347
  year: 2013
  end-page: 1357
  article-title: Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection
  publication-title: Gastroenterology
– volume: 26
  start-page: 605
  year: 2019
  end-page: 616
  article-title: Autophagy‐dependent cell death
  publication-title: Cell Death Differ
– volume: 577
  start-page: 109
  year: 2020
  end-page: 114
  article-title: A dominant autoinflammatory disease caused by non‐cleavable variants of RIPK1
  publication-title: Nature
– volume: 191
  start-page: 677
  year: 2010
  end-page: 691
  article-title: Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps
  publication-title: J Cell Biol
– volume: 30
  start-page: 189
  year: 2020
  end-page: 200
  article-title: RIPK1 kinase‐dependent death: a symphony of phosphorylation events
  publication-title: Trends Cell Biol
– volume: 577
  start-page: 103
  year: 2020
  end-page: 108
  article-title: Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease
  publication-title: Nature
– volume: 24
  start-page: 1288
  year: 2017
  end-page: 1302
  article-title: Signalome‐wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death
  publication-title: Cell Death Differ
– volume: 94
  start-page: 11333
  year: 1997
  end-page: 11338
  article-title: MRIT, a novel death‐effector domain‐containing protein, interacts with caspases and BclXL and initiates cell death [In Process Citation]
  publication-title: Proc Natl Acad Sci USA
– volume: 48
  start-page: 584
  year: 2018
  end-page: 592
  article-title: The Gasdermin‐D pore acts as a conduit for IL‐1beta secretion in mice
  publication-title: Eur J Immunol
– volume: 35
  start-page: 1766
  year: 2016
  end-page: 1778
  article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
  publication-title: EMBO J
– volume: 10
  start-page: 1689
  year: 2019
  article-title: Gasdermin pores permeabilize mitochondria to augment caspase‐3 activation during apoptosis and inflammasome activation
  publication-title: Nat Commun
– volume: 1
  start-page: 319
  year: 1998
  end-page: 325
  article-title: Autoproteolytic activation of pro‐caspases by oligomerization
  publication-title: Mol Cell
– volume: 11
  start-page: 460
  year: 2012
  end-page: 467
  article-title: Pick your poison: the Ripoptosome, a cell death platform regulating apoptosis and necroptosis
  publication-title: Cell Cycle
– volume: 61
  start-page: 834
  year: 2016
  end-page: 849
  article-title: Co‐operative and hierarchical binding of c‐FLIP and caspase‐8: a unified model defines how c‐FLIP isoforms differentially control cell fate
  publication-title: Mol Cell
– volume: 28
  start-page: 218
  year: 2017
  end-page: 229
  article-title: Ferroptosis, but Not necroptosis, is important in nephrotoxic folic acid‐induced AKI
  publication-title: J Am Soc Nephrol
– volume: 20
  start-page: 1149
  year: 2013
  end-page: 1160
  article-title: AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC
  publication-title: Cell Death Differ
– volume: 433
  start-page: 447
  year: 2011
  end-page: 457
  article-title: FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity
  publication-title: Biochem J
– volume: 283
  start-page: 24295
  year: 2008
  end-page: 24299
  article-title: c‐IAP1 and c‐IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)‐induced NF‐kappaB activation
  publication-title: J Biol Chem
– volume: 52
  start-page: 994
  year: 2020
  end-page: 1006
  article-title: Caspase‐8‐Dependent Inflammatory Responses Are Controlled by Its Adaptor, FADD, and Necroptosis
  publication-title: Immunity
– volume: 356
  start-page: 768
  year: 1992
  end-page: 774
  article-title: A Novel Heterodimeric Cysteine Protease Is Required for Interleukin‐1‐Beta Processing in Monocytes
  publication-title: Nature
– volume: 1
  start-page: 112
  year: 2005
  end-page: 119
  article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury
  publication-title: Nat Chem Biol
– volume: 112
  start-page: 2817
  year: 2015
  end-page: 2822
  article-title: SK3 channel and mitochondrial ROS mediate NADPH oxidase‐independent NETosis induced by calcium influx
  publication-title: Proc Natl Acad Sci USA
– volume: 72
  start-page: 885
  year: 2020
  end-page: 895
  article-title: Randomized placebo‐controlled trial of emricasan for non‐alcoholic steatohepatitis‐related cirrhosis with severe portal hypertension
  publication-title: J Hepatol
– volume: 8
  start-page: 14128
  year: 2017
  article-title: Cleavage of DFNA5 by caspase‐3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death
  publication-title: Nat Commun
– volume: 1147
  start-page: 233
  year: 2008
  end-page: 241
  article-title: Mitochondrial and nuclear cross talk in cell death: parthanatos
  publication-title: Ann N Y Acad Sci
– volume: 575
  start-page: 679
  year: 2019b
  end-page: 682
  article-title: Activity of caspase‐8 determines plasticity between cell death pathways
  publication-title: Nature
– volume: 192
  start-page: 1835
  year: 2014
  end-page: 1846
  article-title: FADD and caspase‐8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes
  publication-title: J Immunol
– volume: 24
  start-page: e504
  issue: 507–514
  year: 2017
  article-title: Pyroptosis and Apoptosis Pathways Engage in Bidirectional Crosstalk in Monocytes and Macrophages
  publication-title: Cell chemical biology
– volume: 173
  start-page: 1217
  year: 2018
  end-page: 1230 e1217
  article-title: Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK
  publication-title: Cell
– volume: 20
  start-page: 19
  year: 2019
  end-page: 33
  article-title: Necroptosis and RIPK1‐mediated neuroinflammation in CNS diseases
  publication-title: Nat Rev Neurosci
– volume: 6
  start-page: 751
  year: 1997
  end-page: 763
  article-title: Casper is a FADD‐ and caspase‐related inducer of apoptosis
  publication-title: Immunity
– ident: e_1_2_4_57_1
  doi: 10.1038/emboj.2010.300
– ident: e_1_2_4_149_1
  doi: 10.1126/science.aam7344
– ident: e_1_2_4_48_1
  doi: 10.1016/j.cell.2014.04.018
– ident: e_1_2_4_251_1
  doi: 10.1016/j.freeradbiomed.2018.09.008
– ident: e_1_2_4_123_1
  doi: 10.1038/nnano.2016.164
– ident: e_1_2_4_263_1
  doi: 10.1038/356768a0
– ident: e_1_2_4_10_1
  doi: 10.1074/jbc.C500089200
– ident: e_1_2_4_312_1
  doi: 10.1016/j.redox.2017.11.001
– ident: e_1_2_4_217_1
  doi: 10.1016/j.redox.2019.101239
– ident: e_1_2_4_128_1
  doi: 10.1080/15548627.2017.1343770
– ident: e_1_2_4_298_1
  doi: 10.1016/j.cell.2013.12.010
– ident: e_1_2_4_313_1
  doi: 10.1016/S0092-8674(00)80501-2
– ident: e_1_2_4_152_1
  doi: 10.1073/pnas.0711122105
– ident: e_1_2_4_120_1
  doi: 10.1002/path.1711050103
– ident: e_1_2_4_169_1
  doi: 10.1016/S0092-8674(03)00521-X
– ident: e_1_2_4_93_1
  doi: 10.1038/cr.2015.139
– ident: e_1_2_4_9_1
  doi: 10.1111/j.1600-6143.2006.01595.x
– ident: e_1_2_4_229_1
  doi: 10.1073/pnas.0505294102
– ident: e_1_2_4_106_1
  doi: 10.2147/CMAR.S200524
– ident: e_1_2_4_212_1
  doi: 10.1016/j.cell.2012.07.007
– ident: e_1_2_4_78_1
  doi: 10.1073/pnas.1217823110
– volume: 24
  start-page: e504
  issue: 507
  year: 2017
  ident: e_1_2_4_257_1
  article-title: Pyroptosis and Apoptosis Pathways Engage in Bidirectional Crosstalk in Monocytes and Macrophages
  publication-title: Cell chemical biology
– ident: e_1_2_4_131_1
  doi: 10.1038/s41586-019-1828-5
– ident: e_1_2_4_95_1
  doi: 10.1002/eji.201747404
– ident: e_1_2_4_86_1
  doi: 10.1038/ng1954
– ident: e_1_2_4_163_1
  doi: 10.1084/jem.20170558
– ident: e_1_2_4_191_1
  doi: 10.1038/s41586-019-1548-x
– ident: e_1_2_4_306_1
  doi: 10.1038/s41583-018-0093-1
– ident: e_1_2_4_25_1
  doi: 10.1158/2159-8290.CD-18-0387
– ident: e_1_2_4_195_1
  doi: 10.1038/nature03579
– ident: e_1_2_4_69_1
  doi: 10.1083/jcb.124.4.619
– ident: e_1_2_4_171_1
  doi: 10.3390/cells9020406
– ident: e_1_2_4_189_1
  doi: 10.1146/annurev-biochem-060815-014830
– ident: e_1_2_4_175_1
  doi: 10.1158/0008-5472.CAN-12-2753
– ident: e_1_2_4_53_1
  doi: 10.1016/j.celrep.2014.04.026
– ident: e_1_2_4_34_1
  doi: 10.1038/35070009
– ident: e_1_2_4_265_1
  doi: 10.1158/0008-5472.CAN-07-5836
– ident: e_1_2_4_300_1
  doi: 10.1016/S1097-2765(00)80032-5
– ident: e_1_2_4_222_1
  doi: 10.1038/nature07383
– ident: e_1_2_4_181_1
  doi: 10.1016/S0092-8674(00)81266-0
– ident: e_1_2_4_204_1
  doi: 10.1016/j.ccr.2007.08.029
– ident: e_1_2_4_168_1
  doi: 10.1016/j.celrep.2014.06.044
– ident: e_1_2_4_283_1
  doi: 10.1038/nri3839
– ident: e_1_2_4_84_1
  doi: 10.4049/jimmunol.1302839
– ident: e_1_2_4_147_1
  doi: 10.1073/pnas.1319661110
– ident: e_1_2_4_141_1
  doi: 10.1038/nature20558
– ident: e_1_2_4_241_1
  doi: 10.1155/2019/3403075
– ident: e_1_2_4_68_1
  doi: 10.1038/ncb3064
– ident: e_1_2_4_27_1
  doi: 10.1016/j.chom.2018.09.007
– ident: e_1_2_4_43_1
  doi: 10.1038/s41418-018-0252-y
– ident: e_1_2_4_194_1
  doi: 10.1038/nature09852
– ident: e_1_2_4_87_1
  doi: 10.3389/fphar.2020.00239
– ident: e_1_2_4_218_1
  doi: 10.1038/s41467-019-09397-2
– ident: e_1_2_4_111_1
  doi: 10.4049/jimmunol.181.9.6427
– ident: e_1_2_4_245_1
  doi: 10.1038/nm.3048
– ident: e_1_2_4_36_1
  doi: 10.1073/pnas.1613305114
– ident: e_1_2_4_125_1
  doi: 10.1038/nature19830
– ident: e_1_2_4_15_1
  doi: 10.1016/j.molcel.2008.05.014
– ident: e_1_2_4_182_1
  doi: 10.1074/jbc.273.5.2926
– ident: e_1_2_4_102_1
  doi: 10.1038/40657
– ident: e_1_2_4_232_1
  doi: 10.1038/35070019
– ident: e_1_2_4_124_1
  doi: 10.1074/jbc.M111.239921
– ident: e_1_2_4_279_1
  doi: 10.1016/j.immuni.2012.01.012
– ident: e_1_2_4_297_1
  doi: 10.1073/pnas.1603244113
– ident: e_1_2_4_173_1
  doi: 10.1038/emboj.2012.18
– ident: e_1_2_4_268_1
  doi: 10.1016/j.immuni.2020.04.010
– ident: e_1_2_4_192_1
  doi: 10.1038/s41586-019-1752-8
– volume: 11
  year: 2020
  ident: e_1_2_4_138_1
  article-title: Ferroptosis: past, present and future
  publication-title: Cell Death Dis
– ident: e_1_2_4_238_1
  doi: 10.1111/j.1365-2036.2010.04264.x
– ident: e_1_2_4_301_1
  doi: 10.1186/s40779-015-0039-0
– ident: e_1_2_4_133_1
  doi: 10.1073/pnas.1407001111
– ident: e_1_2_4_188_1
  doi: 10.1038/cdd.2016.46
– ident: e_1_2_4_81_1
  doi: 10.1016/j.devcel.2016.04.018
– ident: e_1_2_4_210_1
  doi: 10.4049/jimmunol.1600035
– ident: e_1_2_4_85_1
  doi: 10.1016/j.molcel.2009.10.013
– ident: e_1_2_4_295_1
  doi: 10.1038/ni.1714
– ident: e_1_2_4_198_1
  doi: 10.1016/j.bbamcr.2013.06.026
– ident: e_1_2_4_200_1
  doi: 10.1083/jcb.201006052
– ident: e_1_2_4_164_1
  doi: 10.4049/jimmunol.1202756
– ident: e_1_2_4_239_1
  doi: 10.1007/s10120-016-0610-8
– ident: e_1_2_4_227_1
  doi: 10.15252/embj.201694696
– volume: 52
  start-page: e976
  issue: 978
  year: 2020
  ident: e_1_2_4_231_1
  article-title: FADD and Caspase‐8 Regulate Gut Homeostasis and Inflammation by Controlling MLKL‐ and GSDMD‐Mediated Death of Intestinal Epithelial Cells
  publication-title: Immunity
– ident: e_1_2_4_114_1
  doi: 10.1016/j.celrep.2018.02.067
– volume: 2
  start-page: 665
  year: 2019
  ident: e_1_2_4_180_1
  article-title: PARP inhibitors: clinical development, emerging differences, and the current therapeutic issues
  publication-title: Cancer Drug Resist
– ident: e_1_2_4_103_1
  doi: 10.1016/j.tcb.2016.04.006
– ident: e_1_2_4_24_1
  doi: 10.1038/nature07416
– ident: e_1_2_4_137_1
  doi: 10.1016/S0092-8674(00)81590-1
– ident: e_1_2_4_219_1
  doi: 10.1038/ncomms14128
– ident: e_1_2_4_310_1
  doi: 10.1038/s41419-019-1490-8
– ident: e_1_2_4_26_1
  doi: 10.1038/ncb2883
– ident: e_1_2_4_146_1
  doi: 10.1038/nature18629
– ident: e_1_2_4_177_1
  doi: 10.1101/cshperspect.a036376
– ident: e_1_2_4_253_1
  doi: 10.1073/pnas.88.19.8661
– ident: e_1_2_4_162_1
  doi: 10.1182/blood.2019004116
– ident: e_1_2_4_221_1
  doi: 10.1016/j.jmb.2017.10.028
– ident: e_1_2_4_184_1
  doi: 10.1016/S1097-2765(01)00214-3
– ident: e_1_2_4_233_1
  doi: 10.1146/annurev.immunol.23.021704.115653
– ident: e_1_2_4_201_1
  doi: 10.1038/sj.cdd.4402289
– ident: e_1_2_4_208_1
  doi: 10.1042/BJ20101738
– ident: e_1_2_4_269_1
  doi: 10.1074/jbc.M115.687731
– ident: e_1_2_4_148_1
  doi: 10.1016/j.cell.2016.02.026
– ident: e_1_2_4_237_1
  doi: 10.1111/apt.15030
– ident: e_1_2_4_65_1
  doi: 10.1021/jm300060k
– ident: e_1_2_4_99_1
  doi: 10.1074/jbc.272.28.17255
– ident: e_1_2_4_302_1
  doi: 10.1182/blood-2013-04-457671
– ident: e_1_2_4_262_1
  doi: 10.1038/386517a0
– ident: e_1_2_4_105_1
  doi: 10.1126/scisignal.aax8295
– ident: e_1_2_4_14_1
  doi: 10.1038/s41586-019-1705-2
– ident: e_1_2_4_90_1
  doi: 10.1021/acs.jmedchem.9b00318
– ident: e_1_2_4_290_1
  doi: 10.1101/gad.14.16.2060
– ident: e_1_2_4_154_1
  doi: 10.1016/j.molcel.2014.10.021
– volume: 11
  start-page: 145
  year: 2015
  ident: e_1_2_4_153_1
  article-title: Loss of Atg12, but not Atg5, in pro‐opiomelanocortin neurons exacerbates diet‐induced obesity
  publication-title: Autophagy
– ident: e_1_2_4_151_1
  doi: 10.1158/0008-5472.CAN-08-2655
– ident: e_1_2_4_202_1
  doi: 10.1038/s41418-019-0347-0
– ident: e_1_2_4_193_1
  doi: 10.1038/s41586-020-1951-3
– ident: e_1_2_4_203_1
  doi: 10.1038/s41598-018-26775-w
– ident: e_1_2_4_275_1
  doi: 10.1038/s41418-018-0106-7
– ident: e_1_2_4_41_1
  doi: 10.1038/nchembio711
– ident: e_1_2_4_235_1
  doi: 10.1038/nature13683
– volume: 38
  start-page: 828
  year: 2017
  ident: e_1_2_4_97_1
  article-title: The selective NLRP3‐inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction
  publication-title: Eur Heart J
– ident: e_1_2_4_79_1
  doi: 10.1074/jbc.272.32.19641
– ident: e_1_2_4_160_1
  doi: 10.1681/ASN.2015121376
– ident: e_1_2_4_278_1
  doi: 10.1016/j.cell.2007.10.037
– ident: e_1_2_4_2_1
  doi: 10.1073/pnas.1607769113
– ident: e_1_2_4_266_1
  doi: 10.1038/s41467-019-09753-2
– ident: e_1_2_4_136_1
  doi: 10.1016/j.bbabio.2009.06.009
– ident: e_1_2_4_272_1
  doi: 10.1016/j.cell.2007.10.030
– ident: e_1_2_4_80_1
  doi: 10.1182/blood-2016-03-704908
– ident: e_1_2_4_116_1
  doi: 10.1038/nature15541
– ident: e_1_2_4_39_1
  doi: 10.1038/nrm3722
– ident: e_1_2_4_44_1
  doi: 10.1083/jcb.144.5.891
– ident: e_1_2_4_77_1
  doi: 10.1038/sj.cdd.4401723
– ident: e_1_2_4_83_1
  doi: 10.1126/science.275.5297.206
– ident: e_1_2_4_150_1
  doi: 10.1038/cdd.2017.46
– ident: e_1_2_4_143_1
  doi: 10.1016/S1097-2765(00)00136-2
– ident: e_1_2_4_158_1
  doi: 10.1016/S1097-2765(02)00599-3
– ident: e_1_2_4_4_1
  doi: 10.1196/annals.1427.014
– ident: e_1_2_4_63_1
  doi: 10.1074/jbc.M111.222919
– ident: e_1_2_4_259_1
  doi: 10.1038/s41589-019-0278-6
– ident: e_1_2_4_31_1
  doi: 10.1038/nm.4229
– ident: e_1_2_4_220_1
  doi: 10.1038/cdd.2013.37
– ident: e_1_2_4_50_1
  doi: 10.1016/j.cell.2012.03.042
– ident: e_1_2_4_59_1
  doi: 10.1038/34112
– ident: e_1_2_4_244_1
  doi: 10.1126/sciimmunol.aar6689
– ident: e_1_2_4_223_1
  doi: 10.1038/34214
– ident: e_1_2_4_199_1
  doi: 10.1038/nri.2017.105
– ident: e_1_2_4_42_1
  doi: 10.1016/j.tcb.2019.12.009
– ident: e_1_2_4_260_1
  doi: 10.1073/pnas.1909546117
– ident: e_1_2_4_274_1
  doi: 10.1016/S1074-7613(00)80609-3
– ident: e_1_2_4_112_1
  doi: 10.1038/nature09857
– ident: e_1_2_4_70_1
  doi: 10.1038/s41586-019-1770-6
– ident: e_1_2_4_142_1
  doi: 10.1101/gad.13.19.2514
– ident: e_1_2_4_197_1
  doi: 10.1073/pnas.1822157116
– ident: e_1_2_4_94_1
  doi: 10.1161/ATVBAHA.117.309575
– ident: e_1_2_4_230_1
  doi: 10.1073/pnas.1708247114
– ident: e_1_2_4_236_1
  doi: 10.1038/nature15514
– ident: e_1_2_4_19_1
  doi: 10.1172/JCI39987
– ident: e_1_2_4_289_1
  doi: 10.3389/fcell.2020.00365
– ident: e_1_2_4_174_1
  doi: 10.1007/s00018-017-2547-4
– ident: e_1_2_4_5_1
  doi: 10.1038/cdd.2017.84
– ident: e_1_2_4_7_1
  doi: 10.1038/nature03434
– ident: e_1_2_4_28_1
  doi: 10.1111/imr.12908
– ident: e_1_2_4_30_1
  doi: 10.1038/cr.2013.171
– ident: e_1_2_4_254_1
  doi: 10.1021/ja074725f
– ident: e_1_2_4_51_1
  doi: 10.1146/annurev-cancerbio-030518-055844
– ident: e_1_2_4_144_1
  doi: 10.1038/ki.2011.450
– ident: e_1_2_4_47_1
  doi: 10.1038/s41580-018-0003-4
– ident: e_1_2_4_73_1
  doi: 10.1016/j.cell.2019.05.026
– ident: e_1_2_4_119_1
  doi: 10.3390/ijms20133328
– ident: e_1_2_4_12_1
  doi: 10.1016/j.chembiol.2020.03.016
– ident: e_1_2_4_32_1
  doi: 10.1016/0092-8674(95)90071-3
– ident: e_1_2_4_88_1
  doi: 10.1073/pnas.94.21.11333
– ident: e_1_2_4_74_1
  doi: 10.1038/s41418-017-0012-4
– ident: e_1_2_4_64_1
  doi: 10.4161/cc.11.3.19060
– ident: e_1_2_4_285_1
  doi: 10.1126/science.aad6872
– ident: e_1_2_4_156_1
  doi: 10.1016/j.tips.2020.01.002
– ident: e_1_2_4_115_1
  doi: 10.3389/fimmu.2014.00461
– ident: e_1_2_4_82_1
  doi: 10.1002/cpt.1615
– ident: e_1_2_4_132_1
  doi: 10.1083/jcb.200903124
– ident: e_1_2_4_246_1
  doi: 10.1074/jbc.272.30.18542
– ident: e_1_2_4_271_1
  doi: 10.1074/jbc.M109.040139
– ident: e_1_2_4_16_1
  doi: 10.1242/jcs.215152
– ident: e_1_2_4_288_1
  doi: 10.1002/JLB.3MA1219-398R
– ident: e_1_2_4_20_1
  doi: 10.4161/cc.23599
– ident: e_1_2_4_3_1
  doi: 10.1002/eji.201545615
– ident: e_1_2_4_37_1
  doi: 10.1053/j.gastro.2013.08.035
– ident: e_1_2_4_130_1
  doi: 10.1016/j.it.2017.11.002
– ident: e_1_2_4_228_1
  doi: 10.1038/nm.3547
– ident: e_1_2_4_55_1
  doi: 10.1016/S0092-8674(00)00008-8
– ident: e_1_2_4_52_1
  doi: 10.1038/s41586-019-1707-0
– ident: e_1_2_4_40_1
  doi: 10.1038/cdd.2017.80
– ident: e_1_2_4_207_1
  doi: 10.4049/jimmunol.1400590
– ident: e_1_2_4_170_1
  doi: 10.1038/s41573-020-0071-y
– ident: e_1_2_4_286_1
  doi: 10.1038/nature22393
– ident: e_1_2_4_145_1
  doi: 10.1073/pnas.1305538110
– ident: e_1_2_4_172_1
  doi: 10.3390/v12080901
– ident: e_1_2_4_270_1
  doi: 10.5414/CPP41441
– ident: e_1_2_4_277_1
  doi: 10.1016/S0092-8674(00)00009-X
– ident: e_1_2_4_167_1
  doi: 10.1093/emboj/16.10.2794
– ident: e_1_2_4_56_1
  doi: 10.1126/science.1207862
– ident: e_1_2_4_303_1
  doi: 10.1002/eji.201747053
– ident: e_1_2_4_240_1
  doi: 10.1016/S1074-7613(00)80450-1
– ident: e_1_2_4_307_1
  doi: 10.1042/EBC20170021
– ident: e_1_2_4_178_1
  doi: 10.1016/j.immuni.2013.06.018
– ident: e_1_2_4_284_1
  doi: 10.12688/f1000research.21571.1
– ident: e_1_2_4_8_1
  doi: 10.1038/cdd.2013.45
– ident: e_1_2_4_250_1
  doi: 10.1083/jcb.201611168
– ident: e_1_2_4_293_1
  doi: 10.1038/nature10273
– ident: e_1_2_4_157_1
  doi: 10.1158/1078-0432.CCR-15-0685
– ident: e_1_2_4_18_1
  doi: 10.1016/S0092-8674(00)81265-9
– ident: e_1_2_4_118_1
  doi: 10.1016/j.cell.2018.04.036
– ident: e_1_2_4_249_1
  doi: 10.1074/jbc.273.42.27084
– ident: e_1_2_4_22_1
  doi: 10.1126/scitranslmed.aad3099
– ident: e_1_2_4_179_1
  doi: 10.1038/nature13044
– ident: e_1_2_4_49_1
  doi: 10.1038/nature18590
– ident: e_1_2_4_117_1
  doi: 10.1038/nature10558
– ident: e_1_2_4_243_1
  doi: 10.1155/2019/6175804
– volume: 8
  year: 2018
  ident: e_1_2_4_134_1
  article-title: ASC‐ and caspase‐8‐dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages
  publication-title: Sci Rep
– ident: e_1_2_4_206_1
  doi: 10.1371/journal.ppat.1005910
– ident: e_1_2_4_211_1
  doi: 10.1038/sj.cdd.4400370
– ident: e_1_2_4_276_1
  doi: 10.1038/335440a0
– ident: e_1_2_4_76_1
  doi: 10.1038/386619a0
– ident: e_1_2_4_45_1
  doi: 10.1038/s41598-017-15106-0
– ident: e_1_2_4_209_1
  doi: 10.1016/j.chom.2017.12.017
– ident: e_1_2_4_159_1
  doi: 10.1073/pnas.1716578115
– ident: e_1_2_4_264_1
  doi: 10.1038/s41467-018-07551-w
– ident: e_1_2_4_17_1
  doi: 10.1038/labinvest.2009.91
– ident: e_1_2_4_183_1
  doi: 10.1038/nature03317
– ident: e_1_2_4_226_1
  doi: 10.1073/pnas.1809548115
– ident: e_1_2_4_308_1
  doi: 10.1096/fasebj.7.5.8462789
– ident: e_1_2_4_129_1
  doi: 10.1007/s12035-012-8304-7
– ident: e_1_2_4_58_1
  doi: 10.1016/j.celrep.2020.03.032
– ident: e_1_2_4_71_1
  doi: 10.1038/nrd3627
– ident: e_1_2_4_60_1
  doi: 10.1016/j.immuni.2017.11.013
– ident: e_1_2_4_187_1
  doi: 10.1126/science.1249361
– ident: e_1_2_4_108_1
  doi: 10.1038/nature08229
– ident: e_1_2_4_234_1
  doi: 10.1016/j.tibs.2016.10.004
– ident: e_1_2_4_267_1
  doi: 10.1126/science.6093263
– ident: e_1_2_4_282_1
  doi: 10.15252/emmm.201810248
– ident: e_1_2_4_225_1
  doi: 10.1038/s41467-020-16887-1
– ident: e_1_2_4_216_1
  doi: 10.1200/JCO.2011.34.7898
– ident: e_1_2_4_261_1
  doi: 10.1016/S1074-7613(00)80213-7
– ident: e_1_2_4_296_1
  doi: 10.1016/j.cell.2015.05.056
– ident: e_1_2_4_38_1
  doi: 10.1038/nrc2615
– ident: e_1_2_4_62_1
  doi: 10.1111/bph.12416
– ident: e_1_2_4_11_1
  doi: 10.3390/cancers12010164
– ident: e_1_2_4_66_1
  doi: 10.1517/13543770903567077
– ident: e_1_2_4_155_1
  doi: 10.1016/j.immuni.2018.06.011
– ident: e_1_2_4_309_1
  doi: 10.1126/science.8080500
– ident: e_1_2_4_176_1
  doi: 10.1038/s41598-018-32576-y
– ident: e_1_2_4_256_1
  doi: 10.1074/jbc.M109488200
– ident: e_1_2_4_291_1
  doi: 10.1126/science.1059108
– ident: e_1_2_4_6_1
  doi: 10.1093/jnci/89.23.1789
– ident: e_1_2_4_242_1
  doi: 10.1038/s41580-018-0089-8
– ident: e_1_2_4_107_1
  doi: 10.1038/s41586-020-2129-8
– ident: e_1_2_4_46_1
  doi: 10.1002/eji.201545605
– ident: e_1_2_4_252_1
  doi: 10.1016/j.molcel.2020.05.014
– ident: e_1_2_4_224_1
  doi: 10.1038/s41590-017-0042-6
– ident: e_1_2_4_135_1
  doi: 10.1073/pnas.0438011100
– ident: e_1_2_4_248_1
  doi: 10.1104/pp.121.1.71
– ident: e_1_2_4_258_1
  doi: 10.1038/s41586-019-1830-y
– ident: e_1_2_4_13_1
  doi: 10.4049/jimmunol.1400499
– ident: e_1_2_4_100_1
  doi: 10.1016/j.molcel.2016.02.023
– ident: e_1_2_4_113_1
  doi: 10.1038/cdd.2017.186
– ident: e_1_2_4_101_1
  doi: 10.1073/pnas.94.20.10717
– ident: e_1_2_4_311_1
  doi: 10.1016/j.celrep.2016.06.103
– ident: e_1_2_4_292_1
  doi: 10.1002/prp2.365
– ident: e_1_2_4_299_1
  doi: 10.1016/j.chembiol.2008.02.010
– ident: e_1_2_4_214_1
  doi: 10.1038/nrm.2017.53
– ident: e_1_2_4_89_1
  doi: 10.1021/acs.jmedchem.6b01751
– ident: e_1_2_4_205_1
  doi: 10.1084/jem.20170347
– ident: e_1_2_4_122_1
  doi: 10.1046/j.1471-4159.2003.02299.x
– ident: e_1_2_4_104_1
  doi: 10.1038/cddis.2016.437
– ident: e_1_2_4_196_1
  doi: 10.1126/science.aau2818
– ident: e_1_2_4_255_1
  doi: 10.1016/j.cell.2011.11.031
– ident: e_1_2_4_67_1
  doi: 10.1083/jcb.201002060
– ident: e_1_2_4_91_1
  doi: 10.1016/j.smim.2014.05.004
– ident: e_1_2_4_92_1
  doi: 10.1016/j.cell.2009.05.021
– ident: e_1_2_4_126_1
  doi: 10.1073/pnas.1708194114
– ident: e_1_2_4_72_1
  doi: 10.1158/0008-5472.CAN-07-5173
– ident: e_1_2_4_21_1
  doi: 10.1126/science.1092385
– ident: e_1_2_4_287_1
  doi: 10.1083/jcb.200806072
– ident: e_1_2_4_35_1
  doi: 10.1038/s41589-019-0277-7
– ident: e_1_2_4_213_1
  doi: 10.1002/hep.24747
– ident: e_1_2_4_190_1
  doi: 10.1038/nature20559
– ident: e_1_2_4_305_1
  doi: 10.1002/jnr.20289
– ident: e_1_2_4_161_1
  doi: 10.1038/s41419-018-0394-3
– ident: e_1_2_4_273_1
  doi: 10.1074/jbc.C800128200
– ident: e_1_2_4_185_1
  doi: 10.1002/med.21635
– ident: e_1_2_4_215_1
  doi: 10.1016/j.cell.2014.04.019
– ident: e_1_2_4_96_1
  doi: 10.1124/jpet.103.062034
– ident: e_1_2_4_166_1
  doi: 10.1016/0140-6736(91)92978-B
– ident: e_1_2_4_23_1
  doi: 10.1038/nature03443
– ident: e_1_2_4_186_1
  doi: 10.1101/cshperspect.a036368
– ident: e_1_2_4_54_1
  doi: 10.1073/pnas.1414055112
– ident: e_1_2_4_109_1
  doi: 10.4049/jimmunol.174.8.4942
– ident: e_1_2_4_33_1
  doi: 10.1016/j.cell.2009.05.037
– ident: e_1_2_4_61_1
  doi: 10.1038/nature03445
– ident: e_1_2_4_110_1
  doi: 10.1074/jbc.M113.462341
– ident: e_1_2_4_294_1
  doi: 10.1073/pnas.1403477111
– ident: e_1_2_4_281_1
  doi: 10.1016/j.immuni.2016.02.020
– ident: e_1_2_4_29_1
  doi: 10.1126/sciimmunol.aar6676
– ident: e_1_2_4_140_1
  doi: 10.7554/eLife.44452
– ident: e_1_2_4_75_1
  doi: 10.1016/j.jhep.2019.12.010
– ident: e_1_2_4_127_1
  doi: 10.1038/nature03029
– volume: 19
  start-page: 19
  year: 2002
  ident: e_1_2_4_247_1
  article-title: The PYRIN‐CARD protein ASC is an activating adaptor for caspase‐1
  publication-title: J Biol Chem
– ident: e_1_2_4_280_1
  doi: 10.1124/pr.54.3.375
– ident: e_1_2_4_304_1
  doi: 10.1073/pnas.0511288103
– ident: e_1_2_4_98_1
  doi: 10.1007/s40265-018-1026-z
– ident: e_1_2_4_121_1
  doi: 10.1002/hep.27597
– ident: e_1_2_4_139_1
  doi: 10.1016/S0092-8674(00)80434-1
– ident: e_1_2_4_165_1
  doi: 10.1016/0092-8674(89)90174-8
SSID ssj0005871
Score 2.689909
SecondaryResourceType review_article
Snippet Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e106700
SubjectTerms Apoptosis
Autophagy
caspase
Cell Death
Disease - etiology
EMBO07
EMBO37
Ferroptosis
Homeostasis
Humans
Membrane permeability
Mitochondrial permeability transition pore
Mortality
Necroptosis
Necrosis
Phagocytosis
Pyroptosis
Reagents
Regulators
Review
RIPK1
Signal Transduction
Signaling
Title Cell death pathways: intricate connections and disease implications
URI https://link.springer.com/article/10.15252/embj.2020106700
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2020106700
https://www.ncbi.nlm.nih.gov/pubmed/33439509
https://www.proquest.com/docview/2494075357
https://www.proquest.com/docview/2477503602
https://pubmed.ncbi.nlm.nih.gov/PMC7917554
Volume 40
WOSCitedRecordID wos000607265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAdELj_JooKyMxAWkqMnasR1u7dIVINgDomJvkT1xxKIlRc0W1H-Px3lslwqQEJdIlh-J7XE8n2c8H8AzI0vn99lxjFzKWIhMxEZyFZcalRE6sS5vySbUbKbn8_ziXZg2PsRw4EYrI_yvaYEb2_SMPRQ11H21XzzAG4coaAnB9lSkRGLw6c1s7eWhA-YKxywi1XlnqaQm9n9pYHNnuqRuXvaaHEynm4pt2Jmmt_9Hn-7ArU4vZQetIN2FK67egRstU-X5Dtyc9MRw92AyccslK0l3ZERo_MOcNy_Zol4FxiHHkHxnwnWJhpm6ZJ0NiC0uOK_fh-Pp0cfJ67jjYojRA4oktoIupeaG2xS1hzEovGpXodM2MVXKpZZoSlk5jiKXNkN0aCVWuXOSYoGm_AFs1Se12wUmUuVxkzWy0qUwSE-ZWVuh1D6h0wj2-3kosAtUTnwZy4IACw1UQcNUrIcpgudDjW9tkI4_lN3rp7bolmtTeAzqgW3GMxXB0yHbDytZT0ztTs6ojCKbr0zGETxsJWF4Geder_OqVwRqQ0aGAhTEezOnXnwOwbyVx8tepYvgRS9N68_6fR-yIEV_7Wxx9P7w7Tr56B_rPYbtMbnyBNe7PdhanZ65J3Adv68WzekIrqq5HsG1Vx-mx-9GYfn9BElWK2k
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9UwFD4hoIEXUFSYoNbEF00Wttuu63jDBQIKNz5g5G1pz7p4yWUQ7gXCf29P9-N6JWpifFnStOvWs9P1fD2n5wN4p2Vp3To7CJFLGQqRiFBLnoalwlQLFRmbNWQT6XCozs6yLwuQd2dhmvwQ_YYbzQz_v6YJThvSHWUPpQ21F-bcIbyBT4MWOdy-JJy9QfwN346GszgP5VGX32gRscpaXyX1sfNLD_Nr0wOD82HcZO88nTdt_dp0sPZfRvUEVlvTlO01uvQUFmy9Do8bssr7dVjOO264Z5DndjxmJZmPjDiN7_T9ZJeN6qknHbIMKXzGn5iYMF2XrHUDsdFP8evP4evB_ml-GLZ0DCE6TBGFRtC51ExzE6NySAZJ2hVaZSJdxVwqibqUleUoMmkSRItGYpVZKykdaMxfwGJ9WdtNYCJOHXQyWlaqFBrpKhNjKpTKFVQcwE73IQpsc5UTZca4IMxCgipITMVMTAG87--4avJ0_KHtdvdti3bGTgoHQx22TXiSBvC2r3ZiJQeKru3lDbVJye0ro0EAG40q9A_j3Jl2zvoKIJ1Tkr4B5fGer6lH330-79RBZmfVBfChU6fZa_1-DIlXo78Ottg_-fhpVnz5j_e9geXD05Pj4vho-HkLVgYU2eMj8bZhcXp9Y1_BI7ydjibXr_3s-wGHQSz_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB5V23K8tKVcKaUYiReQoiZrx3F4g7QrjrKqEJX6FtkTRyxa0qq7BfXf43GO7bYCJMRLJMtHYnscz-cZzwfwQsvSun12GCKXMhQiEaGWPA1LhakWKjI2a8gm0vFYnZxkRyuQd3dhmvgQ_YEbrQz_v6YFbs_KqqPsobCh9rv55hDe0IdBixxuXxXEJTOA1f3Po-PDhaeH8rjLH7WIWGWttZJa2bvWxvLudEPlvOk52ZtPl5VbvzuNNv5LvzZhvVVO2ZtGmu7Biq234FZDV3m5BXfyjh3uPuS5nU5ZSQokI1bjn_py9ppN6rmnHbIMyYHG35mYMV2XrDUEsckVD_YHcDw6-JK_C1tChhAdqohCI-hmaqa5iVE5LIPC6XcVWmUiXcVcKom6lJXlKDJpEkSLRmKVWSspIGjMH8KgPq3tY2AiTh14MlpWqhQa6SkTYyqUyiVUHMBeNxEFttHKiTRjWhBqoYEqaJiKxTAF8LKvcdZE6vhD2Z1ubot2zc4KB0Qduk14kgbwvM92w0omFF3b0wsqk5LhV0bDAB41otC_jHOn3Dn9K4B0SUj6AhTJezmnnnz1Eb1TB5qdXhfAq06cFp_1-z4kXoz-2tni4NPbD4vk9j_Wewa3j_ZHxeH78ccncHdIrj3eFW8HBvPzC_sU1vDHfDI7322X3y-XYy2o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+death+pathways%3A+intricate+connections+and+disease+implications&rft.jtitle=The+EMBO+journal&rft.au=Kist%2C+Matthias&rft.au=Vucic%2C+Domagoj&rft.date=2021-03-01&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=40&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembj.2020106700&rft.externalDBID=10.15252%252Fembj.2020106700&rft.externalDocID=EMBJ2020106700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon