Cell death pathways: intricate connections and disease implications
Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways—apoptosis, necroptosis, and pyroptosis—other forms of regul...
Uloženo v:
| Vydáno v: | The EMBO journal Ročník 40; číslo 5; s. e106700 - n/a |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.03.2021
Springer Nature B.V John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0261-4189, 1460-2075, 1460-2075 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways—apoptosis, necroptosis, and pyroptosis—other forms of regulated cell death including autophagy‐dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)‐mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs.
Graphical Abstract
This review provides an overview of the different forms of cell death and how they are related to each other, as well as the role of cell death regulators in several pathophysiological processes. |
|---|---|
| AbstractList | Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs.Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs. Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways—apoptosis, necroptosis, and pyroptosis—other forms of regulated cell death including autophagy‐dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)‐mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs. This review provides an overview of the different forms of cell death and how they are related to each other, as well as the role of cell death regulators in several pathophysiological processes. Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs. Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways—apoptosis, necroptosis, and pyroptosis—other forms of regulated cell death including autophagy‐dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)‐mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs. This review provides an overview of the different forms of cell death and how they are related to each other, as well as the role of cell death regulators in several pathophysiological processes. Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways—apoptosis, necroptosis, and pyroptosis—other forms of regulated cell death including autophagy‐dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)‐mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs. Graphical Abstract This review provides an overview of the different forms of cell death and how they are related to each other, as well as the role of cell death regulators in several pathophysiological processes. |
| Author | Kist, Matthias Vucic, Domagoj |
| AuthorAffiliation | 1 Department of Early Discovery Biochemistry Genentech South San Francisco USA |
| AuthorAffiliation_xml | – name: 1 Department of Early Discovery Biochemistry Genentech South San Francisco USA |
| Author_xml | – sequence: 1 givenname: Matthias surname: Kist fullname: Kist, Matthias organization: Department of Early Discovery Biochemistry, Genentech – sequence: 2 givenname: Domagoj orcidid: 0000-0003-3614-8093 surname: Vucic fullname: Vucic, Domagoj email: domagoj@gene.com organization: Department of Early Discovery Biochemistry, Genentech |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33439509$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtP3DAUhS1EVQbaPasqEptuQq_fSYUqtSP6ElU3ZW05zg14lNhDnCmaf18PA-UhlW7shb9zfO65-2Q3xICEHFI4ppJJ9g6HZnHMgAEFpQF2yIwKBSUDLXfJDJiipaBVvUf2U1oAgKw0fUn2OBe8llDPyHyOfV-0aKfLYpmPa7tO7wsfptE7O2HhYgjoJh9DKmxoi9YntAkLPyz7DbF5eEVedLZP-Pr2PiDnn09_zb-WZz-_fJt_PCudrCSUjVBCV7XlDXUVo9oJJaFzWDVgO8pVpZxtVYfciVo10jl0jXJdjaiolpzyA_Jh67tcNQO2DnNK25vl6Ac7rk203jx-Cf7SXMTfRtfZQIps8PbWYIxXK0yTGXxyuQAbMK6SYUJrCVwBy-jRE3QRV2PI42WqFrlfLnWm3jxM9DfKXb8ZUFvAjTGlETvj_HTTWg7oe0PB3CzSbBZp7heZhfBEeOf9jORkK7n2Pa7_y5vTH5--P5LTrTxlZbjA8X7if375B6Towgs |
| CitedBy_id | crossref_primary_10_1016_j_intimp_2024_112886 crossref_primary_10_1289_EHP10800 crossref_primary_10_1002_adfm_202112000 crossref_primary_10_2147_JIR_S463042 crossref_primary_10_1002_cbdv_202301898 crossref_primary_10_1016_j_bbcan_2025_189265 crossref_primary_10_1016_j_heliyon_2024_e35657 crossref_primary_10_3389_fimmu_2024_1503087 crossref_primary_10_3390_biomedicines9040376 crossref_primary_10_71051_jnlm_1595473 crossref_primary_10_1007_s12672_024_01319_z crossref_primary_10_3389_fendo_2024_1349000 crossref_primary_10_7554_eLife_93621_4 crossref_primary_10_1016_j_nantod_2025_102874 crossref_primary_10_1016_j_ijbiomac_2024_130173 crossref_primary_10_1096_fba_2024_00067 crossref_primary_10_1016_j_bcp_2025_116951 crossref_primary_10_3390_toxins15080502 crossref_primary_10_1093_ofid_ofad539 crossref_primary_10_3389_fgene_2023_1120827 crossref_primary_10_3390_cells12101409 crossref_primary_10_1038_s41419_024_07244_x crossref_primary_10_7554_eLife_93621 crossref_primary_10_1016_j_bioorg_2025_108304 crossref_primary_10_1038_s12276_023_01046_5 crossref_primary_10_1186_s10020_024_00901_z crossref_primary_10_3390_biom12070924 crossref_primary_10_1371_journal_pone_0266774 crossref_primary_10_1155_2022_7043431 crossref_primary_10_31083_j_fbl2906222 crossref_primary_10_1038_s41420_022_01272_2 crossref_primary_10_1002_mco2_70357 crossref_primary_10_1002_mco2_70116 crossref_primary_10_1038_s41420_024_02120_1 crossref_primary_10_1371_journal_pone_0317416 crossref_primary_10_1007_s00467_023_06162_y crossref_primary_10_1042_BST20220925 crossref_primary_10_1155_2021_8900122 crossref_primary_10_3389_fcimb_2025_1625928 crossref_primary_10_1007_s10495_024_02002_y crossref_primary_10_1038_s12276_021_00590_2 crossref_primary_10_1016_j_toxicon_2025_108555 crossref_primary_10_1111_febs_16346 crossref_primary_10_3390_biomedicines13092177 crossref_primary_10_1093_toxsci_kfad008 crossref_primary_10_1016_j_ctrv_2024_102773 crossref_primary_10_1089_dna_2023_0188 crossref_primary_10_1136_jitc_2022_004763 crossref_primary_10_1016_j_heliyon_2023_e18036 crossref_primary_10_1007_s10495_023_01927_0 crossref_primary_10_1038_s41435_022_00184_6 crossref_primary_10_3390_ijms252111478 crossref_primary_10_1016_j_intimp_2024_112321 crossref_primary_10_3390_ijms26010220 crossref_primary_10_2147_JIR_S304492 crossref_primary_10_1038_s42003_024_05980_6 crossref_primary_10_3390_antiox14050561 crossref_primary_10_1016_j_cbi_2023_110427 crossref_primary_10_1073_pnas_2425802122 crossref_primary_10_1016_j_ejmech_2023_116076 crossref_primary_10_3390_jdb11040043 crossref_primary_10_1007_s10495_023_01811_x crossref_primary_10_1016_j_cytogfr_2023_06_002 crossref_primary_10_3390_nu14010076 crossref_primary_10_3390_biom13050820 crossref_primary_10_1016_j_devcel_2024_06_018 crossref_primary_10_1007_s10522_025_10243_w crossref_primary_10_1002_art_42071 crossref_primary_10_1042_BCJ20210450 crossref_primary_10_1016_j_yjmcc_2022_03_010 crossref_primary_10_1016_j_heliyon_2024_e37089 crossref_primary_10_1089_jir_2024_0195 crossref_primary_10_1002_tox_23658 crossref_primary_10_1155_2022_8624318 crossref_primary_10_1097_CM9_0000000000001589 crossref_primary_10_1016_j_bbrc_2023_08_032 crossref_primary_10_3390_antiox13030298 crossref_primary_10_3390_ijms23094723 crossref_primary_10_1007_s10238_024_01491_0 crossref_primary_10_1016_j_bcp_2022_115241 crossref_primary_10_1002_biot_202300257 crossref_primary_10_1111_odi_15248 crossref_primary_10_3389_fimmu_2024_1330461 crossref_primary_10_1016_j_adcanc_2025_100139 crossref_primary_10_1002_ardp_202500010 crossref_primary_10_1016_j_apsb_2022_08_022 crossref_primary_10_3390_cells10030515 crossref_primary_10_1016_j_phymed_2024_156088 crossref_primary_10_1016_j_ccr_2022_214908 crossref_primary_10_1128_spectrum_02049_21 crossref_primary_10_1016_j_jare_2024_09_029 crossref_primary_10_1016_j_biopha_2023_115802 crossref_primary_10_1158_1541_7786_MCR_23_0290 crossref_primary_10_1002_cso2_1017 crossref_primary_10_1007_s11064_025_04452_5 crossref_primary_10_1007_s12035_022_02851_1 crossref_primary_10_1016_j_ejmcr_2025_100250 crossref_primary_10_1016_j_yexcr_2025_114688 crossref_primary_10_1038_s41418_025_01564_x crossref_primary_10_3389_fphys_2021_690423 crossref_primary_10_1016_j_jnha_2024_100408 crossref_primary_10_1016_j_jpha_2025_101356 crossref_primary_10_1002_jcp_31087 crossref_primary_10_1038_s41573_023_00749_8 crossref_primary_10_3389_fphar_2024_1443422 crossref_primary_10_1134_S0022093025020085 crossref_primary_10_1007_s10495_024_02041_5 crossref_primary_10_1016_j_tice_2025_102897 crossref_primary_10_3390_ijms231810453 crossref_primary_10_1080_15548627_2021_1995151 crossref_primary_10_1134_S1021443724609443 crossref_primary_10_1371_journal_pcbi_1010626 crossref_primary_10_3389_fpls_2022_1044896 crossref_primary_10_3390_bioengineering10040496 crossref_primary_10_3390_gastroent15020022 crossref_primary_10_1016_j_lfs_2024_122525 crossref_primary_10_1038_s41418_023_01153_w crossref_primary_10_1038_s41467_025_56711_2 crossref_primary_10_1016_j_isci_2023_107806 crossref_primary_10_1155_2021_4665632 crossref_primary_10_1007_s12664_025_01849_6 crossref_primary_10_1093_biolre_ioaf060 crossref_primary_10_3389_fnut_2025_1626020 crossref_primary_10_3390_md19080459 crossref_primary_10_1097_CM9_0000000000002096 crossref_primary_10_3389_fimmu_2025_1567994 crossref_primary_10_1038_s41598_023_33557_6 crossref_primary_10_14348_molcells_2021_0193 crossref_primary_10_3390_biom13010101 crossref_primary_10_3892_ijmm_2023_5301 crossref_primary_10_2174_1874467215666220822110855 crossref_primary_10_3390_cancers13122974 crossref_primary_10_3390_molecules27134181 crossref_primary_10_1016_j_crpvbd_2025_100260 crossref_primary_10_1016_j_biopha_2022_112893 crossref_primary_10_1007_s00204_023_03625_x crossref_primary_10_1038_s42003_024_05852_z crossref_primary_10_1186_s11658_024_00602_9 crossref_primary_10_1016_j_mam_2022_101157 crossref_primary_10_1038_s41419_023_05716_0 crossref_primary_10_3389_fphar_2025_1567552 crossref_primary_10_3389_fonc_2022_830561 crossref_primary_10_1016_j_bbrc_2024_150177 crossref_primary_10_3389_fimmu_2023_1297408 crossref_primary_10_1016_j_jtbi_2023_111562 crossref_primary_10_1002_ppap_202200095 crossref_primary_10_1016_j_csbj_2024_04_057 crossref_primary_10_1007_s10565_024_09907_z crossref_primary_10_1016_j_heliyon_2023_e17764 crossref_primary_10_1038_s41598_022_25286_z crossref_primary_10_3389_fphar_2023_1224151 crossref_primary_10_1007_s13273_021_00129_6 crossref_primary_10_3389_fphar_2025_1542204 crossref_primary_10_1093_humupd_dmad005 crossref_primary_10_1111_jnc_16131 crossref_primary_10_1016_j_molcel_2022_03_022 crossref_primary_10_3390_cells11060983 crossref_primary_10_1016_j_bbamcr_2021_119191 crossref_primary_10_3390_biomedicines12030473 crossref_primary_10_1016_j_exer_2025_110299 crossref_primary_10_1007_s40495_023_00339_7 crossref_primary_10_1016_j_heliyon_2024_e35920 crossref_primary_10_1093_brain_awad375 crossref_primary_10_1096_fj_202300600RR crossref_primary_10_1042_BCJ20210725 crossref_primary_10_1007_s12035_025_04848_y crossref_primary_10_1038_s41419_024_06652_3 crossref_primary_10_3389_fonc_2022_717926 crossref_primary_10_1515_dmpt_2024_0073 crossref_primary_10_3390_v14092049 crossref_primary_10_3389_fphar_2021_817364 crossref_primary_10_1039_D2FO02284B crossref_primary_10_3389_fgene_2022_988606 crossref_primary_10_1007_s10495_025_02081_5 crossref_primary_10_3389_fmed_2025_1608975 crossref_primary_10_3892_etm_2021_10705 crossref_primary_10_1007_s10495_022_01785_2 crossref_primary_10_1126_scitranslmed_adf8366 crossref_primary_10_1007_s10495_023_01890_w crossref_primary_10_1002_1878_0261_13582 crossref_primary_10_1016_j_phymed_2023_154777 crossref_primary_10_1016_j_fgb_2022_103730 crossref_primary_10_1073_pnas_2406715122 crossref_primary_10_1161_CIRCRESAHA_124_323508 crossref_primary_10_1016_j_biopha_2023_115419 crossref_primary_10_1016_j_cbpc_2022_109444 crossref_primary_10_3390_ijms26083600 crossref_primary_10_3390_cancers14122928 crossref_primary_10_1016_j_ecoenv_2024_117268 crossref_primary_10_1186_s12967_024_05752_0 crossref_primary_10_1111_cpr_13644 crossref_primary_10_1007_s00109_025_02525_0 crossref_primary_10_3390_antiox11112162 crossref_primary_10_3389_fimmu_2023_1198053 crossref_primary_10_3389_fmed_2021_826557 crossref_primary_10_1111_febs_17404 crossref_primary_10_1016_j_bbamcr_2022_119341 crossref_primary_10_1155_2022_8726564 crossref_primary_10_1016_j_intimp_2022_108885 crossref_primary_10_1371_journal_pone_0297043 crossref_primary_10_3389_fonc_2022_980620 crossref_primary_10_3389_fmed_2023_1084129 crossref_primary_10_1016_j_phrs_2024_107394 crossref_primary_10_1186_s43556_023_00142_2 crossref_primary_10_1016_j_biopha_2024_116238 crossref_primary_10_1038_s41418_023_01187_0 crossref_primary_10_3389_fimmu_2022_896473 crossref_primary_10_3390_biom12060828 crossref_primary_10_1002_med_21817 |
| Cites_doi | 10.1038/emboj.2010.300 10.1126/science.aam7344 10.1016/j.cell.2014.04.018 10.1016/j.freeradbiomed.2018.09.008 10.1038/nnano.2016.164 10.1038/356768a0 10.1074/jbc.C500089200 10.1016/j.redox.2017.11.001 10.1016/j.redox.2019.101239 10.1080/15548627.2017.1343770 10.1016/j.cell.2013.12.010 10.1016/S0092-8674(00)80501-2 10.1073/pnas.0711122105 10.1002/path.1711050103 10.1016/S0092-8674(03)00521-X 10.1038/cr.2015.139 10.1111/j.1600-6143.2006.01595.x 10.1073/pnas.0505294102 10.2147/CMAR.S200524 10.1016/j.cell.2012.07.007 10.1073/pnas.1217823110 10.1038/s41586-019-1828-5 10.1002/eji.201747404 10.1038/ng1954 10.1084/jem.20170558 10.1038/s41586-019-1548-x 10.1038/s41583-018-0093-1 10.1158/2159-8290.CD-18-0387 10.1038/nature03579 10.1083/jcb.124.4.619 10.3390/cells9020406 10.1146/annurev-biochem-060815-014830 10.1158/0008-5472.CAN-12-2753 10.1016/j.celrep.2014.04.026 10.1038/35070009 10.1158/0008-5472.CAN-07-5836 10.1016/S1097-2765(00)80032-5 10.1038/nature07383 10.1016/S0092-8674(00)81266-0 10.1016/j.ccr.2007.08.029 10.1016/j.celrep.2014.06.044 10.1038/nri3839 10.4049/jimmunol.1302839 10.1073/pnas.1319661110 10.1038/nature20558 10.1155/2019/3403075 10.1038/ncb3064 10.1016/j.chom.2018.09.007 10.1038/s41418-018-0252-y 10.1038/nature09852 10.3389/fphar.2020.00239 10.1038/s41467-019-09397-2 10.4049/jimmunol.181.9.6427 10.1038/nm.3048 10.1073/pnas.1613305114 10.1038/nature19830 10.1016/j.molcel.2008.05.014 10.1074/jbc.273.5.2926 10.1038/40657 10.1038/35070019 10.1074/jbc.M111.239921 10.1016/j.immuni.2012.01.012 10.1073/pnas.1603244113 10.1038/emboj.2012.18 10.1016/j.immuni.2020.04.010 10.1038/s41586-019-1752-8 10.1111/j.1365-2036.2010.04264.x 10.1186/s40779-015-0039-0 10.1073/pnas.1407001111 10.1038/cdd.2016.46 10.1016/j.devcel.2016.04.018 10.4049/jimmunol.1600035 10.1016/j.molcel.2009.10.013 10.1038/ni.1714 10.1016/j.bbamcr.2013.06.026 10.1083/jcb.201006052 10.4049/jimmunol.1202756 10.1007/s10120-016-0610-8 10.15252/embj.201694696 10.1016/j.celrep.2018.02.067 10.1016/j.tcb.2016.04.006 10.1038/nature07416 10.1016/S0092-8674(00)81590-1 10.1038/ncomms14128 10.1038/s41419-019-1490-8 10.1038/ncb2883 10.1038/nature18629 10.1101/cshperspect.a036376 10.1073/pnas.88.19.8661 10.1182/blood.2019004116 10.1016/j.jmb.2017.10.028 10.1016/S1097-2765(01)00214-3 10.1146/annurev.immunol.23.021704.115653 10.1038/sj.cdd.4402289 10.1042/BJ20101738 10.1074/jbc.M115.687731 10.1016/j.cell.2016.02.026 10.1111/apt.15030 10.1021/jm300060k 10.1074/jbc.272.28.17255 10.1182/blood-2013-04-457671 10.1038/386517a0 10.1126/scisignal.aax8295 10.1038/s41586-019-1705-2 10.1021/acs.jmedchem.9b00318 10.1101/gad.14.16.2060 10.1016/j.molcel.2014.10.021 10.1158/0008-5472.CAN-08-2655 10.1038/s41418-019-0347-0 10.1038/s41586-020-1951-3 10.1038/s41598-018-26775-w 10.1038/s41418-018-0106-7 10.1038/nchembio711 10.1038/nature13683 10.1074/jbc.272.32.19641 10.1681/ASN.2015121376 10.1016/j.cell.2007.10.037 10.1073/pnas.1607769113 10.1038/s41467-019-09753-2 10.1016/j.bbabio.2009.06.009 10.1016/j.cell.2007.10.030 10.1182/blood-2016-03-704908 10.1038/nature15541 10.1038/nrm3722 10.1083/jcb.144.5.891 10.1038/sj.cdd.4401723 10.1126/science.275.5297.206 10.1038/cdd.2017.46 10.1016/S1097-2765(00)00136-2 10.1016/S1097-2765(02)00599-3 10.1196/annals.1427.014 10.1074/jbc.M111.222919 10.1038/s41589-019-0278-6 10.1038/nm.4229 10.1038/cdd.2013.37 10.1016/j.cell.2012.03.042 10.1038/34112 10.1126/sciimmunol.aar6689 10.1038/34214 10.1038/nri.2017.105 10.1016/j.tcb.2019.12.009 10.1073/pnas.1909546117 10.1016/S1074-7613(00)80609-3 10.1038/nature09857 10.1038/s41586-019-1770-6 10.1101/gad.13.19.2514 10.1073/pnas.1822157116 10.1161/ATVBAHA.117.309575 10.1073/pnas.1708247114 10.1038/nature15514 10.1172/JCI39987 10.3389/fcell.2020.00365 10.1007/s00018-017-2547-4 10.1038/cdd.2017.84 10.1038/nature03434 10.1111/imr.12908 10.1038/cr.2013.171 10.1021/ja074725f 10.1146/annurev-cancerbio-030518-055844 10.1038/ki.2011.450 10.1038/s41580-018-0003-4 10.1016/j.cell.2019.05.026 10.3390/ijms20133328 10.1016/j.chembiol.2020.03.016 10.1016/0092-8674(95)90071-3 10.1073/pnas.94.21.11333 10.1038/s41418-017-0012-4 10.4161/cc.11.3.19060 10.1126/science.aad6872 10.1016/j.tips.2020.01.002 10.3389/fimmu.2014.00461 10.1002/cpt.1615 10.1083/jcb.200903124 10.1074/jbc.272.30.18542 10.1074/jbc.M109.040139 10.1242/jcs.215152 10.1002/JLB.3MA1219-398R 10.4161/cc.23599 10.1002/eji.201545615 10.1053/j.gastro.2013.08.035 10.1016/j.it.2017.11.002 10.1038/nm.3547 10.1016/S0092-8674(00)00008-8 10.1038/s41586-019-1707-0 10.1038/cdd.2017.80 10.4049/jimmunol.1400590 10.1038/s41573-020-0071-y 10.1038/nature22393 10.1073/pnas.1305538110 10.3390/v12080901 10.5414/CPP41441 10.1016/S0092-8674(00)00009-X 10.1093/emboj/16.10.2794 10.1126/science.1207862 10.1002/eji.201747053 10.1016/S1074-7613(00)80450-1 10.1042/EBC20170021 10.1016/j.immuni.2013.06.018 10.12688/f1000research.21571.1 10.1038/cdd.2013.45 10.1083/jcb.201611168 10.1038/nature10273 10.1158/1078-0432.CCR-15-0685 10.1016/S0092-8674(00)81265-9 10.1016/j.cell.2018.04.036 10.1074/jbc.273.42.27084 10.1126/scitranslmed.aad3099 10.1038/nature13044 10.1038/nature18590 10.1038/nature10558 10.1155/2019/6175804 10.1371/journal.ppat.1005910 10.1038/sj.cdd.4400370 10.1038/335440a0 10.1038/386619a0 10.1038/s41598-017-15106-0 10.1016/j.chom.2017.12.017 10.1073/pnas.1716578115 10.1038/s41467-018-07551-w 10.1038/labinvest.2009.91 10.1038/nature03317 10.1073/pnas.1809548115 10.1096/fasebj.7.5.8462789 10.1007/s12035-012-8304-7 10.1016/j.celrep.2020.03.032 10.1038/nrd3627 10.1016/j.immuni.2017.11.013 10.1126/science.1249361 10.1038/nature08229 10.1016/j.tibs.2016.10.004 10.1126/science.6093263 10.15252/emmm.201810248 10.1038/s41467-020-16887-1 10.1200/JCO.2011.34.7898 10.1016/S1074-7613(00)80213-7 10.1016/j.cell.2015.05.056 10.1038/nrc2615 10.1111/bph.12416 10.3390/cancers12010164 10.1517/13543770903567077 10.1016/j.immuni.2018.06.011 10.1126/science.8080500 10.1038/s41598-018-32576-y 10.1074/jbc.M109488200 10.1126/science.1059108 10.1093/jnci/89.23.1789 10.1038/s41580-018-0089-8 10.1038/s41586-020-2129-8 10.1002/eji.201545605 10.1016/j.molcel.2020.05.014 10.1038/s41590-017-0042-6 10.1073/pnas.0438011100 10.1104/pp.121.1.71 10.1038/s41586-019-1830-y 10.4049/jimmunol.1400499 10.1016/j.molcel.2016.02.023 10.1038/cdd.2017.186 10.1073/pnas.94.20.10717 10.1016/j.celrep.2016.06.103 10.1002/prp2.365 10.1016/j.chembiol.2008.02.010 10.1038/nrm.2017.53 10.1021/acs.jmedchem.6b01751 10.1084/jem.20170347 10.1046/j.1471-4159.2003.02299.x 10.1038/cddis.2016.437 10.1126/science.aau2818 10.1016/j.cell.2011.11.031 10.1083/jcb.201002060 10.1016/j.smim.2014.05.004 10.1016/j.cell.2009.05.021 10.1073/pnas.1708194114 10.1158/0008-5472.CAN-07-5173 10.1126/science.1092385 10.1083/jcb.200806072 10.1038/s41589-019-0277-7 10.1002/hep.24747 10.1038/nature20559 10.1002/jnr.20289 10.1038/s41419-018-0394-3 10.1074/jbc.C800128200 10.1002/med.21635 10.1016/j.cell.2014.04.019 10.1124/jpet.103.062034 10.1016/0140-6736(91)92978-B 10.1038/nature03443 10.1101/cshperspect.a036368 10.1073/pnas.1414055112 10.4049/jimmunol.174.8.4942 10.1016/j.cell.2009.05.037 10.1038/nature03445 10.1074/jbc.M113.462341 10.1073/pnas.1403477111 10.1016/j.immuni.2016.02.020 10.1126/sciimmunol.aar6676 10.7554/eLife.44452 10.1016/j.jhep.2019.12.010 10.1038/nature03029 10.1124/pr.54.3.375 10.1073/pnas.0511288103 10.1007/s40265-018-1026-z 10.1002/hep.27597 10.1016/S0092-8674(00)80434-1 10.1016/0092-8674(89)90174-8 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021 The Authors 2021 The Authors. 2021 EMBO |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 EMBO |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| DOI | 10.15252/embj.2020106700 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| DocumentTitleAlternate | Matthias Kist & Domagoj Vucic |
| EISSN | 1460-2075 |
| EndPage | n/a |
| ExternalDocumentID | PMC7917554 33439509 10_15252_embj_2020106700 EMBJ2020106700 |
| Genre | reviewArticle Journal Article Review |
| GroupedDBID | --- -DZ -~X 0R~ 123 1OC 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAIHA AAJSJ AAMMB AANLZ AAONW AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABZEH ACAHQ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYR AFBPY AFFNX AFGKR AFRAH AFWVQ AFZJQ AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ NAO O8X O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR YSK ZCA ZZTAW ~KM 24P AAHHS ABJNI ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE ALIPV RHF WYJ -Q- .55 3O- 4.4 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 AANHP AASGY AAYXX ABUWG ACBWZ ACKIV ACRPL ACYXJ ADNMO AEUYN AFFHD AFKRA AGQPQ AI. ASPBG AVWKF AZQEC BBNVY BHPHI BKSAR BPHCQ BVXVI C1A CAG CCPQU CITATION COF D1J DWQXO EJD FA8 FEDTE FYUFA GNUQQ GODZA GUQSH H13 HCIFZ HMCUK HVGLF H~9 LH4 LK8 LW6 M1P M2O M7P PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNI RZO UKHRP VH1 WOQ X7M XSW Y6R YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K ESTFP FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c5850-b464789a3b1c8217c4650fce8b0af13686cad6fe3c496b5ccecb6cf9ee6175313 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 234 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0261-4189 1460-2075 |
| IngestDate | Tue Sep 30 16:09:50 EDT 2025 Sat Sep 27 17:49:59 EDT 2025 Mon Oct 06 17:49:09 EDT 2025 Mon Jul 21 06:01:47 EDT 2025 Sat Nov 29 03:03:09 EST 2025 Tue Nov 18 21:29:46 EST 2025 Wed Jan 22 16:31:51 EST 2025 Sat Nov 29 01:24:57 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | pyroptosis apoptosis RIPK1 caspase necroptosis |
| Language | English |
| License | 2021 The Authors. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5850-b464789a3b1c8217c4650fce8b0af13686cad6fe3c496b5ccecb6cf9ee6175313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-3614-8093 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7917554 |
| PMID | 33439509 |
| PQID | 2494075357 |
| PQPubID | 35985 |
| PageCount | 23 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7917554 proquest_miscellaneous_2477503602 proquest_journals_2494075357 pubmed_primary_33439509 crossref_citationtrail_10_15252_embj_2020106700 crossref_primary_10_15252_embj_2020106700 wiley_primary_10_15252_embj_2020106700_EMBJ2020106700 springer_journals_10_15252_embj_2020106700 |
| PublicationCentury | 2000 |
| PublicationDate | 01 March 2021 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 01 March 2021 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
| PublicationTitle | The EMBO journal |
| PublicationTitleAbbrev | EMBO J |
| PublicationTitleAlternate | EMBO J |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
| Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
| References | 2009; 89 2011; 479 2011; 477 2005; 174 2019; 11 2019; 10 2019; 15 2013; 122 2016; 540 2020; 13 2008; 105 2020; 12 2008; 30 2020; 11 2011; 471 1997; 6 2012; 11 2016; 37 2016a; 23 2016; 35 2020; 19 1998; 273 2017; 74 2019; 20 2000; 14 2020; 297 2000; 12 1994; 263 2019; 26 1992; 356 2013; 110 2010; 190 2010; 191 2016; 46 2016; 44 2017; 61 2004; 303 2017; 60 2020; 41 2020; 40 2019a; 574 2012; 36 2016; 16 2007; 12 2012; 31 2004; 309 2016; 12 2012; 30 2016; 11 1998; 391 2004; 432 2020; 30 2015; 112 2018; 115 2009; 187 2020; 27 2019; 49 1996; 85 2005; 1 2009; 184 1998; 1 2012; 46 1998; 5 2016; 26 2016; 8 2019; 177 1998; 9 2006; 103 2016; 22 2007; 39 2011; 433 2017; 42 2013; 20 2002; 54 1997; 89 1999; 121 2014; 171 2017; 355 2017; 114 1997; 91 2013; 19 2020; 8 2019b; 575 1997; 90 2014; 5 1997; 94 2015; 290 2019; 62 2017; 37 2020; 52 2013; 12 2017; 38 2007; 131 2020; 9 2016; 113 1999; 13 2016; 354 2008; 68 2020; 135 2018; 78 2014; 8 2014; 7 2014; 56 2014; 514 2015; 162 2015; 2 2009; 1787 2011; 334 2017; 20 2007; 129 2020; 580 2017; 28 2017; 24 2010; 120 2020; 107 2016; 128 2020; 78 2014; 192 1999; 144 2014; 193 2017; 214 2017; 216 1994; 124 2005; 280 2018; 430 2013; 39 2014; 506 2020; 72 2017; 13 2009; 9 2020; 117 2008; 456 2017; 18 2019; 2019 2002; 19 1997; 272 1997; 275 2002; 10 2002; 277 2014; 26 2014; 24 2018; 49 2018; 48 2014; 20 1997; 388 2018; 9 2018; 8 2010; 20 2018; 39 2018; 3 2018; 173 2009; 10 2010; 29 2005; 102 1991; 88 1997; 386 2014; 16 2020; 578 2014; 15 2020; 577 2007; 7 1998; 94 2007; 67 2003; 41 2013; 190 1988; 335 2019; 8 2010; 31 2019; 3 2019; 2 1984; 226 2016; 165 2015; 526 2018; 23 2018; 22 1991; 337 2018; 25 2014; 156 2018; 24 2014; 157 2018; 19 2018; 18 2000; 102 2015; 62 2019; 575 2009; 460 1989; 57 2003; 100 2005; 12 2018; 14 2017; 547 2018; 362 2017; 5 1993; 7 2017; 7 2017; 8 2000; 6 2013; 288 2003; 114 2012; 55 2005; 23 2018; 131 2012; 72 2001; 292 2019; 116 2016; 85 1997; 16 2009; 284 2016; 197 2011; 286 2013; 1833 2012; 81 2015; 15 2020a; 9 2002; 297 2005; 434 2015; 11 2005; 435 2013; 145 2006; 8 2008; 15 2014; 111 2012; 148 2012; 149 2009; 137 2008; 283 1972; 26 2008; 181 2012; 150 2009; 36 2015; 25 2008; 1147 1995; 81 2001; 7 2016; 538 2016b; 540 2015; 21 2001; 3 2016; 535 2016; 61 2020b; 12 2019; 133 2014; 343 e_1_2_4_217_1 e_1_2_4_172_1 e_1_2_4_232_1 e_1_2_4_255_1 e_1_2_4_278_1 e_1_2_4_80_1 e_1_2_4_281_1 e_1_2_4_42_1 e_1_2_4_65_1 e_1_2_4_27_1 e_1_2_4_88_1 e_1_2_4_108_1 e_1_2_4_100_1 e_1_2_4_123_1 e_1_2_4_146_1 e_1_2_4_169_1 e_1_2_4_161_1 e_1_2_4_184_1 e_1_2_4_228_1 e_1_2_4_205_1 e_1_2_4_220_1 e_1_2_4_243_1 e_1_2_4_266_1 e_1_2_4_289_1 e_1_2_4_9_1 e_1_2_4_92_1 e_1_2_4_303_1 e_1_2_4_31_1 e_1_2_4_77_1 e_1_2_4_54_1 e_1_2_4_292_1 e_1_2_4_16_1 e_1_2_4_112_1 e_1_2_4_135_1 e_1_2_4_158_1 e_1_2_4_39_1 e_1_2_4_194_1 e_1_2_4_196_1 e_1_2_4_218_1 e_1_2_4_171_1 e_1_2_4_210_1 e_1_2_4_256_1 e_1_2_4_279_1 e_1_2_4_81_1 e_1_2_4_233_1 e_1_2_4_20_1 e_1_2_4_66_1 e_1_2_4_43_1 e_1_2_4_282_1 e_1_2_4_107_1 e_1_2_4_89_1 e_1_2_4_28_1 e_1_2_4_145_1 e_1_2_4_168_1 e_1_2_4_122_1 e_1_2_4_206_1 e_1_2_4_229_1 e_1_2_4_183_1 e_1_2_4_160_1 e_1_2_4_2_1 e_1_2_4_70_1 e_1_2_4_93_1 e_1_2_4_221_1 e_1_2_4_267_1 e_1_2_4_244_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_78_1 Taabazuing CY (e_1_2_4_257_1) 2017; 24 e_1_2_4_270_1 e_1_2_4_293_1 e_1_2_4_304_1 e_1_2_4_119_1 e_1_2_4_17_1 e_1_2_4_157_1 e_1_2_4_111_1 e_1_2_4_195_1 Srinivasula SM (e_1_2_4_247_1) 2002; 19 e_1_2_4_215_1 e_1_2_4_238_1 Lee BL (e_1_2_4_134_1) 2018; 8 e_1_2_4_170_1 Hout GP (e_1_2_4_97_1) 2017; 38 e_1_2_4_82_1 e_1_2_4_230_1 e_1_2_4_299_1 e_1_2_4_253_1 e_1_2_4_276_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_67_1 e_1_2_4_106_1 e_1_2_4_129_1 e_1_2_4_29_1 Malhotra R (e_1_2_4_153_1) 2015; 11 e_1_2_4_167_1 e_1_2_4_121_1 e_1_2_4_144_1 e_1_2_4_313_1 e_1_2_4_182_1 e_1_2_4_249_1 e_1_2_4_226_1 e_1_2_4_7_1 e_1_2_4_94_1 e_1_2_4_241_1 e_1_2_4_203_1 e_1_2_4_264_1 e_1_2_4_287_1 e_1_2_4_71_1 e_1_2_4_10_1 e_1_2_4_56_1 e_1_2_4_33_1 e_1_2_4_290_1 e_1_2_4_118_1 e_1_2_4_309_1 e_1_2_4_79_1 e_1_2_4_18_1 e_1_2_4_156_1 e_1_2_4_179_1 e_1_2_4_192_1 e_1_2_4_110_1 e_1_2_4_133_1 e_1_2_4_301_1 e_1_2_4_239_1 e_1_2_4_216_1 e_1_2_4_83_1 e_1_2_4_277_1 e_1_2_4_60_1 e_1_2_4_254_1 e_1_2_4_45_1 e_1_2_4_280_1 e_1_2_4_22_1 e_1_2_4_105_1 e_1_2_4_128_1 e_1_2_4_68_1 e_1_2_4_189_1 e_1_2_4_120_1 e_1_2_4_166_1 e_1_2_4_143_1 e_1_2_4_204_1 e_1_2_4_227_1 e_1_2_4_181_1 e_1_2_4_242_1 e_1_2_4_288_1 e_1_2_4_95_1 e_1_2_4_8_1 Schwarzer R (e_1_2_4_231_1) 2020; 52 e_1_2_4_72_1 e_1_2_4_265_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_291_1 e_1_2_4_117_1 e_1_2_4_57_1 e_1_2_4_19_1 e_1_2_4_178_1 e_1_2_4_155_1 e_1_2_4_193_1 e_1_2_4_132_1 e_1_2_4_302_1 e_1_2_4_199_1 e_1_2_4_259_1 e_1_2_4_84_1 e_1_2_4_213_1 e_1_2_4_236_1 e_1_2_4_251_1 e_1_2_4_274_1 e_1_2_4_297_1 e_1_2_4_61_1 e_1_2_4_23_1 e_1_2_4_127_1 e_1_2_4_46_1 e_1_2_4_69_1 e_1_2_4_104_1 e_1_2_4_142_1 e_1_2_4_165_1 e_1_2_4_188_1 e_1_2_4_311_1 e_1_2_4_5_1 e_1_2_4_209_1 e_1_2_4_96_1 e_1_2_4_262_1 e_1_2_4_285_1 e_1_2_4_73_1 e_1_2_4_224_1 e_1_2_4_50_1 e_1_2_4_201_1 e_1_2_4_12_1 e_1_2_4_250_1 e_1_2_4_116_1 e_1_2_4_139_1 e_1_2_4_307_1 e_1_2_4_35_1 e_1_2_4_58_1 e_1_2_4_190_1 e_1_2_4_131_1 e_1_2_4_154_1 e_1_2_4_177_1 e_1_2_4_237_1 e_1_2_4_85_1 e_1_2_4_62_1 e_1_2_4_214_1 e_1_2_4_252_1 e_1_2_4_298_1 e_1_2_4_275_1 e_1_2_4_24_1 e_1_2_4_149_1 e_1_2_4_47_1 e_1_2_4_126_1 e_1_2_4_103_1 e_1_2_4_141_1 e_1_2_4_187_1 e_1_2_4_312_1 e_1_2_4_164_1 e_1_2_4_248_1 e_1_2_4_6_1 e_1_2_4_240_1 e_1_2_4_51_1 e_1_2_4_74_1 e_1_2_4_202_1 e_1_2_4_225_1 e_1_2_4_263_1 e_1_2_4_286_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_59_1 e_1_2_4_308_1 e_1_2_4_115_1 e_1_2_4_191_1 e_1_2_4_130_1 e_1_2_4_176_1 e_1_2_4_300_1 e_1_2_4_151_1 e_1_2_4_197_1 Li J (e_1_2_4_138_1) 2020; 11 e_1_2_4_219_1 e_1_2_4_40_1 e_1_2_4_63_1 e_1_2_4_211_1 e_1_2_4_234_1 e_1_2_4_295_1 e_1_2_4_260_1 e_1_2_4_283_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_86_1 Murthy P (e_1_2_4_180_1) 2019; 2 e_1_2_4_125_1 e_1_2_4_148_1 e_1_2_4_102_1 e_1_2_4_163_1 e_1_2_4_186_1 e_1_2_4_207_1 e_1_2_4_140_1 e_1_2_4_3_1 e_1_2_4_268_1 e_1_2_4_52_1 e_1_2_4_90_1 e_1_2_4_222_1 e_1_2_4_245_1 e_1_2_4_294_1 e_1_2_4_305_1 e_1_2_4_75_1 e_1_2_4_271_1 e_1_2_4_14_1 e_1_2_4_98_1 e_1_2_4_37_1 e_1_2_4_114_1 e_1_2_4_137_1 e_1_2_4_152_1 e_1_2_4_175_1 e_1_2_4_150_1 e_1_2_4_173_1 e_1_2_4_198_1 e_1_2_4_258_1 e_1_2_4_41_1 e_1_2_4_235_1 e_1_2_4_273_1 e_1_2_4_212_1 e_1_2_4_296_1 e_1_2_4_109_1 e_1_2_4_64_1 e_1_2_4_261_1 e_1_2_4_49_1 e_1_2_4_87_1 e_1_2_4_26_1 e_1_2_4_124_1 e_1_2_4_147_1 e_1_2_4_310_1 e_1_2_4_101_1 e_1_2_4_185_1 e_1_2_4_162_1 e_1_2_4_208_1 e_1_2_4_4_1 e_1_2_4_269_1 e_1_2_4_246_1 e_1_2_4_284_1 e_1_2_4_30_1 e_1_2_4_91_1 e_1_2_4_200_1 e_1_2_4_223_1 e_1_2_4_53_1 e_1_2_4_76_1 e_1_2_4_272_1 e_1_2_4_306_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_99_1 e_1_2_4_113_1 e_1_2_4_159_1 e_1_2_4_136_1 e_1_2_4_174_1 |
| References_xml | – volume: 297 start-page: 123 year: 2020 end-page: 138 article-title: Therapeutic modulation of inflammasome pathways publication-title: Immunol Rev – volume: 110 start-page: 20364 year: 2013 end-page: 20371 article-title: Autosis is a Na+, K+‐ATPase‐regulated form of cell death triggered by autophagy‐inducing peptides, starvation, and hypoxia‐ischemia publication-title: Proc Natl Acad Sci USA – volume: 157 start-page: 1175 year: 2014 end-page: 1188 article-title: RIPK1 regulates RIPK3‐MLKL‐driven systemic inflammation and emergency hematopoiesis publication-title: Cell – volume: 49 start-page: 64 year: 2019 end-page: 73 article-title: Randomised clinical trial: emricasan versus placebo significantly decreases ALT and caspase 3/7 activation in subjects with non‐alcoholic fatty liver disease publication-title: Aliment Pharmacol Ther – volume: 49 start-page: 221 year: 2019 end-page: 227 article-title: Untangling "NETosis" from NETs publication-title: Eur J Immunol – volume: 12 start-page: 1473 issue: Suppl 2 year: 2005 end-page: 1477 article-title: Anoikis publication-title: Cell Death Differ – volume: 120 start-page: 1310 year: 2010 end-page: 1323 article-title: Induction of autophagy‐dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance publication-title: J Clin Invest – volume: 27 start-page: 161 year: 2020 end-page: 175 article-title: RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases publication-title: Cell Death Differ – volume: 8 year: 2019 article-title: Autophagy regulates inflammatory programmed cell death via turnover of RHIM‐domain proteins publication-title: Elife – volume: 10 start-page: 2091 year: 2019 article-title: Caspase‐1 initiates apoptosis in the absence of gasdermin D publication-title: Nat Commun – volume: 343 start-page: 1357 year: 2014 end-page: 1360 article-title: Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis publication-title: Science – volume: 187 start-page: 61 year: 2009 end-page: 70 article-title: Glyburide inhibits the Cryopyrin/Nalp3 inflammasome publication-title: J Cell Biol – volume: 91 start-page: 479 year: 1997 end-page: 489 article-title: Cytochrome c and dATP‐dependent formation of Apaf‐1/caspase‐9 complex initiates an apoptotic protease cascade publication-title: Cell – volume: 273 start-page: 2926 year: 1998 end-page: 2930 article-title: An induced proximity model for caspase‐8 activation publication-title: J Biol Chem – volume: 15 start-page: 49 year: 2014 end-page: 63 article-title: Control of apoptosis by the BCL‐2 protein family: implications for physiology and therapy publication-title: Nat Rev Mol Cell Biol – volume: 102 start-page: 12005 year: 2005 end-page: 12010 article-title: Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 971 year: 2014 end-page: 981 article-title: MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates publication-title: Cell Rep – volume: 37 start-page: 337 year: 2016 end-page: 349 article-title: The autophagy machinery controls cell death switching between apoptosis and necroptosis publication-title: Dev Cell – volume: 115 start-page: E10888 year: 2018 end-page: E10897 article-title: Caspase‐8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection publication-title: Proc Natl Acad Sci USA – volume: 157 start-page: 1189 year: 2014 end-page: 1202 article-title: RIPK1 blocks early postnatal lethality mediated by caspase‐8 and RIPK3 publication-title: Cell – volume: 26 start-page: 101239 year: 2019 article-title: Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos publication-title: Redox Biol – volume: 506 start-page: 456 year: 2014 end-page: 462 article-title: A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3 publication-title: Nature – volume: 388 start-page: 190 year: 1997 end-page: 195 article-title: Inhibition of death receptor signals by cellular FLIP publication-title: Nature – volume: 20 start-page: 251 year: 2010 end-page: 267 article-title: Small‐molecule pan‐IAP antagonists: a patent review publication-title: Expert Opin Ther Pat – volume: 535 start-page: 153 year: 2016 end-page: 158 article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature – volume: 36 start-page: 215 year: 2012 end-page: 227 article-title: Inhibitor of apoptosis proteins limit RIP3 kinase‐dependent interleukin‐1 activation publication-title: Immunity – volume: 190 start-page: 377 year: 2010 end-page: 389 article-title: Model‐based dissection of CD95 signaling dynamics reveals both a pro‐ and antiapoptotic role of c‐FLIPL publication-title: J Cell Biol – volume: 284 start-page: 34553 year: 2009 end-page: 34560 article-title: X chromosome‐linked inhibitor of apoptosis regulates cell death induction by proapoptotic receptor agonists publication-title: J Biol Chem – volume: 16 start-page: 2794 year: 1997 end-page: 2804 article-title: FLICE is activated by association with the CD95 death‐inducing signaling complex (DISC) publication-title: Embo J – volume: 23 start-page: 191 issue: 2 year: 2018 end-page: 202.e4 article-title: Intestinal epithelial cell autophagy is required to protect against TNF‐induced apoptosis during chronic colitis in mice publication-title: Cell Host Microbe – volume: 456 start-page: 259 year: 2008 end-page: 263 article-title: A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells publication-title: Nature – volume: 137 start-page: 1112 year: 2009 end-page: 1123 article-title: Phosphorylation‐driven assembly of the RIP1‐RIP3 complex regulates programmed necrosis and virus‐induced inflammation publication-title: Cell – volume: 12 start-page: 445 year: 2007 end-page: 456 article-title: Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac‐mimetic‐induced apoptosis publication-title: Cancer Cell – volume: 25 start-page: 486 year: 2018 end-page: 541 article-title: Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 publication-title: Cell Death Differ – volume: 12 start-page: 164 year: 2020 article-title: Ferroptosis in cancer cell biology publication-title: Cancers – volume: 27 start-page: 448 year: 2020 end-page: 462 article-title: Ferroptosis and necroptosis in the kidney publication-title: Cell Chem Biol – volume: 114 start-page: E961 year: 2017 end-page: E969 article-title: Active MLKL triggers the NLRP3 inflammasome in a cell‐intrinsic manner publication-title: Proc Natl Acad Sci USA – volume: 11 year: 2019 article-title: Inflammasomes in neuroinflammatory and neurodegenerative diseases publication-title: EMBO Mol Med – volume: 1787 start-page: 1395 year: 2009 end-page: 1401 article-title: Mitochondrial calcium and the permeability transition in cell death publication-title: Biochim Biophys Acta – volume: 114 start-page: E9618 year: 2017 end-page: E9625 article-title: Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis publication-title: Proc Natl Acad Sci U S A – volume: 3 start-page: 339 year: 2001 end-page: 345 article-title: Membrane blebbing during apoptosis results from caspase‐mediated activation of ROCK I publication-title: Nat Cell Biol – volume: 12 start-page: a036376 year: 2020 article-title: The killer pseudokinase mixed lineage kinase domain‐like protein (MLKL) publication-title: Cold Spring Harbor Perspect Biol – volume: 116 start-page: 16497 year: 2019 end-page: 16506 article-title: Autophagy genes in myeloid cells counteract IFNgamma‐induced TNF‐mediated cell death and fatal TNF‐induced shock publication-title: Proc Natl Acad Sci USA – volume: 386 start-page: 619 year: 1997 end-page: 623 article-title: Caspase‐1 processes IFN‐gamma‐inducing factor and regulates LPS‐induced IFN‐gamma production publication-title: Nature – volume: 8 start-page: 1582 year: 2018 end-page: 1597 article-title: AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies publication-title: Cancer Discov – volume: 41 start-page: 209 year: 2020 end-page: 224 article-title: Inhibitors targeting RIPK1/RIPK3: old and new drugs publication-title: Trends Pharmacol Sci – volume: 286 start-page: 17015 year: 2011 end-page: 17028 article-title: Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization publication-title: J Biol Chem – volume: 216 start-page: 4073 year: 2017 end-page: 4090 article-title: ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation publication-title: J Cell Biol – volume: 12 start-page: 674 year: 2013 end-page: 683 article-title: Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition publication-title: Cell Cycle – volume: 11 start-page: 145 year: 2015 end-page: 154 article-title: Loss of Atg12, but not Atg5, in pro‐opiomelanocortin neurons exacerbates diet‐induced obesity publication-title: Autophagy – volume: 434 start-page: 917 year: 2005 end-page: 921 article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy publication-title: Nature – volume: 434 start-page: 652 year: 2005 end-page: 658 article-title: Cyclophilin D‐dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death publication-title: Nature – volume: 22 start-page: 1411 year: 2016 end-page: 1420 article-title: IAP antagonists induce anti‐tumor immunity in multiple myeloma publication-title: Nat Med – volume: 181 start-page: 6427 year: 2008 end-page: 6434 article-title: Receptor‐interacting protein homotypic interaction motif‐dependent control of NF‐kappa B activation via the DNA‐dependent activator of IFN regulatory factors publication-title: J Immunol – volume: 26 start-page: 655 year: 2016 end-page: 667 article-title: Mitochondrial permeability transition: new findings and persisting uncertainties publication-title: Trends Cell Biol – volume: 68 start-page: 3421 year: 2008 end-page: 3428 article-title: ABT‐263: a potent and orally bioavailable Bcl‐2 family inhibitor publication-title: Cancer Res – volume: 15 start-page: 234 year: 2008 end-page: 245 article-title: Synthetic lethal screening identifies compounds activating iron‐dependent, nonapoptotic cell death in oncogenic‐RAS‐harboring cancer cells publication-title: Chem Biol – volume: 23 start-page: 1565 year: 2016a end-page: 1576 article-title: RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury publication-title: Cell Death Differ – volume: 272 start-page: 19641 year: 1997 end-page: 19644 article-title: CASH, a novel caspase homologue with death effector domains publication-title: J Biol Chem – volume: 165 start-page: 421 year: 2016 end-page: 433 article-title: BOK is a non‐canonical BCL‐2 family effector of apoptosis regulated by ER‐associated degradation publication-title: Cell – volume: 16 start-page: 55 year: 2014 end-page: 65 article-title: Plasma membrane translocation of trimerized MLKL protein is required for TNF‐induced necroptosis publication-title: Nat Cell Biol – volume: 471 start-page: 368 year: 2011 end-page: 372 article-title: RIP3 mediates the embryonic lethality of caspase‐8‐deficient mice publication-title: Nature – volume: 100 start-page: 2432 year: 2003 end-page: 2437 article-title: JNK phosphorylation of Bim‐related members of the Bcl2 family induces Bax‐dependent apoptosis publication-title: Proc Natl Acad Sci USA – volume: 2 start-page: 665 year: 2019 end-page: 679 article-title: PARP inhibitors: clinical development, emerging differences, and the current therapeutic issues publication-title: Cancer Drug Resist – volume: 574 start-page: 428 year: 2019a end-page: 431 article-title: Cleavage of RIPK1 by caspase‐8 is crucial for limiting apoptosis and necroptosis publication-title: Nature – volume: 391 start-page: 43 year: 1998 end-page: 50 article-title: A caspase‐activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD publication-title: Nature – volume: 55 start-page: 4101 year: 2012 end-page: 4113 article-title: Discovery of a potent small‐molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC‐0152) publication-title: J Med Chem – volume: 8 start-page: 1348 year: 2006 end-page: 1358 article-title: Hierarchical regulation of mitochondrion‐dependent apoptosis by BCL‐2 subfamilies publication-title: Nat Cell Biol – volume: 514 start-page: 187 year: 2014 end-page: 192 article-title: Inflammatory caspases are innate immune receptors for intracellular LPS publication-title: Nature – volume: 110 start-page: 12024 year: 2013 end-page: 12029 article-title: Two independent pathways of regulated necrosis mediate ischemia‐reperfusion injury publication-title: Proc Natl Acad Sci USA – volume: 88 start-page: 8661 year: 1991 end-page: 8665 article-title: Enforced BCL2 expression in B‐lymphoid cells prolongs antibody responses and elicits autoimmune disease publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 883 year: 2014 end-page: 896 article-title: A myeloperoxidase‐containing complex regulates neutrophil elastase release and actin dynamics during NETosis publication-title: Cell Rep – volume: 526 start-page: 660 year: 2015 end-page: 665 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature – volume: 2 start-page: 12 year: 2015 article-title: Programmed cell death and its role in inflammation publication-title: Mil Med Res – volume: 288 start-page: 31268 year: 2013 end-page: 31279 article-title: Toll‐like receptor 3‐mediated necrosis via TRIF, RIP3, and MLKL publication-title: J Biol Chem – volume: 15 start-page: 567 year: 2008 end-page: 579 article-title: Granzyme B‐induced cell death exerted by ex vivo CTL: discriminating requirements for cell death and some of its signs publication-title: Cell Death Differ – volume: 48 start-page: 35 year: 2018 end-page: 44.e36 article-title: The pore‐forming protein gasdermin D regulates interleukin‐1 secretion from living macrophages publication-title: Immunity – volume: 111 start-page: 7391 year: 2014 end-page: 7396 article-title: Caspase‐8 and RIP kinases regulate bacteria‐induced innate immune responses and cell death publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: 218 year: 2007 end-page: 225 article-title: Clinical trial of the pan‐caspase inhibitor, IDN‐6556, in human liver preservation injury publication-title: Am J Transplant – volume: 3 start-page: 346 year: 2001 end-page: 352 article-title: Caspase‐3‐mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing publication-title: Nat Cell Biol – volume: 226 start-page: 1097 year: 1984 end-page: 1099 article-title: Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation publication-title: Science – volume: 12 start-page: 621 year: 2000 end-page: 632 article-title: DFF45/ICAD Can Be Directly Processed by Granzyme B during the Induction of Apoptosis publication-title: Immunity – volume: 20 start-page: 3328 year: 2019 article-title: The NLRP3 inflammasome: an overview of mechanisms of activation and regulation publication-title: Int J Mol Sci – volume: 46 start-page: 217 year: 2012 end-page: 220 article-title: Multi‐target, neuroprotective and neurorestorative M30 improves cognitive impairment and reduces Alzheimer's‐like neuropathology and age‐related alterations in mice publication-title: Mol Neurobiol – volume: 81 start-page: 751 year: 2012 end-page: 761 article-title: Rip1 (receptor‐interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury publication-title: Kidney Int – volume: 49 start-page: 42 issue: 1 year: 2018 end-page: 55.e6 article-title: Caspase‐8 collaborates with caspase‐11 to drive tissue damage and execution of endotoxic shock publication-title: Immunity – volume: 9 start-page: 406 year: 2020a article-title: Future therapeutic directions for Smac‐mimetics publication-title: Cells – volume: 24 start-page: 689 year: 2018 end-page: 702 article-title: SMAC mimetics induce autophagy‐dependent apoptosis of HIV‐1‐infected resting memory CD4+ T cells publication-title: Cell Host Microbe – volume: 36 start-page: 831 year: 2009 end-page: 844 article-title: Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF‐R1 signaling complex and is required for TNF‐mediated gene induction publication-title: Mol Cell – volume: 29 start-page: 4198 year: 2010 end-page: 4209 article-title: c‐IAP1 and UbcH5 promote K11‐linked polyubiquitination of RIP1 in TNF signalling publication-title: EMBO J – volume: 9 start-page: 359 year: 2018 article-title: Phenytoin inhibits necroptosis publication-title: Cell Death Dis – volume: 9 start-page: 321 year: 2009 end-page: 326 article-title: Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics publication-title: Nat Rev Cancer – volume: 94 start-page: 491 year: 1998 end-page: 501 article-title: Cleavage of BID by caspase 8 mediatesthe mitochondrial damage in the faspathway of apoptosis publication-title: Cell – volume: 5 start-page: 1 year: 2014 end-page: 8 article-title: Toll‐like receptor signaling pathways publication-title: Front Immunol – volume: 13 start-page: eaax8295 year: 2020 article-title: SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases publication-title: Sci Signal – volume: 102 start-page: 43 year: 2000 end-page: 53 article-title: Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins publication-title: Cell – volume: 44 start-page: 553 year: 2016 end-page: 567 article-title: NEMO Prevents RIP Kinase 1‐Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF‐kappaB‐Dependent and ‐Independent Functions publication-title: Immunity – volume: 41 start-page: 441 year: 2003 end-page: 449 article-title: First clinical trial of a novel caspase inhibitor: anti‐apoptotic caspase inhibitor, IDN‐6556, improves liver enzymes publication-title: Int J Clin Pharmacol Ther – volume: 42 start-page: 245 year: 2017 end-page: 254 article-title: Pyroptosis: Gasdermin‐Mediated Programmed Necrotic Cell Death publication-title: Trends Biochem Sci – volume: 46 start-page: 223 year: 2016 end-page: 229 article-title: PMA and crystal‐induced neutrophil extracellular trap formation involves RIPK1‐RIPK3‐MLKL signaling publication-title: Eur J Immunol – volume: 460 start-page: 1035 year: 2009 end-page: 1039 article-title: XIAP discriminates between type I and type II FAS‐induced apoptosis publication-title: Nature – volume: 56 start-page: 481 year: 2014 end-page: 495 article-title: RIP3 induces apoptosis independent of pronecrotic kinase activity publication-title: Mol Cell – volume: 362 start-page: 1064 year: 2018 end-page: 1069 article-title: Pathogen blockade of TAK1 triggers caspase‐8‐dependent cleavage of gasdermin D and cell death publication-title: Science – volume: 115 start-page: 4182 year: 2018 end-page: 4187 article-title: TWEAK and RIPK1 mediate a second wave of cell death during AKI publication-title: Proc Natl Acad Sci USA – volume: 122 start-page: 2784 year: 2013 end-page: 2794 article-title: NETosis: how vital is it? publication-title: Blood – volume: 12 start-page: 901 year: 2020b article-title: Combinatorial treatment of birinapant and zosuquidar enhances effective control of HBV replication in vivo publication-title: Viruses – volume: 214 start-page: 3171 year: 2017 end-page: 3182 article-title: RIPK1‐dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense publication-title: J Exp Med – volume: 8 year: 2018 article-title: ASC‐ and caspase‐8‐dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages publication-title: Sci Rep – volume: 26 start-page: 239 year: 1972 end-page: 257 article-title: Apoptosis: a basic biological phenomenon with wide‐ranging implications in tissue kinetics publication-title: Br J Cancer – volume: 434 start-page: 658 year: 2005 end-page: 662 article-title: Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death publication-title: Nature – volume: 81 start-page: 505 year: 1995 end-page: 512 article-title: FADD, a novel death domain‐containing protein, interacts with the death domain of Fas and initiates apoptosis publication-title: Cell – volume: 24 start-page: 105 year: 2014 end-page: 121 article-title: Translocation of mixed lineage kinase domain‐like protein to plasma membrane leads to necrotic cell death publication-title: Cell Res – volume: 214 start-page: 3687 year: 2017 end-page: 3705 article-title: Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium publication-title: J Exp Med – volume: 272 start-page: 18542 year: 1997 end-page: 18545 article-title: FLAME‐1, a novel FADD‐like anti‐apoptotic molecule that regulates Fas/TNFR1‐induced apoptosis publication-title: J Biol Chem – volume: 11 start-page: 109 year: 2012 end-page: 124 article-title: Targeting IAP proteins for therapeutic intervention in cancer publication-title: Nat Rev Drug Discov – volume: 74 start-page: 3631 year: 2017 end-page: 3645 article-title: Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure publication-title: Cell Mol Life Sci – volume: 107 start-page: 941 year: 2020 end-page: 952 article-title: RIP1 kinase activity is critical for skin inflammation but not for viral propagation publication-title: J Leukoc Biol – volume: 277 start-page: 9505 year: 2002 end-page: 9511 article-title: Identification of a novel homotypic interaction motif required for the phosphorylation of receptor‐interacting protein (RIP) by RIP3 publication-title: J Biol Chem – volume: 354 start-page: aad6872 year: 2016 article-title: A nuclease that mediates cell death induced by DNA damage and poly(ADP‐ribose) polymerase‐1 publication-title: Science – volume: 107 start-page: 406 year: 2020 end-page: 414 article-title: DNL104, a centrally penetrant RIPK1 inhibitor, inhibits rip1 kinase phosphorylation in a randomized phase I ascending dose study in healthy volunteers publication-title: Clin Pharmacol Ther – volume: 30 start-page: 4343 year: 2020 end-page: 4354.e4 article-title: Targeting the extrinsic pathway of hepatocyte apoptosis promotes clearance of plasmodium liver infection publication-title: Cell Rep – volume: 124 start-page: 619 year: 1994 end-page: 626 article-title: Disruption of epithelial cell‐matrix interactions induces apoptosis publication-title: J Cell Biol – volume: 11 year: 2020 article-title: Ferroptosis: past, present and future publication-title: Cell Death Dis – volume: 57 start-page: 79 year: 1989 end-page: 88 article-title: bcl‐2‐Immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation publication-title: Cell – volume: 11 year: 2020 article-title: MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis publication-title: Nat Commun – volume: 113 start-page: E4966 year: 2016 end-page: 4975 article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis publication-title: Proc Natl Acad Sci U S A – volume: 150 start-page: 606 year: 2012 end-page: 619 article-title: TRIF licenses caspase‐11‐dependent NLRP3 inflammasome activation by gram‐negative bacteria publication-title: Cell – volume: 54 start-page: 375 year: 2002 end-page: 429 article-title: The Therapeutic Potential of Poly(ADP‐Ribose) Polymerase Inhibitors publication-title: Pharmacol Rev – volume: 78 start-page: 1939 year: 2018 end-page: 1946 article-title: Talazoparib: first global approval publication-title: Drugs – volume: 62 start-page: 657 year: 2015 end-page: 658 article-title: Autosis occurs in the liver of patients with severe anorexia nervosa publication-title: Hepatology – volume: 24 start-page: 1598 year: 2017 end-page: 1608 article-title: Role of Atg5‐dependent cell death in the embryonic development of Bax/Bak double‐knockout mice publication-title: Cell Death Differ – volume: 110 start-page: 5887 year: 2013 end-page: 5892 article-title: Dimers of mitochondrial ATP synthase form the permeability transition pore publication-title: Proc Natl Acad Sci USA – volume: 192 start-page: 5476 year: 2014 end-page: 5480 article-title: Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN‐deficient mice publication-title: J Immunol – volume: 24 start-page: 1172 year: 2017 end-page: 1183 article-title: CYLD, A20 and OTULIN deubiquitinases in NF‐kappaB signaling and cell death: so similar, yet so different publication-title: Cell Death Differ – volume: 5 year: 2017 article-title: Randomized clinical study of safety, pharmacokinetics, and pharmacodynamics of RIPK1 inhibitor GSK2982772 in healthy volunteers publication-title: Pharmacol Res Perspect – volume: 90 start-page: 405 year: 1997 end-page: 413 article-title: Apaf‐1, a human protein homologous to CED‐4, participates in cytochrome c‐dependent activation of caspase‐3 publication-title: Cell – volume: 273 start-page: 27084 year: 1998 end-page: 27090 article-title: Pro‐caspase‐3 is a major physiologic target of caspase‐8 publication-title: J Biol Chem – volume: 103 start-page: 4952 year: 2006 end-page: 4957 article-title: Autophagic programmed cell death by selective catalase degradation publication-title: Proc Natl Acad Sci U S A – volume: 16 start-page: 3247 year: 2016 end-page: 3259 article-title: MLKL and FADD are critical for suppressing progressive lymphoproliferative disease and activating the NLRP3 inflammasome publication-title: Cell Rep – volume: 535 start-page: 111 year: 2016 end-page: 116 article-title: Pore‐forming activity and structural autoinhibition of the gasdermin family publication-title: Nature – volume: 46 start-page: 178 year: 2016 end-page: 184 article-title: NET formation can occur independently of RIPK3 and MLKL signaling publication-title: Eur J Immunol – volume: 335 start-page: 440 year: 1988 end-page: 442 article-title: Bcl‐2 gene promotes haemopoietic cell survival and cooperates with c‐myc to immortalize pre‐B cells publication-title: Nature – volume: 19 start-page: 553 year: 2020 end-page: 571 article-title: Receptor‐interacting protein kinase 1 (RIPK1) as a therapeutic target publication-title: Nat Rev Drug Discov – volume: 72 start-page: 5588 year: 2012 end-page: 5599 article-title: Trapping of PARP1 and PARP2 by clinical PARP inhibitors publication-title: Cancer Res – volume: 37 start-page: 1457 year: 2017 end-page: 1461 article-title: NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E‐deficient mice‐brief report publication-title: Arterioscler Thromb Vasc Biol – volume: 575 start-page: 683 year: 2019 end-page: 687 article-title: Caspase‐8 is the molecular switch for apoptosis, necroptosis and pyroptosis publication-title: Nature – volume: 23 start-page: 197 year: 2005 end-page: 223 article-title: How neutrophils kill microbes publication-title: Annu Rev Immunol – volume: 580 start-page: 391 year: 2020 end-page: 395 article-title: Z‐nucleic‐acid sensing triggers ZBP1‐dependent necroptosis and inflammation publication-title: Nature – volume: 89 start-page: 1789 year: 1997 end-page: 1796 article-title: Phase I study of continuous‐infusion L‐S, R‐buthionine sulfoximine with intravenous melphalan publication-title: J Natl Cancer Inst – volume: 280 start-page: 18558 year: 2005 end-page: 18561 article-title: Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D publication-title: J Biol Chem – volume: 434 start-page: 913 year: 2005 end-page: 917 article-title: Specific killing of BRCA2‐deficient tumours with inhibitors ofpoly(ADP‐ribose) polymerase publication-title: Nature – volume: 435 start-page: 677 year: 2005 end-page: 681 article-title: An inhibitor of Bcl‐2 family proteins induces regression of solid tumours publication-title: Nature – volume: 337 start-page: 1304 year: 1991 end-page: 1308 article-title: Intramuscular desferrioxamine in patients with Alzheimer's disease publication-title: The Lancet – volume: 21 start-page: 5047 year: 2015 end-page: 5056 article-title: How do cytotoxic lymphocytes kill cancer cells? publication-title: Clin Cancer Res – volume: 1833 start-page: 3481 year: 2013 end-page: 3498 article-title: Anoikis molecular pathways and its role in cancer progression publication-title: Biochim Biophys Acta – volume: 85 start-page: 743 year: 2016 end-page: 763 article-title: Necroptosis and Inflammation publication-title: Annu Rev Biochem – volume: 3 start-page: 1 year: 2018 end-page: 11 article-title: Noncanonical inflammasome signaling elicits gasdermin D‐dependent neutrophil extracellular traps publication-title: Sci Immunol – volume: 114 start-page: 10642 year: 2017 end-page: 10647 article-title: Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: eaar6689 year: 2018 article-title: Gasdermin D plays a vital role in the generation of neutrophil extracellular traps publication-title: Sci Immunol – volume: 8 start-page: 365 year: 2020 article-title: The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues publication-title: Front Cell Dev Biol – volume: 12 start-page: a036368 year: 2020 article-title: Multitasking kinase RIPK1 regulates cell death and inflammation publication-title: Cold Spring Harbor Perspect Biol – volume: 538 start-page: 477 year: 2016 end-page: 482 article-title: The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models publication-title: Nature – volume: 334 start-page: 376 year: 2011 end-page: 380 article-title: Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination publication-title: Science – volume: 26 start-page: 146 year: 2019 end-page: 161 article-title: Single‐cell analysis of pyroptosis dynamics reveals conserved GSDMD‐mediated subcellular events that precede plasma membrane rupture publication-title: Cell Death Differ – volume: 477 start-page: 330 year: 2011 end-page: 334 article-title: FADD prevents RIP3‐mediated epithelial cell necrosis and chronic intestinal inflammation publication-title: Nature – volume: 547 start-page: 99 year: 2017 end-page: 103 article-title: Chemotherapy drugs induce pyroptosis through caspase‐3 cleavage of a gasdermin publication-title: Nature – volume: 135 start-page: 2388 year: 2020 end-page: 2401 article-title: An intestinal organoid‐based platform that recreates susceptibility to T‐cell‐mediated tissue injury publication-title: Blood – volume: 355 start-page: 1152 year: 2017 end-page: 1158 article-title: PARP inhibitors: synthetic lethality in the clinic publication-title: Science – volume: 297 start-page: 259 year: 2002 end-page: 263 article-title: Mediation of poly(ADP‐ribose) polymerase‐1‐dependent cell death by apoptosis‐inducing factor publication-title: Science – volume: 149 start-page: 1060 year: 2012 end-page: 1072 article-title: Ferroptosis: an iron‐dependent form of nonapoptotic cell death publication-title: Cell – volume: 11 start-page: 977 year: 2016 end-page: 985 article-title: Ultrasmall nanoparticles induce ferroptosis in nutrient‐deprived cancer cells and suppress tumour growth publication-title: Nat Nanotechnol – volume: 11 start-page: 4371 year: 2019 end-page: 4390 article-title: Current status and future prospects of PARP inhibitor clinical trials in ovarian cancer publication-title: Cancer Manag Res – volume: 190 start-page: 418 year: 2013 end-page: 427 article-title: TLR3, TRIF, and caspase 8 determine double‐stranded RNA‐induced epithelial cell death and survival in vivo publication-title: J Immunol – volume: 20 start-page: 1161 year: 2013 end-page: 1173 article-title: Obatoclax (GX15‐070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes publication-title: Cell Death Differ – volume: 22 start-page: 2924 year: 2018 end-page: 2936 article-title: Gasdermin D exerts anti‐inflammatory effects by promoting neutrophil death publication-title: Cell Rep – volume: 286 start-page: 34851 year: 2011 end-page: 34857 article-title: Protective role of transient pore openings in calcium handling by cardiac mitochondria publication-title: J Biol Chem – volume: 177 start-page: 1682 year: 2019 end-page: 1699 article-title: Autophagy‐independent functions of the autophagy machinery publication-title: Cell – volume: 309 start-page: 634 year: 2004 end-page: 640 article-title: Characterization of IDN‐6556 (3‐[2‐(2‐tert‐butyl‐phenylaminooxalyl)‐amino]‐propionylamino]‐4‐oxo‐5‐(2,3,5,6‐te trafluoro‐phenoxy)‐pentanoic acid): a liver‐targeted caspase inhibitor publication-title: J Pharmacol Exp Ther – volume: 3 start-page: 35 year: 2019 end-page: 54 article-title: The hallmarks of ferroptosis publication-title: Annu Rev Cancer Biol – volume: 578 start-page: 160 year: 2020 end-page: 165 article-title: Systemic HIV and SIV latency reversal via non‐canonical NF‐kappaB signalling in vivo publication-title: Nature – volume: 131 start-page: 682 year: 2007 end-page: 693 article-title: IAP antagonists target cIAP1 to induce TNFalpha‐dependent apoptosis publication-title: Cell – volume: 156 start-page: 317 year: 2014 end-page: 331 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell – volume: 11 start-page: 239 year: 2020 article-title: Ferroptosis and its potential role in human diseases publication-title: Front Pharmacol – volume: 15 start-page: 560 year: 2019 end-page: 564 article-title: MCC950 closes the active conformation of NLRP3 to an inactive state publication-title: Nat Chem Biol – volume: 13 start-page: 1619 year: 2017 end-page: 1628 article-title: Autophagy‐monitoring and autophagy‐deficient mice publication-title: Autophagy – volume: 68 start-page: 9384 year: 2008 end-page: 9393 article-title: SM‐164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP‐1/2 and XIAP publication-title: Cancer Res – volume: 174 start-page: 4942 year: 2005 end-page: 4952 article-title: Apoptosis induced by the toll‐like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif publication-title: J Immunol – volume: 55 start-page: 419 year: 2012 end-page: 428 article-title: A phase 2, randomized, double‐blind, placebo‐controlled study of GS‐9450 in subjects with nonalcoholic steatohepatitis publication-title: Hepatology – volume: 133 start-page: 153 year: 2019 end-page: 161 article-title: Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? publication-title: Free Radic Biol Med – volume: 19 start-page: 246 year: 2018 end-page: 254 article-title: Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling publication-title: Nat Immunol – volume: 6 start-page: 1389 year: 2000 end-page: 1399 article-title: The combined functions of proapoptotic Bcl‐2 family members bak and bax are essential for normal development of multiple tissues publication-title: Mol Cell – volume: 14 start-page: 535 year: 2018 end-page: 548 article-title: alpha‐Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice publication-title: Redox Biol – volume: 16 start-page: 1180 year: 2014 end-page: 1191 article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice publication-title: Nat Cell Biol – volume: 2019 start-page: 1 year: 2019 end-page: 17 article-title: ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells publication-title: Oxidative Medicine and Cellular Longevity – volume: 15 start-page: 556 year: 2019 end-page: 559 article-title: MCC950 directly targets the NLRP3 ATP‐hydrolysis motif for inflammasome inhibition publication-title: Nat Chem Biol – volume: 61 start-page: 585 year: 2017 end-page: 596 article-title: The mammalian ULK1 complex and autophagy initiation publication-title: Essays Biochem – volume: 8 start-page: 8618 year: 2018 article-title: MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice publication-title: Sci Rep – volume: 129 start-page: 15279 year: 2007 end-page: 15294 article-title: Design, synthesis, and characterization of a potent, nonpeptide, cell‐permeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP publication-title: J Am Chem Soc – volume: 303 start-page: 1532 year: 2004 end-page: 1535 article-title: Neutrophil extracellular traps kill bacteria publication-title: Science – volume: 290 start-page: 29217 year: 2015 end-page: 29230 article-title: The Inflammasome Adaptor ASC Induces Procaspase‐8 Death Effector Domain Filaments publication-title: J Biol Chem – volume: 12 year: 2016 article-title: Activity of uncleaved caspase‐8 controls anti‐bacterial immune defense and TLR‐induced cytokine production independent of cell death publication-title: PLoS Pathog – volume: 20 start-page: 175 year: 2019 end-page: 193 article-title: Regulation of apoptosis in health and disease: the balancing act of BCL‐2 family proteins publication-title: Nat Rev Mol Cell Biol – volume: 386 start-page: 517 year: 1997 end-page: 521 article-title: Viral FLICE‐inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors publication-title: Nature – volume: 275 start-page: 206 year: 1997 end-page: 209 article-title: Activation of interferon‐gamma inducing factor mediated by interleukin‐1beta converting enzyme publication-title: Science – volume: 25 start-page: 65 year: 2018 end-page: 80 article-title: BCL‐2 family proteins: changing partners in the dance towards death publication-title: Cell Death Differ – volume: 10 start-page: 348 year: 2009 end-page: 355 article-title: Death receptor signal transducers: nodes of coordination in immune signaling networks publication-title: Nat Immunol – volume: 391 start-page: 96 year: 1998 end-page: 99 article-title: Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis publication-title: Nature – volume: 52 start-page: e976 issue: 978–993 year: 2020 article-title: FADD and Caspase‐8 Regulate Gut Homeostasis and Inflammation by Controlling MLKL‐ and GSDMD‐Mediated Death of Intestinal Epithelial Cells publication-title: Immunity – volume: 31 start-page: 969 year: 2010 end-page: 978 article-title: Clinical trial: the efficacy and safety of oral PF‐03491390, a pancaspase inhibitor ‐ a randomized placebo‐controlled study in patients with chronic hepatitis C publication-title: Aliment Pharmacol Ther – volume: 197 start-page: 2421 year: 2016 end-page: 2433 article-title: Efficacy and pharmacology of the NLRP3 Inflammasome inhibitor CP‐456,773 (CRID3) in murine models of dermal and pulmonary inflammation publication-title: J Immunol – volume: 39 start-page: 123 year: 2018 end-page: 134 article-title: ZBP1: innate sensor regulating cell death and inflammation publication-title: Trends Immunol – volume: 102 start-page: 33 year: 2000 end-page: 42 article-title: Smac, a Mitochondrial protein that promotes cytochrome c–dependent caspase activation by eliminating IAP inhibition publication-title: Cell – volume: 39 start-page: 207 year: 2007 end-page: 211 article-title: A genome‐wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1 publication-title: Nat Genet – volume: 8 year: 2017 article-title: AIF‐independent parthanatos in the pathogenesis of dry age‐related macular degeneration publication-title: Cell Death Dis – volume: 15 start-page: 388 year: 2015 end-page: 400 article-title: Perforin and granzymes: function, dysfunction and human pathology publication-title: Nat Rev Immunol – volume: 20 start-page: 341 year: 2017 end-page: 349 article-title: Dose‐escalation study for the targeting of CD44v(+) cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205) publication-title: Gastric Cancer – volume: 85 start-page: 803 year: 1996 end-page: 815 article-title: Involvement of MACH, a novel MORT1/FADD‐interacting protease, in Fas/APO‐1‐ and TNF receptor‐induced cell death publication-title: Cell – volume: 479 start-page: 117 year: 2011 end-page: 121 article-title: Non‐canonical inflammasome activation targets caspase‐11 publication-title: Nature – volume: 471 start-page: 363 year: 2011 end-page: 367 article-title: Catalytic activity of the caspase‐8‐FLIP(L) complex inhibits RIPK3‐dependent necrosis publication-title: Nature – volume: 30 start-page: 488 year: 2012 end-page: 496 article-title: Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease publication-title: J Clin Oncol – volume: 30 start-page: 689 year: 2008 end-page: 700 article-title: cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination publication-title: Mol Cell – volume: 105 start-page: 11778 year: 2008 end-page: 11783 article-title: Both cIAP1 and cIAP2 regulate TNFalpha‐mediated NF‐kappaB activation publication-title: Proc Natl Acad Sci USA – volume: 26 start-page: 253 year: 2014 end-page: 266 article-title: Regulation of NF‐kappaB by TNF family cytokines publication-title: Semin Immunol – volume: 38 start-page: 828 year: 2017 end-page: 836 article-title: The selective NLRP3‐inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction publication-title: Eur Heart J – volume: 9 start-page: 148 year: 2020 article-title: The essentials of developmental apoptosis publication-title: F1000Res – volume: 7 start-page: 470 year: 1993 end-page: 478 article-title: Delayed mternucleosomal DNA fragmentation in programmed cell death publication-title: Faseb J – volume: 25 start-page: 1285 year: 2015 end-page: 1298 article-title: Gasdermin D is an executor of pyroptosis and required for interleukin‐1beta secretion publication-title: Cell Res – volume: 575 start-page: 693 year: 2019 end-page: 698 article-title: FSP1 is a glutathione‐independent ferroptosis suppressor publication-title: Nature – volume: 128 start-page: 1834 year: 2016 end-page: 1844 article-title: Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1 publication-title: Blood – volume: 193 start-page: 1539 year: 2014 end-page: 1543 article-title: Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF‐induced necroptosis in vivo publication-title: J Immunol – volume: 575 start-page: 688 year: 2019 end-page: 692 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature – volume: 18 start-page: 134 year: 2018 end-page: 147 article-title: Neutrophil extracellular traps in immunity and disease publication-title: Nat Rev Immunol – volume: 111 start-page: 7741 year: 2014 end-page: 7746 article-title: Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense publication-title: Proc Natl Acad Sci USA – volume: 40 start-page: 811 year: 2020 end-page: 817 article-title: The mitochondrial permeability transition pore in cell death: a promising drug binding bioarchitecture publication-title: Med Res Rev – volume: 263 start-page: 687 year: 1994 end-page: 689 article-title: Nitric oxide activation of poly(ADP‐ribose) synthetase in neurotoxicity publication-title: Science – volume: 10 start-page: 417 year: 2002 end-page: 426 article-title: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL‐beta publication-title: Mol Cell – volume: 8 start-page: 14166 year: 2018 article-title: Respiratory syncytial virus induces the classical ROS‐dependent NETosis through PAD‐4 and necroptosis pathways activation publication-title: Sci Rep – volume: 39 start-page: 443 year: 2013 end-page: 453 article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism publication-title: Immunity – volume: 5 start-page: 271 year: 1998 end-page: 288 article-title: Cell death attenuation by `Usurpin', a mammalian DEDcaspase homologue that precludes caspase‐8 recruitment and activation by the CD‐95 (Fas, APO‐1) receptor complex publication-title: Cell Death Differ – volume: 78 start-page: 1045 year: 2020 end-page: 1054 article-title: Cell Death in the Origin and Treatment of Cancer publication-title: Mol Cell – volume: 94 start-page: 10717 year: 1997 end-page: 10722 article-title: CLARP, a death effector domain‐containing protein interacts with caspase‐8 and regulates apoptosis publication-title: Proc Natl Acad Sci USA – volume: 114 start-page: 181 year: 2003 end-page: 190 article-title: Induction of TNF receptor I‐mediated apoptosis via two sequential signaling complexes publication-title: Cell – volume: 18 start-page: 610 year: 2017 end-page: 621 article-title: The multifaceted roles of PARP1 in DNA repair and chromatin remodelling publication-title: Nat Rev Mol Cell Biol – volume: 62 start-page: 5096 year: 2019 end-page: 5110 article-title: Discovery and lead‐optimization of 4,5‐dihydropyrazoles as mono‐kinase selective, orally bioavailable and efficacious inhibitors of receptor interacting protein 1 (RIP1) kinase publication-title: J Med Chem – volume: 121 start-page: 71 year: 1999 end-page: 80 article-title: Mannose induces an endonuclease responsible for DNA laddering in plant cells publication-title: Plant Physiol – volume: 272 start-page: 17255 year: 1997 end-page: 17257 article-title: I‐FLICE, a novel inhibitor of tumor necrosis factor receptor‐1‐ and CD‐ 95‐induced apoptosis publication-title: J Biol Chem – volume: 432 start-page: 1032 year: 2004 end-page: 1036 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature – volume: 19 start-page: 202 year: 2013 end-page: 208 article-title: ABT‐199, a potent and selective BCL‐2 inhibitor, achieves antitumor activity while sparing platelets publication-title: Nat Med – volume: 540 start-page: 124 year: 2016 end-page: 128 article-title: RIPK1 counteracts ZBP1‐mediated necroptosis to inhibit inflammation publication-title: Nature – volume: 148 start-page: 213 year: 2012 end-page: 227 article-title: Mixed lineage kinase domain‐like protein mediates necrosis signaling downstream of RIP3 kinase publication-title: Cell – volume: 137 start-page: 1100 year: 2009 end-page: 1111 article-title: Receptor interacting protein kinase‐3 determines cellular necrotic response to TNF‐alpha publication-title: Cell – volume: 89 start-page: 1195 year: 2009 end-page: 1220 article-title: Intracellular versus extracellular granzyme B in immunity and disease: challenging the dogma publication-title: Lab Invest – volume: 14 start-page: 2060 year: 2000 end-page: 2071 article-title: tBID, a membrane‐targeted death ligand, oligomerizes BAK to release cytochrome c publication-title: Genes Dev – volume: 113 start-page: 7858 year: 2016 end-page: 7863 article-title: GsdmD p30 elicited by caspase‐11 during pyroptosis forms pores in membranes publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 1 year: 2017 end-page: 10 article-title: Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap‐like chromatin publication-title: Sci Rep – volume: 144 start-page: 891 year: 1999 end-page: 901 article-title: Bid‐induced conformational change of bax is responsible for mitochondrial cytochrome c release during apoptosis publication-title: J Cell Biol – volume: 131 start-page: 669 year: 2007 end-page: 681 article-title: IAP antagonists induce autoubiquitination of c‐IAPs, NF‐kappaB activation, and TNFalpha‐dependent apoptosis publication-title: Cell – volume: 526 start-page: 666 year: 2015 end-page: 671 article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling publication-title: Nature – volume: 430 start-page: 238 year: 2018 end-page: 247 article-title: Caspase‐1 is an apical caspase leading to caspase‐3 cleavage in the AIM2 inflammasome response, independent of caspase‐8 publication-title: J Mol Biol – volume: 19 start-page: 19 year: 2002 article-title: The PYRIN‐CARD protein ASC is an activating adaptor for caspase‐1 publication-title: J Biol Chem – volume: 2019 start-page: 3403075 year: 2019 article-title: The Mitochondrial Permeability Transition in Mitochondrial Disorders publication-title: Oxid Med Cell Longev – volume: 9 start-page: 5341 year: 2018 article-title: Discovery of Mcl‐1‐specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia publication-title: Nat Commun – volume: 10 start-page: 245 year: 2019 article-title: RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development publication-title: Cell Death Dis – volume: 9 start-page: 267 year: 1998 end-page: 276 article-title: Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally publication-title: Immunity – volume: 540 start-page: 129 year: 2016b end-page: 133 article-title: RIPK1 inhibits ZBP1‐driven necroptosis during development publication-title: Nature – volume: 456 start-page: 264 year: 2008 end-page: 268 article-title: Loss of the autophagy protein Atg16L1 enhances endotoxin‐induced IL‐1beta production publication-title: Nature – volume: 13 start-page: 2514 year: 1999 end-page: 2526 article-title: Cleavage of the death domain kinase RIP by caspase‐8 prompts TNF‐induced apoptosis publication-title: Genes Dev – volume: 31 start-page: 1679 year: 2012 end-page: 1691 article-title: IAPs limit activation of RIP kinases by TNF receptor 1 during development publication-title: EMBO J – volume: 171 start-page: 2000 year: 2014 end-page: 2016 article-title: Parthanatos: mitochondrial‐linked mechanisms and therapeutic opportunities publication-title: Br J Pharmacol – volume: 60 start-page: 1247 year: 2017 end-page: 1261 article-title: Discovery of a first‐in‐class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases publication-title: J Med Chem – volume: 184 start-page: 205 year: 2009 end-page: 213 article-title: Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation publication-title: J Cell Biol – volume: 117 start-page: 7326 year: 2020 end-page: 7337 article-title: NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4‐mediated chromatin decondensation and nuclear envelope rupture publication-title: Proc Natl Acad Sci U S A – volume: 131 start-page: jcs215152 year: 2018 article-title: Autophagy‐dependent cell death ‐ where, how and why a cell eats itself to death publication-title: J Cell Sci – volume: 292 start-page: 727 year: 2001 end-page: 730 article-title: Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death publication-title: Science – volume: 7 start-page: 683 year: 2001 end-page: 694 article-title: PUMA, a novel proapoptotic gene, is induced by p53 publication-title: Mol Cell – volume: 20 start-page: 511 year: 2014 end-page: 517 article-title: Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines publication-title: Nat Med – volume: 19 start-page: 349 year: 2018 end-page: 364 article-title: Mechanism and medical implications of mammalian autophagy publication-title: Nat Rev Mol Cell Biol – volume: 67 start-page: 11493 year: 2007 end-page: 11498 article-title: A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor‐alpha signaling publication-title: Cancer Res – volume: 85 start-page: 817 year: 1996 end-page: 827 article-title: FLICE, a novel FADD‐Homologous ICE/CED‐3–like protease, is recruited to the CD95 (Fas/APO‐1) death‐inducing signaling complex publication-title: Cell – volume: 162 start-page: 441 year: 2015 end-page: 451 article-title: Elucidating Compound Mechanism of Action by Network Perturbation Analysis publication-title: Cell – volume: 8 start-page: 339ra369 year: 2016 article-title: The caspase‐8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia publication-title: Sci Transl Med – volume: 145 start-page: 1347 year: 2013 end-page: 1357 article-title: Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection publication-title: Gastroenterology – volume: 26 start-page: 605 year: 2019 end-page: 616 article-title: Autophagy‐dependent cell death publication-title: Cell Death Differ – volume: 577 start-page: 109 year: 2020 end-page: 114 article-title: A dominant autoinflammatory disease caused by non‐cleavable variants of RIPK1 publication-title: Nature – volume: 191 start-page: 677 year: 2010 end-page: 691 article-title: Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps publication-title: J Cell Biol – volume: 30 start-page: 189 year: 2020 end-page: 200 article-title: RIPK1 kinase‐dependent death: a symphony of phosphorylation events publication-title: Trends Cell Biol – volume: 577 start-page: 103 year: 2020 end-page: 108 article-title: Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease publication-title: Nature – volume: 24 start-page: 1288 year: 2017 end-page: 1302 article-title: Signalome‐wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death publication-title: Cell Death Differ – volume: 94 start-page: 11333 year: 1997 end-page: 11338 article-title: MRIT, a novel death‐effector domain‐containing protein, interacts with caspases and BclXL and initiates cell death [In Process Citation] publication-title: Proc Natl Acad Sci USA – volume: 48 start-page: 584 year: 2018 end-page: 592 article-title: The Gasdermin‐D pore acts as a conduit for IL‐1beta secretion in mice publication-title: Eur J Immunol – volume: 35 start-page: 1766 year: 2016 end-page: 1778 article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death publication-title: EMBO J – volume: 10 start-page: 1689 year: 2019 article-title: Gasdermin pores permeabilize mitochondria to augment caspase‐3 activation during apoptosis and inflammasome activation publication-title: Nat Commun – volume: 1 start-page: 319 year: 1998 end-page: 325 article-title: Autoproteolytic activation of pro‐caspases by oligomerization publication-title: Mol Cell – volume: 11 start-page: 460 year: 2012 end-page: 467 article-title: Pick your poison: the Ripoptosome, a cell death platform regulating apoptosis and necroptosis publication-title: Cell Cycle – volume: 61 start-page: 834 year: 2016 end-page: 849 article-title: Co‐operative and hierarchical binding of c‐FLIP and caspase‐8: a unified model defines how c‐FLIP isoforms differentially control cell fate publication-title: Mol Cell – volume: 28 start-page: 218 year: 2017 end-page: 229 article-title: Ferroptosis, but Not necroptosis, is important in nephrotoxic folic acid‐induced AKI publication-title: J Am Soc Nephrol – volume: 20 start-page: 1149 year: 2013 end-page: 1160 article-title: AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC publication-title: Cell Death Differ – volume: 433 start-page: 447 year: 2011 end-page: 457 article-title: FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity publication-title: Biochem J – volume: 283 start-page: 24295 year: 2008 end-page: 24299 article-title: c‐IAP1 and c‐IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)‐induced NF‐kappaB activation publication-title: J Biol Chem – volume: 52 start-page: 994 year: 2020 end-page: 1006 article-title: Caspase‐8‐Dependent Inflammatory Responses Are Controlled by Its Adaptor, FADD, and Necroptosis publication-title: Immunity – volume: 356 start-page: 768 year: 1992 end-page: 774 article-title: A Novel Heterodimeric Cysteine Protease Is Required for Interleukin‐1‐Beta Processing in Monocytes publication-title: Nature – volume: 1 start-page: 112 year: 2005 end-page: 119 article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury publication-title: Nat Chem Biol – volume: 112 start-page: 2817 year: 2015 end-page: 2822 article-title: SK3 channel and mitochondrial ROS mediate NADPH oxidase‐independent NETosis induced by calcium influx publication-title: Proc Natl Acad Sci USA – volume: 72 start-page: 885 year: 2020 end-page: 895 article-title: Randomized placebo‐controlled trial of emricasan for non‐alcoholic steatohepatitis‐related cirrhosis with severe portal hypertension publication-title: J Hepatol – volume: 8 start-page: 14128 year: 2017 article-title: Cleavage of DFNA5 by caspase‐3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death publication-title: Nat Commun – volume: 1147 start-page: 233 year: 2008 end-page: 241 article-title: Mitochondrial and nuclear cross talk in cell death: parthanatos publication-title: Ann N Y Acad Sci – volume: 575 start-page: 679 year: 2019b end-page: 682 article-title: Activity of caspase‐8 determines plasticity between cell death pathways publication-title: Nature – volume: 192 start-page: 1835 year: 2014 end-page: 1846 article-title: FADD and caspase‐8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes publication-title: J Immunol – volume: 24 start-page: e504 issue: 507–514 year: 2017 article-title: Pyroptosis and Apoptosis Pathways Engage in Bidirectional Crosstalk in Monocytes and Macrophages publication-title: Cell chemical biology – volume: 173 start-page: 1217 year: 2018 end-page: 1230 e1217 article-title: Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK publication-title: Cell – volume: 20 start-page: 19 year: 2019 end-page: 33 article-title: Necroptosis and RIPK1‐mediated neuroinflammation in CNS diseases publication-title: Nat Rev Neurosci – volume: 6 start-page: 751 year: 1997 end-page: 763 article-title: Casper is a FADD‐ and caspase‐related inducer of apoptosis publication-title: Immunity – ident: e_1_2_4_57_1 doi: 10.1038/emboj.2010.300 – ident: e_1_2_4_149_1 doi: 10.1126/science.aam7344 – ident: e_1_2_4_48_1 doi: 10.1016/j.cell.2014.04.018 – ident: e_1_2_4_251_1 doi: 10.1016/j.freeradbiomed.2018.09.008 – ident: e_1_2_4_123_1 doi: 10.1038/nnano.2016.164 – ident: e_1_2_4_263_1 doi: 10.1038/356768a0 – ident: e_1_2_4_10_1 doi: 10.1074/jbc.C500089200 – ident: e_1_2_4_312_1 doi: 10.1016/j.redox.2017.11.001 – ident: e_1_2_4_217_1 doi: 10.1016/j.redox.2019.101239 – ident: e_1_2_4_128_1 doi: 10.1080/15548627.2017.1343770 – ident: e_1_2_4_298_1 doi: 10.1016/j.cell.2013.12.010 – ident: e_1_2_4_313_1 doi: 10.1016/S0092-8674(00)80501-2 – ident: e_1_2_4_152_1 doi: 10.1073/pnas.0711122105 – ident: e_1_2_4_120_1 doi: 10.1002/path.1711050103 – ident: e_1_2_4_169_1 doi: 10.1016/S0092-8674(03)00521-X – ident: e_1_2_4_93_1 doi: 10.1038/cr.2015.139 – ident: e_1_2_4_9_1 doi: 10.1111/j.1600-6143.2006.01595.x – ident: e_1_2_4_229_1 doi: 10.1073/pnas.0505294102 – ident: e_1_2_4_106_1 doi: 10.2147/CMAR.S200524 – ident: e_1_2_4_212_1 doi: 10.1016/j.cell.2012.07.007 – ident: e_1_2_4_78_1 doi: 10.1073/pnas.1217823110 – volume: 24 start-page: e504 issue: 507 year: 2017 ident: e_1_2_4_257_1 article-title: Pyroptosis and Apoptosis Pathways Engage in Bidirectional Crosstalk in Monocytes and Macrophages publication-title: Cell chemical biology – ident: e_1_2_4_131_1 doi: 10.1038/s41586-019-1828-5 – ident: e_1_2_4_95_1 doi: 10.1002/eji.201747404 – ident: e_1_2_4_86_1 doi: 10.1038/ng1954 – ident: e_1_2_4_163_1 doi: 10.1084/jem.20170558 – ident: e_1_2_4_191_1 doi: 10.1038/s41586-019-1548-x – ident: e_1_2_4_306_1 doi: 10.1038/s41583-018-0093-1 – ident: e_1_2_4_25_1 doi: 10.1158/2159-8290.CD-18-0387 – ident: e_1_2_4_195_1 doi: 10.1038/nature03579 – ident: e_1_2_4_69_1 doi: 10.1083/jcb.124.4.619 – ident: e_1_2_4_171_1 doi: 10.3390/cells9020406 – ident: e_1_2_4_189_1 doi: 10.1146/annurev-biochem-060815-014830 – ident: e_1_2_4_175_1 doi: 10.1158/0008-5472.CAN-12-2753 – ident: e_1_2_4_53_1 doi: 10.1016/j.celrep.2014.04.026 – ident: e_1_2_4_34_1 doi: 10.1038/35070009 – ident: e_1_2_4_265_1 doi: 10.1158/0008-5472.CAN-07-5836 – ident: e_1_2_4_300_1 doi: 10.1016/S1097-2765(00)80032-5 – ident: e_1_2_4_222_1 doi: 10.1038/nature07383 – ident: e_1_2_4_181_1 doi: 10.1016/S0092-8674(00)81266-0 – ident: e_1_2_4_204_1 doi: 10.1016/j.ccr.2007.08.029 – ident: e_1_2_4_168_1 doi: 10.1016/j.celrep.2014.06.044 – ident: e_1_2_4_283_1 doi: 10.1038/nri3839 – ident: e_1_2_4_84_1 doi: 10.4049/jimmunol.1302839 – ident: e_1_2_4_147_1 doi: 10.1073/pnas.1319661110 – ident: e_1_2_4_141_1 doi: 10.1038/nature20558 – ident: e_1_2_4_241_1 doi: 10.1155/2019/3403075 – ident: e_1_2_4_68_1 doi: 10.1038/ncb3064 – ident: e_1_2_4_27_1 doi: 10.1016/j.chom.2018.09.007 – ident: e_1_2_4_43_1 doi: 10.1038/s41418-018-0252-y – ident: e_1_2_4_194_1 doi: 10.1038/nature09852 – ident: e_1_2_4_87_1 doi: 10.3389/fphar.2020.00239 – ident: e_1_2_4_218_1 doi: 10.1038/s41467-019-09397-2 – ident: e_1_2_4_111_1 doi: 10.4049/jimmunol.181.9.6427 – ident: e_1_2_4_245_1 doi: 10.1038/nm.3048 – ident: e_1_2_4_36_1 doi: 10.1073/pnas.1613305114 – ident: e_1_2_4_125_1 doi: 10.1038/nature19830 – ident: e_1_2_4_15_1 doi: 10.1016/j.molcel.2008.05.014 – ident: e_1_2_4_182_1 doi: 10.1074/jbc.273.5.2926 – ident: e_1_2_4_102_1 doi: 10.1038/40657 – ident: e_1_2_4_232_1 doi: 10.1038/35070019 – ident: e_1_2_4_124_1 doi: 10.1074/jbc.M111.239921 – ident: e_1_2_4_279_1 doi: 10.1016/j.immuni.2012.01.012 – ident: e_1_2_4_297_1 doi: 10.1073/pnas.1603244113 – ident: e_1_2_4_173_1 doi: 10.1038/emboj.2012.18 – ident: e_1_2_4_268_1 doi: 10.1016/j.immuni.2020.04.010 – ident: e_1_2_4_192_1 doi: 10.1038/s41586-019-1752-8 – volume: 11 year: 2020 ident: e_1_2_4_138_1 article-title: Ferroptosis: past, present and future publication-title: Cell Death Dis – ident: e_1_2_4_238_1 doi: 10.1111/j.1365-2036.2010.04264.x – ident: e_1_2_4_301_1 doi: 10.1186/s40779-015-0039-0 – ident: e_1_2_4_133_1 doi: 10.1073/pnas.1407001111 – ident: e_1_2_4_188_1 doi: 10.1038/cdd.2016.46 – ident: e_1_2_4_81_1 doi: 10.1016/j.devcel.2016.04.018 – ident: e_1_2_4_210_1 doi: 10.4049/jimmunol.1600035 – ident: e_1_2_4_85_1 doi: 10.1016/j.molcel.2009.10.013 – ident: e_1_2_4_295_1 doi: 10.1038/ni.1714 – ident: e_1_2_4_198_1 doi: 10.1016/j.bbamcr.2013.06.026 – ident: e_1_2_4_200_1 doi: 10.1083/jcb.201006052 – ident: e_1_2_4_164_1 doi: 10.4049/jimmunol.1202756 – ident: e_1_2_4_239_1 doi: 10.1007/s10120-016-0610-8 – ident: e_1_2_4_227_1 doi: 10.15252/embj.201694696 – volume: 52 start-page: e976 issue: 978 year: 2020 ident: e_1_2_4_231_1 article-title: FADD and Caspase‐8 Regulate Gut Homeostasis and Inflammation by Controlling MLKL‐ and GSDMD‐Mediated Death of Intestinal Epithelial Cells publication-title: Immunity – ident: e_1_2_4_114_1 doi: 10.1016/j.celrep.2018.02.067 – volume: 2 start-page: 665 year: 2019 ident: e_1_2_4_180_1 article-title: PARP inhibitors: clinical development, emerging differences, and the current therapeutic issues publication-title: Cancer Drug Resist – ident: e_1_2_4_103_1 doi: 10.1016/j.tcb.2016.04.006 – ident: e_1_2_4_24_1 doi: 10.1038/nature07416 – ident: e_1_2_4_137_1 doi: 10.1016/S0092-8674(00)81590-1 – ident: e_1_2_4_219_1 doi: 10.1038/ncomms14128 – ident: e_1_2_4_310_1 doi: 10.1038/s41419-019-1490-8 – ident: e_1_2_4_26_1 doi: 10.1038/ncb2883 – ident: e_1_2_4_146_1 doi: 10.1038/nature18629 – ident: e_1_2_4_177_1 doi: 10.1101/cshperspect.a036376 – ident: e_1_2_4_253_1 doi: 10.1073/pnas.88.19.8661 – ident: e_1_2_4_162_1 doi: 10.1182/blood.2019004116 – ident: e_1_2_4_221_1 doi: 10.1016/j.jmb.2017.10.028 – ident: e_1_2_4_184_1 doi: 10.1016/S1097-2765(01)00214-3 – ident: e_1_2_4_233_1 doi: 10.1146/annurev.immunol.23.021704.115653 – ident: e_1_2_4_201_1 doi: 10.1038/sj.cdd.4402289 – ident: e_1_2_4_208_1 doi: 10.1042/BJ20101738 – ident: e_1_2_4_269_1 doi: 10.1074/jbc.M115.687731 – ident: e_1_2_4_148_1 doi: 10.1016/j.cell.2016.02.026 – ident: e_1_2_4_237_1 doi: 10.1111/apt.15030 – ident: e_1_2_4_65_1 doi: 10.1021/jm300060k – ident: e_1_2_4_99_1 doi: 10.1074/jbc.272.28.17255 – ident: e_1_2_4_302_1 doi: 10.1182/blood-2013-04-457671 – ident: e_1_2_4_262_1 doi: 10.1038/386517a0 – ident: e_1_2_4_105_1 doi: 10.1126/scisignal.aax8295 – ident: e_1_2_4_14_1 doi: 10.1038/s41586-019-1705-2 – ident: e_1_2_4_90_1 doi: 10.1021/acs.jmedchem.9b00318 – ident: e_1_2_4_290_1 doi: 10.1101/gad.14.16.2060 – ident: e_1_2_4_154_1 doi: 10.1016/j.molcel.2014.10.021 – volume: 11 start-page: 145 year: 2015 ident: e_1_2_4_153_1 article-title: Loss of Atg12, but not Atg5, in pro‐opiomelanocortin neurons exacerbates diet‐induced obesity publication-title: Autophagy – ident: e_1_2_4_151_1 doi: 10.1158/0008-5472.CAN-08-2655 – ident: e_1_2_4_202_1 doi: 10.1038/s41418-019-0347-0 – ident: e_1_2_4_193_1 doi: 10.1038/s41586-020-1951-3 – ident: e_1_2_4_203_1 doi: 10.1038/s41598-018-26775-w – ident: e_1_2_4_275_1 doi: 10.1038/s41418-018-0106-7 – ident: e_1_2_4_41_1 doi: 10.1038/nchembio711 – ident: e_1_2_4_235_1 doi: 10.1038/nature13683 – volume: 38 start-page: 828 year: 2017 ident: e_1_2_4_97_1 article-title: The selective NLRP3‐inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction publication-title: Eur Heart J – ident: e_1_2_4_79_1 doi: 10.1074/jbc.272.32.19641 – ident: e_1_2_4_160_1 doi: 10.1681/ASN.2015121376 – ident: e_1_2_4_278_1 doi: 10.1016/j.cell.2007.10.037 – ident: e_1_2_4_2_1 doi: 10.1073/pnas.1607769113 – ident: e_1_2_4_266_1 doi: 10.1038/s41467-019-09753-2 – ident: e_1_2_4_136_1 doi: 10.1016/j.bbabio.2009.06.009 – ident: e_1_2_4_272_1 doi: 10.1016/j.cell.2007.10.030 – ident: e_1_2_4_80_1 doi: 10.1182/blood-2016-03-704908 – ident: e_1_2_4_116_1 doi: 10.1038/nature15541 – ident: e_1_2_4_39_1 doi: 10.1038/nrm3722 – ident: e_1_2_4_44_1 doi: 10.1083/jcb.144.5.891 – ident: e_1_2_4_77_1 doi: 10.1038/sj.cdd.4401723 – ident: e_1_2_4_83_1 doi: 10.1126/science.275.5297.206 – ident: e_1_2_4_150_1 doi: 10.1038/cdd.2017.46 – ident: e_1_2_4_143_1 doi: 10.1016/S1097-2765(00)00136-2 – ident: e_1_2_4_158_1 doi: 10.1016/S1097-2765(02)00599-3 – ident: e_1_2_4_4_1 doi: 10.1196/annals.1427.014 – ident: e_1_2_4_63_1 doi: 10.1074/jbc.M111.222919 – ident: e_1_2_4_259_1 doi: 10.1038/s41589-019-0278-6 – ident: e_1_2_4_31_1 doi: 10.1038/nm.4229 – ident: e_1_2_4_220_1 doi: 10.1038/cdd.2013.37 – ident: e_1_2_4_50_1 doi: 10.1016/j.cell.2012.03.042 – ident: e_1_2_4_59_1 doi: 10.1038/34112 – ident: e_1_2_4_244_1 doi: 10.1126/sciimmunol.aar6689 – ident: e_1_2_4_223_1 doi: 10.1038/34214 – ident: e_1_2_4_199_1 doi: 10.1038/nri.2017.105 – ident: e_1_2_4_42_1 doi: 10.1016/j.tcb.2019.12.009 – ident: e_1_2_4_260_1 doi: 10.1073/pnas.1909546117 – ident: e_1_2_4_274_1 doi: 10.1016/S1074-7613(00)80609-3 – ident: e_1_2_4_112_1 doi: 10.1038/nature09857 – ident: e_1_2_4_70_1 doi: 10.1038/s41586-019-1770-6 – ident: e_1_2_4_142_1 doi: 10.1101/gad.13.19.2514 – ident: e_1_2_4_197_1 doi: 10.1073/pnas.1822157116 – ident: e_1_2_4_94_1 doi: 10.1161/ATVBAHA.117.309575 – ident: e_1_2_4_230_1 doi: 10.1073/pnas.1708247114 – ident: e_1_2_4_236_1 doi: 10.1038/nature15514 – ident: e_1_2_4_19_1 doi: 10.1172/JCI39987 – ident: e_1_2_4_289_1 doi: 10.3389/fcell.2020.00365 – ident: e_1_2_4_174_1 doi: 10.1007/s00018-017-2547-4 – ident: e_1_2_4_5_1 doi: 10.1038/cdd.2017.84 – ident: e_1_2_4_7_1 doi: 10.1038/nature03434 – ident: e_1_2_4_28_1 doi: 10.1111/imr.12908 – ident: e_1_2_4_30_1 doi: 10.1038/cr.2013.171 – ident: e_1_2_4_254_1 doi: 10.1021/ja074725f – ident: e_1_2_4_51_1 doi: 10.1146/annurev-cancerbio-030518-055844 – ident: e_1_2_4_144_1 doi: 10.1038/ki.2011.450 – ident: e_1_2_4_47_1 doi: 10.1038/s41580-018-0003-4 – ident: e_1_2_4_73_1 doi: 10.1016/j.cell.2019.05.026 – ident: e_1_2_4_119_1 doi: 10.3390/ijms20133328 – ident: e_1_2_4_12_1 doi: 10.1016/j.chembiol.2020.03.016 – ident: e_1_2_4_32_1 doi: 10.1016/0092-8674(95)90071-3 – ident: e_1_2_4_88_1 doi: 10.1073/pnas.94.21.11333 – ident: e_1_2_4_74_1 doi: 10.1038/s41418-017-0012-4 – ident: e_1_2_4_64_1 doi: 10.4161/cc.11.3.19060 – ident: e_1_2_4_285_1 doi: 10.1126/science.aad6872 – ident: e_1_2_4_156_1 doi: 10.1016/j.tips.2020.01.002 – ident: e_1_2_4_115_1 doi: 10.3389/fimmu.2014.00461 – ident: e_1_2_4_82_1 doi: 10.1002/cpt.1615 – ident: e_1_2_4_132_1 doi: 10.1083/jcb.200903124 – ident: e_1_2_4_246_1 doi: 10.1074/jbc.272.30.18542 – ident: e_1_2_4_271_1 doi: 10.1074/jbc.M109.040139 – ident: e_1_2_4_16_1 doi: 10.1242/jcs.215152 – ident: e_1_2_4_288_1 doi: 10.1002/JLB.3MA1219-398R – ident: e_1_2_4_20_1 doi: 10.4161/cc.23599 – ident: e_1_2_4_3_1 doi: 10.1002/eji.201545615 – ident: e_1_2_4_37_1 doi: 10.1053/j.gastro.2013.08.035 – ident: e_1_2_4_130_1 doi: 10.1016/j.it.2017.11.002 – ident: e_1_2_4_228_1 doi: 10.1038/nm.3547 – ident: e_1_2_4_55_1 doi: 10.1016/S0092-8674(00)00008-8 – ident: e_1_2_4_52_1 doi: 10.1038/s41586-019-1707-0 – ident: e_1_2_4_40_1 doi: 10.1038/cdd.2017.80 – ident: e_1_2_4_207_1 doi: 10.4049/jimmunol.1400590 – ident: e_1_2_4_170_1 doi: 10.1038/s41573-020-0071-y – ident: e_1_2_4_286_1 doi: 10.1038/nature22393 – ident: e_1_2_4_145_1 doi: 10.1073/pnas.1305538110 – ident: e_1_2_4_172_1 doi: 10.3390/v12080901 – ident: e_1_2_4_270_1 doi: 10.5414/CPP41441 – ident: e_1_2_4_277_1 doi: 10.1016/S0092-8674(00)00009-X – ident: e_1_2_4_167_1 doi: 10.1093/emboj/16.10.2794 – ident: e_1_2_4_56_1 doi: 10.1126/science.1207862 – ident: e_1_2_4_303_1 doi: 10.1002/eji.201747053 – ident: e_1_2_4_240_1 doi: 10.1016/S1074-7613(00)80450-1 – ident: e_1_2_4_307_1 doi: 10.1042/EBC20170021 – ident: e_1_2_4_178_1 doi: 10.1016/j.immuni.2013.06.018 – ident: e_1_2_4_284_1 doi: 10.12688/f1000research.21571.1 – ident: e_1_2_4_8_1 doi: 10.1038/cdd.2013.45 – ident: e_1_2_4_250_1 doi: 10.1083/jcb.201611168 – ident: e_1_2_4_293_1 doi: 10.1038/nature10273 – ident: e_1_2_4_157_1 doi: 10.1158/1078-0432.CCR-15-0685 – ident: e_1_2_4_18_1 doi: 10.1016/S0092-8674(00)81265-9 – ident: e_1_2_4_118_1 doi: 10.1016/j.cell.2018.04.036 – ident: e_1_2_4_249_1 doi: 10.1074/jbc.273.42.27084 – ident: e_1_2_4_22_1 doi: 10.1126/scitranslmed.aad3099 – ident: e_1_2_4_179_1 doi: 10.1038/nature13044 – ident: e_1_2_4_49_1 doi: 10.1038/nature18590 – ident: e_1_2_4_117_1 doi: 10.1038/nature10558 – ident: e_1_2_4_243_1 doi: 10.1155/2019/6175804 – volume: 8 year: 2018 ident: e_1_2_4_134_1 article-title: ASC‐ and caspase‐8‐dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages publication-title: Sci Rep – ident: e_1_2_4_206_1 doi: 10.1371/journal.ppat.1005910 – ident: e_1_2_4_211_1 doi: 10.1038/sj.cdd.4400370 – ident: e_1_2_4_276_1 doi: 10.1038/335440a0 – ident: e_1_2_4_76_1 doi: 10.1038/386619a0 – ident: e_1_2_4_45_1 doi: 10.1038/s41598-017-15106-0 – ident: e_1_2_4_209_1 doi: 10.1016/j.chom.2017.12.017 – ident: e_1_2_4_159_1 doi: 10.1073/pnas.1716578115 – ident: e_1_2_4_264_1 doi: 10.1038/s41467-018-07551-w – ident: e_1_2_4_17_1 doi: 10.1038/labinvest.2009.91 – ident: e_1_2_4_183_1 doi: 10.1038/nature03317 – ident: e_1_2_4_226_1 doi: 10.1073/pnas.1809548115 – ident: e_1_2_4_308_1 doi: 10.1096/fasebj.7.5.8462789 – ident: e_1_2_4_129_1 doi: 10.1007/s12035-012-8304-7 – ident: e_1_2_4_58_1 doi: 10.1016/j.celrep.2020.03.032 – ident: e_1_2_4_71_1 doi: 10.1038/nrd3627 – ident: e_1_2_4_60_1 doi: 10.1016/j.immuni.2017.11.013 – ident: e_1_2_4_187_1 doi: 10.1126/science.1249361 – ident: e_1_2_4_108_1 doi: 10.1038/nature08229 – ident: e_1_2_4_234_1 doi: 10.1016/j.tibs.2016.10.004 – ident: e_1_2_4_267_1 doi: 10.1126/science.6093263 – ident: e_1_2_4_282_1 doi: 10.15252/emmm.201810248 – ident: e_1_2_4_225_1 doi: 10.1038/s41467-020-16887-1 – ident: e_1_2_4_216_1 doi: 10.1200/JCO.2011.34.7898 – ident: e_1_2_4_261_1 doi: 10.1016/S1074-7613(00)80213-7 – ident: e_1_2_4_296_1 doi: 10.1016/j.cell.2015.05.056 – ident: e_1_2_4_38_1 doi: 10.1038/nrc2615 – ident: e_1_2_4_62_1 doi: 10.1111/bph.12416 – ident: e_1_2_4_11_1 doi: 10.3390/cancers12010164 – ident: e_1_2_4_66_1 doi: 10.1517/13543770903567077 – ident: e_1_2_4_155_1 doi: 10.1016/j.immuni.2018.06.011 – ident: e_1_2_4_309_1 doi: 10.1126/science.8080500 – ident: e_1_2_4_176_1 doi: 10.1038/s41598-018-32576-y – ident: e_1_2_4_256_1 doi: 10.1074/jbc.M109488200 – ident: e_1_2_4_291_1 doi: 10.1126/science.1059108 – ident: e_1_2_4_6_1 doi: 10.1093/jnci/89.23.1789 – ident: e_1_2_4_242_1 doi: 10.1038/s41580-018-0089-8 – ident: e_1_2_4_107_1 doi: 10.1038/s41586-020-2129-8 – ident: e_1_2_4_46_1 doi: 10.1002/eji.201545605 – ident: e_1_2_4_252_1 doi: 10.1016/j.molcel.2020.05.014 – ident: e_1_2_4_224_1 doi: 10.1038/s41590-017-0042-6 – ident: e_1_2_4_135_1 doi: 10.1073/pnas.0438011100 – ident: e_1_2_4_248_1 doi: 10.1104/pp.121.1.71 – ident: e_1_2_4_258_1 doi: 10.1038/s41586-019-1830-y – ident: e_1_2_4_13_1 doi: 10.4049/jimmunol.1400499 – ident: e_1_2_4_100_1 doi: 10.1016/j.molcel.2016.02.023 – ident: e_1_2_4_113_1 doi: 10.1038/cdd.2017.186 – ident: e_1_2_4_101_1 doi: 10.1073/pnas.94.20.10717 – ident: e_1_2_4_311_1 doi: 10.1016/j.celrep.2016.06.103 – ident: e_1_2_4_292_1 doi: 10.1002/prp2.365 – ident: e_1_2_4_299_1 doi: 10.1016/j.chembiol.2008.02.010 – ident: e_1_2_4_214_1 doi: 10.1038/nrm.2017.53 – ident: e_1_2_4_89_1 doi: 10.1021/acs.jmedchem.6b01751 – ident: e_1_2_4_205_1 doi: 10.1084/jem.20170347 – ident: e_1_2_4_122_1 doi: 10.1046/j.1471-4159.2003.02299.x – ident: e_1_2_4_104_1 doi: 10.1038/cddis.2016.437 – ident: e_1_2_4_196_1 doi: 10.1126/science.aau2818 – ident: e_1_2_4_255_1 doi: 10.1016/j.cell.2011.11.031 – ident: e_1_2_4_67_1 doi: 10.1083/jcb.201002060 – ident: e_1_2_4_91_1 doi: 10.1016/j.smim.2014.05.004 – ident: e_1_2_4_92_1 doi: 10.1016/j.cell.2009.05.021 – ident: e_1_2_4_126_1 doi: 10.1073/pnas.1708194114 – ident: e_1_2_4_72_1 doi: 10.1158/0008-5472.CAN-07-5173 – ident: e_1_2_4_21_1 doi: 10.1126/science.1092385 – ident: e_1_2_4_287_1 doi: 10.1083/jcb.200806072 – ident: e_1_2_4_35_1 doi: 10.1038/s41589-019-0277-7 – ident: e_1_2_4_213_1 doi: 10.1002/hep.24747 – ident: e_1_2_4_190_1 doi: 10.1038/nature20559 – ident: e_1_2_4_305_1 doi: 10.1002/jnr.20289 – ident: e_1_2_4_161_1 doi: 10.1038/s41419-018-0394-3 – ident: e_1_2_4_273_1 doi: 10.1074/jbc.C800128200 – ident: e_1_2_4_185_1 doi: 10.1002/med.21635 – ident: e_1_2_4_215_1 doi: 10.1016/j.cell.2014.04.019 – ident: e_1_2_4_96_1 doi: 10.1124/jpet.103.062034 – ident: e_1_2_4_166_1 doi: 10.1016/0140-6736(91)92978-B – ident: e_1_2_4_23_1 doi: 10.1038/nature03443 – ident: e_1_2_4_186_1 doi: 10.1101/cshperspect.a036368 – ident: e_1_2_4_54_1 doi: 10.1073/pnas.1414055112 – ident: e_1_2_4_109_1 doi: 10.4049/jimmunol.174.8.4942 – ident: e_1_2_4_33_1 doi: 10.1016/j.cell.2009.05.037 – ident: e_1_2_4_61_1 doi: 10.1038/nature03445 – ident: e_1_2_4_110_1 doi: 10.1074/jbc.M113.462341 – ident: e_1_2_4_294_1 doi: 10.1073/pnas.1403477111 – ident: e_1_2_4_281_1 doi: 10.1016/j.immuni.2016.02.020 – ident: e_1_2_4_29_1 doi: 10.1126/sciimmunol.aar6676 – ident: e_1_2_4_140_1 doi: 10.7554/eLife.44452 – ident: e_1_2_4_75_1 doi: 10.1016/j.jhep.2019.12.010 – ident: e_1_2_4_127_1 doi: 10.1038/nature03029 – volume: 19 start-page: 19 year: 2002 ident: e_1_2_4_247_1 article-title: The PYRIN‐CARD protein ASC is an activating adaptor for caspase‐1 publication-title: J Biol Chem – ident: e_1_2_4_280_1 doi: 10.1124/pr.54.3.375 – ident: e_1_2_4_304_1 doi: 10.1073/pnas.0511288103 – ident: e_1_2_4_98_1 doi: 10.1007/s40265-018-1026-z – ident: e_1_2_4_121_1 doi: 10.1002/hep.27597 – ident: e_1_2_4_139_1 doi: 10.1016/S0092-8674(00)80434-1 – ident: e_1_2_4_165_1 doi: 10.1016/0092-8674(89)90174-8 |
| SSID | ssj0005871 |
| Score | 2.689909 |
| SecondaryResourceType | review_article |
| Snippet | Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of... |
| SourceID | pubmedcentral proquest pubmed crossref wiley springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e106700 |
| SubjectTerms | Apoptosis Autophagy caspase Cell Death Disease - etiology EMBO07 EMBO37 Ferroptosis Homeostasis Humans Membrane permeability Mitochondrial permeability transition pore Mortality Necroptosis Necrosis Phagocytosis Pyroptosis Reagents Regulators Review RIPK1 Signal Transduction Signaling |
| Title | Cell death pathways: intricate connections and disease implications |
| URI | https://link.springer.com/article/10.15252/embj.2020106700 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2020106700 https://www.ncbi.nlm.nih.gov/pubmed/33439509 https://www.proquest.com/docview/2494075357 https://www.proquest.com/docview/2477503602 https://pubmed.ncbi.nlm.nih.gov/PMC7917554 |
| Volume | 40 |
| WOSCitedRecordID | wos000607265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1460-2075 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAdELj_JooKyMxAWkqMnasR1u7dIVINgDomJvkT1xxKIlRc0W1H-Px3lslwqQEJdIlh-J7XE8n2c8H8AzI0vn99lxjFzKWIhMxEZyFZcalRE6sS5vySbUbKbn8_ziXZg2PsRw4EYrI_yvaYEb2_SMPRQ11H21XzzAG4coaAnB9lSkRGLw6c1s7eWhA-YKxywi1XlnqaQm9n9pYHNnuqRuXvaaHEynm4pt2Jmmt_9Hn-7ArU4vZQetIN2FK67egRstU-X5Dtyc9MRw92AyccslK0l3ZERo_MOcNy_Zol4FxiHHkHxnwnWJhpm6ZJ0NiC0uOK_fh-Pp0cfJ67jjYojRA4oktoIupeaG2xS1hzEovGpXodM2MVXKpZZoSlk5jiKXNkN0aCVWuXOSYoGm_AFs1Se12wUmUuVxkzWy0qUwSE-ZWVuh1D6h0wj2-3kosAtUTnwZy4IACw1UQcNUrIcpgudDjW9tkI4_lN3rp7bolmtTeAzqgW3GMxXB0yHbDytZT0ztTs6ojCKbr0zGETxsJWF4Geder_OqVwRqQ0aGAhTEezOnXnwOwbyVx8tepYvgRS9N68_6fR-yIEV_7Wxx9P7w7Tr56B_rPYbtMbnyBNe7PdhanZ65J3Adv68WzekIrqq5HsG1Vx-mx-9GYfn9BElWK2k |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9UwFD4hoIEXUFSYoNbEF00Wttuu63jDBQIKNz5g5G1pz7p4yWUQ7gXCf29P9-N6JWpifFnStOvWs9P1fD2n5wN4p2Vp3To7CJFLGQqRiFBLnoalwlQLFRmbNWQT6XCozs6yLwuQd2dhmvwQ_YYbzQz_v6YJThvSHWUPpQ21F-bcIbyBT4MWOdy-JJy9QfwN346GszgP5VGX32gRscpaXyX1sfNLD_Nr0wOD82HcZO88nTdt_dp0sPZfRvUEVlvTlO01uvQUFmy9Do8bssr7dVjOO264Z5DndjxmJZmPjDiN7_T9ZJeN6qknHbIMKXzGn5iYMF2XrHUDsdFP8evP4evB_ml-GLZ0DCE6TBGFRtC51ExzE6NySAZJ2hVaZSJdxVwqibqUleUoMmkSRItGYpVZKykdaMxfwGJ9WdtNYCJOHXQyWlaqFBrpKhNjKpTKFVQcwE73IQpsc5UTZca4IMxCgipITMVMTAG87--4avJ0_KHtdvdti3bGTgoHQx22TXiSBvC2r3ZiJQeKru3lDbVJye0ro0EAG40q9A_j3Jl2zvoKIJ1Tkr4B5fGer6lH330-79RBZmfVBfChU6fZa_1-DIlXo78Ottg_-fhpVnz5j_e9geXD05Pj4vho-HkLVgYU2eMj8bZhcXp9Y1_BI7ydjibXr_3s-wGHQSz_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB5V23K8tKVcKaUYiReQoiZrx3F4g7QrjrKqEJX6FtkTRyxa0qq7BfXf43GO7bYCJMRLJMtHYnscz-cZzwfwQsvSun12GCKXMhQiEaGWPA1LhakWKjI2a8gm0vFYnZxkRyuQd3dhmvgQ_YEbrQz_v6YFbs_KqqPsobCh9rv55hDe0IdBixxuXxXEJTOA1f3Po-PDhaeH8rjLH7WIWGWttZJa2bvWxvLudEPlvOk52ZtPl5VbvzuNNv5LvzZhvVVO2ZtGmu7Biq234FZDV3m5BXfyjh3uPuS5nU5ZSQokI1bjn_py9ppN6rmnHbIMyYHG35mYMV2XrDUEsckVD_YHcDw6-JK_C1tChhAdqohCI-hmaqa5iVE5LIPC6XcVWmUiXcVcKom6lJXlKDJpEkSLRmKVWSspIGjMH8KgPq3tY2AiTh14MlpWqhQa6SkTYyqUyiVUHMBeNxEFttHKiTRjWhBqoYEqaJiKxTAF8LKvcdZE6vhD2Z1ubot2zc4KB0Qduk14kgbwvM92w0omFF3b0wsqk5LhV0bDAB41otC_jHOn3Dn9K4B0SUj6AhTJezmnnnz1Eb1TB5qdXhfAq06cFp_1-z4kXoz-2tni4NPbD4vk9j_Wewa3j_ZHxeH78ccncHdIrj3eFW8HBvPzC_sU1vDHfDI7322X3y-XYy2o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+death+pathways%3A+intricate+connections+and+disease+implications&rft.jtitle=The+EMBO+journal&rft.au=Kist%2C+Matthias&rft.au=Vucic%2C+Domagoj&rft.date=2021-03-01&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=40&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembj.2020106700&rft.externalDBID=10.15252%252Fembj.2020106700&rft.externalDocID=EMBJ2020106700 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |