Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia

Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal Jg. 39; H. 16; S. e105380 - n/a
Hauptverfasser: Scott‐Hewitt, Nicole, Perrucci, Fabio, Morini, Raffaella, Erreni, Marco, Mahoney, Matthew, Witkowska, Agata, Carey, Alanna, Faggiani, Elisa, Schuetz, Lisa Theresia, Mason, Sydney, Tamborini, Matteo, Bizzotto, Matteo, Passoni, Lorena, Filipello, Fabia, Jahn, Reinhard, Stevens, Beth, Matteoli, Michela
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 17.08.2020
Springer Nature B.V
John Wiley and Sons Inc
Schlagworte:
ISSN:0261-4189, 1460-2075, 1460-2075
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo , PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures. Synopsis Microglia help refine developing neural circuits through the elimination of supernumerary synapses. Here we show that exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglial‐mediated synapse pruning. Phosphatidylserine exposure at both hippocampal and retinogeniculate synapses coincides with the onset of synapse elimination and PS engulfment by microglia. Microglia‐mediated synapse elimination is dependent on TREM2 and exposed phosphatidylserine in vitro . Exposed phosphatidylserine is developmentally regulated across periods of pruning in both hippocampus and visual system. In vivo developmental phosphatidylserine exposure is not caspase 3‐dependent. Loss of C1q leads to elevated phosphatidylserine‐positive presynaptic inputs and reduced microglia engulfment. Graphical Abstract Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning.
AbstractList Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal "eat-me" signal involved in microglial-mediated pruning. In hippocampal neuron and microglia co-cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS-labeled material by microglia occurs during established developmental periods of microglial-mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial-mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures.Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal "eat-me" signal involved in microglial-mediated pruning. In hippocampal neuron and microglia co-cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS-labeled material by microglia occurs during established developmental periods of microglial-mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial-mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures.
Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures.
Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo , PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures. Synopsis Microglia help refine developing neural circuits through the elimination of supernumerary synapses. Here we show that exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglial‐mediated synapse pruning. Phosphatidylserine exposure at both hippocampal and retinogeniculate synapses coincides with the onset of synapse elimination and PS engulfment by microglia. Microglia‐mediated synapse elimination is dependent on TREM2 and exposed phosphatidylserine in vitro . Exposed phosphatidylserine is developmentally regulated across periods of pruning in both hippocampus and visual system. In vivo developmental phosphatidylserine exposure is not caspase 3‐dependent. Loss of C1q leads to elevated phosphatidylserine‐positive presynaptic inputs and reduced microglia engulfment. Graphical Abstract Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning.
Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures. Synopsis Microglia help refine developing neural circuits through the elimination of supernumerary synapses. Here we show that exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglial‐mediated synapse pruning. Phosphatidylserine exposure at both hippocampal and retinogeniculate synapses coincides with the onset of synapse elimination and PS engulfment by microglia. Microglia‐mediated synapse elimination is dependent on TREM2 and exposed phosphatidylserine in vitro. Exposed phosphatidylserine is developmentally regulated across periods of pruning in both hippocampus and visual system. In vivo developmental phosphatidylserine exposure is not caspase 3‐dependent. Loss of C1q leads to elevated phosphatidylserine‐positive presynaptic inputs and reduced microglia engulfment. Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning.
Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures. Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning.
Author Scott‐Hewitt, Nicole
Erreni, Marco
Faggiani, Elisa
Filipello, Fabia
Perrucci, Fabio
Tamborini, Matteo
Carey, Alanna
Schuetz, Lisa Theresia
Mahoney, Matthew
Jahn, Reinhard
Stevens, Beth
Witkowska, Agata
Mason, Sydney
Bizzotto, Matteo
Passoni, Lorena
Morini, Raffaella
Matteoli, Michela
AuthorAffiliation 7 Department of Molecular Pharmacology and Cell Biology Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
8 University of Göttingen Göttingen Germany
4 Department of Biomedical Sciences Humanitas University Pieve Emanuele (MI) Italy
3 Laboratory of Pharmacology and Brain Pathology Neurocenter Humanitas Clinical and Research Center ‐ IRCCS Rozzano (MI) Italy
9 Howard Hughes Medical Institute Boston Children's Hospital Boston MA USA
10 CNR Institute of Neuroscience Milano Italy
11 Present address: Department of Neurology Washington University St. Louis MO USA
6 Laboratory of Neurobiology Max Planck Institute for Biophysical Chemistry Göttingen Germany
1 F.M. Kirby Center for Neurobiology Boston Children's Hospital Boston MA USA
2 Stanley Center for Psychiatric Research The Broad Institute of MIT and Harvard Cambridge MA USA
5 Unit of Advanced Optical Microscopy Humanitas Clinical and Research Center ‐ IRCCS Rozzano (MI) Italy
AuthorAffiliation_xml – name: 3 Laboratory of Pharmacology and Brain Pathology Neurocenter Humanitas Clinical and Research Center ‐ IRCCS Rozzano (MI) Italy
– name: 7 Department of Molecular Pharmacology and Cell Biology Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
– name: 11 Present address: Department of Neurology Washington University St. Louis MO USA
– name: 2 Stanley Center for Psychiatric Research The Broad Institute of MIT and Harvard Cambridge MA USA
– name: 9 Howard Hughes Medical Institute Boston Children's Hospital Boston MA USA
– name: 5 Unit of Advanced Optical Microscopy Humanitas Clinical and Research Center ‐ IRCCS Rozzano (MI) Italy
– name: 8 University of Göttingen Göttingen Germany
– name: 4 Department of Biomedical Sciences Humanitas University Pieve Emanuele (MI) Italy
– name: 10 CNR Institute of Neuroscience Milano Italy
– name: 1 F.M. Kirby Center for Neurobiology Boston Children's Hospital Boston MA USA
– name: 6 Laboratory of Neurobiology Max Planck Institute for Biophysical Chemistry Göttingen Germany
Author_xml – sequence: 1
  givenname: Nicole
  surname: Scott‐Hewitt
  fullname: Scott‐Hewitt, Nicole
  organization: F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard
– sequence: 2
  givenname: Fabio
  orcidid: 0000-0001-6810-471X
  surname: Perrucci
  fullname: Perrucci, Fabio
  organization: Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center ‐ IRCCS, Department of Biomedical Sciences, Humanitas University
– sequence: 3
  givenname: Raffaella
  surname: Morini
  fullname: Morini, Raffaella
  organization: Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center ‐ IRCCS
– sequence: 4
  givenname: Marco
  surname: Erreni
  fullname: Erreni, Marco
  organization: Unit of Advanced Optical Microscopy, Humanitas Clinical and Research Center ‐ IRCCS
– sequence: 5
  givenname: Matthew
  surname: Mahoney
  fullname: Mahoney, Matthew
  organization: F.M. Kirby Center for Neurobiology, Boston Children's Hospital
– sequence: 6
  givenname: Agata
  surname: Witkowska
  fullname: Witkowska, Agata
  organization: Laboratory of Neurobiology, Max Planck Institute for Biophysical Chemistry, Department of Molecular Pharmacology and Cell Biology, Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)
– sequence: 7
  givenname: Alanna
  surname: Carey
  fullname: Carey, Alanna
  organization: F.M. Kirby Center for Neurobiology, Boston Children's Hospital
– sequence: 8
  givenname: Elisa
  surname: Faggiani
  fullname: Faggiani, Elisa
  organization: Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center ‐ IRCCS
– sequence: 9
  givenname: Lisa Theresia
  orcidid: 0000-0003-4865-8218
  surname: Schuetz
  fullname: Schuetz, Lisa Theresia
  organization: Department of Biomedical Sciences, Humanitas University
– sequence: 10
  givenname: Sydney
  surname: Mason
  fullname: Mason, Sydney
  organization: F.M. Kirby Center for Neurobiology, Boston Children's Hospital
– sequence: 11
  givenname: Matteo
  surname: Tamborini
  fullname: Tamborini, Matteo
  organization: Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center ‐ IRCCS
– sequence: 12
  givenname: Matteo
  surname: Bizzotto
  fullname: Bizzotto, Matteo
  organization: Department of Biomedical Sciences, Humanitas University
– sequence: 13
  givenname: Lorena
  surname: Passoni
  fullname: Passoni, Lorena
  organization: Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center ‐ IRCCS
– sequence: 14
  givenname: Fabia
  surname: Filipello
  fullname: Filipello, Fabia
  organization: Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center ‐ IRCCS, Department of Biomedical Sciences, Humanitas University, Department of Neurology, Washington University
– sequence: 15
  givenname: Reinhard
  orcidid: 0000-0003-1542-3498
  surname: Jahn
  fullname: Jahn, Reinhard
  organization: Laboratory of Neurobiology, Max Planck Institute for Biophysical Chemistry, University of Göttingen
– sequence: 16
  givenname: Beth
  orcidid: 0000-0003-4226-1201
  surname: Stevens
  fullname: Stevens, Beth
  email: beth.stevens@childrens.harvard.edu
  organization: F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Howard Hughes Medical Institute, Boston Children's Hospital
– sequence: 17
  givenname: Michela
  orcidid: 0000-0002-3569-7843
  surname: Matteoli
  fullname: Matteoli, Michela
  email: michela.matteoli@hunimed.eu
  organization: Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center ‐ IRCCS, CNR Institute of Neuroscience
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32657463$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS3Uik4Le1YoEhs2KbbjRyIhJKjKoxrEBtbG41zPeJTYwU4K4dfj6bSUVgJWtuXzHR-fe4wOfPCA0BOCTwmnnL6AfrU9pZhignlV4wdoQZjAJcWSH6AFpoKUjNTNETpOaYsx5rUkD9FRRQWXTFQL9HUZjO4K-DFC9LpzP_Xogi-CLYZNSMMmH9u5SxCdh6KH1ukRUtHCJXRh6MGPGU6z18PoTDHEyTu_LlZz0TsTw7pz-hE6tDobPL5eT9CXt-efz96Xy0_vPpy9XpaG1xyXzGqdf1HbvCHGGqltKzQ0QoIABpYxqHDTcmE5xrQ21lLTSqZbsmob2VbVCXq19x2mVc5pcrSoOzVE1-s4q6Cdunvj3Uatw6WSjDaSkWzw_Noghm8TpFH1LhnoOu0hTElRRiteUUJllj67J92GaVffTlWxitcCi6x6-mei31Fuys8CsRfkqlKKYJVx41X_OaDrFMHqaspqN2V1O-UM4nvgjfc_kJd75LvrYP6vXp1_fHNxByd7PGXSryHe_vivT_4CmELO8A
CitedBy_id crossref_primary_10_1002_glia_24522
crossref_primary_10_1007_s12035_025_05144_5
crossref_primary_10_1016_j_chemphyslip_2024_105422
crossref_primary_10_1016_j_neuropharm_2025_110383
crossref_primary_10_1155_np_6103242
crossref_primary_10_1038_s41580_023_00604_z
crossref_primary_10_1111_nyas_15010
crossref_primary_10_1186_s40001_023_01602_9
crossref_primary_10_1016_j_bbi_2023_09_006
crossref_primary_10_1016_j_neuroscience_2024_11_074
crossref_primary_10_7554_eLife_63532
crossref_primary_10_1016_j_immuni_2025_06_002
crossref_primary_10_15252_embj_2020107121
crossref_primary_10_3389_fncel_2021_660523
crossref_primary_10_1016_j_tins_2023_11_010
crossref_primary_10_1016_j_neubiorev_2024_105834
crossref_primary_10_1016_j_celrep_2025_115409
crossref_primary_10_3233_JAD_221042
crossref_primary_10_1016_S1474_4422_23_00247_8
crossref_primary_10_7554_eLife_101779
crossref_primary_10_1016_j_bcp_2023_115621
crossref_primary_10_1038_s41573_023_00823_1
crossref_primary_10_3389_fncel_2022_918442
crossref_primary_10_1016_j_actbio_2023_07_039
crossref_primary_10_1007_s11064_021_03419_6
crossref_primary_10_1016_j_molcel_2021_02_025
crossref_primary_10_3390_biomedicines12092087
crossref_primary_10_1016_j_cell_2024_01_012
crossref_primary_10_1016_j_jlr_2025_100872
crossref_primary_10_4103_1673_5374_322423
crossref_primary_10_1016_j_drudis_2024_104093
crossref_primary_10_4103_NRR_NRR_D_24_01330
crossref_primary_10_1016_j_conb_2023_102732
crossref_primary_10_1146_annurev_cellbio_120420_014634
crossref_primary_10_1016_j_it_2020_07_006
crossref_primary_10_1016_j_nbd_2023_106263
crossref_primary_10_3389_fimmu_2023_1145649
crossref_primary_10_1016_j_biocel_2022_106264
crossref_primary_10_1146_annurev_neuro_110920_023056
crossref_primary_10_3389_fneur_2021_720201
crossref_primary_10_1177_24705470211029254
crossref_primary_10_3389_fncel_2023_1106547
crossref_primary_10_1016_j_talanta_2024_125762
crossref_primary_10_1038_s41577_021_00643_7
crossref_primary_10_3390_biom11111598
crossref_primary_10_1038_s41420_024_01837_3
crossref_primary_10_3390_cells13020177
crossref_primary_10_1038_s41593_024_01818_w
crossref_primary_10_1073_pnas_2303392120
crossref_primary_10_1038_s41386_025_02162_8
crossref_primary_10_3390_cells11121943
crossref_primary_10_1186_s12967_025_06799_3
crossref_primary_10_1111_jnc_70009
crossref_primary_10_15252_embj_2021107915
crossref_primary_10_1016_j_bioactmat_2024_05_038
crossref_primary_10_1016_j_immuni_2022_04_008
crossref_primary_10_1007_s00401_025_02888_1
crossref_primary_10_1016_j_conb_2020_12_001
crossref_primary_10_1016_j_bbi_2024_08_010
crossref_primary_10_1016_j_bbi_2024_12_018
crossref_primary_10_1111_jnc_15689
crossref_primary_10_1186_s40478_022_01404_w
crossref_primary_10_1002_dneu_22814
crossref_primary_10_1016_j_tips_2024_01_012
crossref_primary_10_1016_j_bbi_2025_106071
crossref_primary_10_1007_s12035_022_03100_1
crossref_primary_10_1016_j_neuron_2020_09_018
crossref_primary_10_1016_j_it_2024_03_009
crossref_primary_10_1038_s41380_024_02518_4
crossref_primary_10_3389_fimmu_2021_640937
crossref_primary_10_1016_j_neuron_2022_10_015
crossref_primary_10_1016_j_jneuroim_2025_578600
crossref_primary_10_1038_s41467_024_51163_6
crossref_primary_10_1038_s41467_025_59849_1
crossref_primary_10_1016_j_jbc_2025_110441
crossref_primary_10_3389_fncel_2022_953534
crossref_primary_10_1038_s41423_021_00751_3
crossref_primary_10_1177_25152564231156994
crossref_primary_10_1177_10738584241254118
crossref_primary_10_1016_j_bbadis_2023_166837
crossref_primary_10_3390_cells14171349
crossref_primary_10_1002_wsbm_1545
crossref_primary_10_2147_JIR_S410562
crossref_primary_10_1111_bpa_13108
crossref_primary_10_1038_s41586_025_09362_8
crossref_primary_10_2174_011570159X327960240823065729
crossref_primary_10_1146_annurev_immunol_101921_035639
crossref_primary_10_1080_15622975_2021_1961503
crossref_primary_10_15252_embj_2022113246
crossref_primary_10_1002_glia_24145
crossref_primary_10_1523_JNEUROSCI_1660_20_2020
crossref_primary_10_1016_j_neures_2021_01_003
crossref_primary_10_4103_NRR_NRR_D_24_01412
crossref_primary_10_1016_j_arr_2024_102636
crossref_primary_10_1523_JNEUROSCI_2256_23_2024
crossref_primary_10_3390_biom12111722
crossref_primary_10_1038_s41598_021_01616_5
crossref_primary_10_3389_fimmu_2022_845897
crossref_primary_10_1038_s42003_025_08482_1
crossref_primary_10_1093_jleuko_qiae098
crossref_primary_10_1016_j_immuni_2022_03_018
crossref_primary_10_1186_s13024_023_00665_w
crossref_primary_10_1038_s41589_020_00688_0
crossref_primary_10_1016_j_immuni_2025_04_022
crossref_primary_10_1016_j_brainresbull_2023_110664
crossref_primary_10_1002_glia_24252
crossref_primary_10_1007_s12035_022_03133_6
crossref_primary_10_1111_ejn_15225
crossref_primary_10_1073_pnas_2500116122
crossref_primary_10_1007_s11064_022_03742_6
crossref_primary_10_1111_bph_16328
crossref_primary_10_1111_jnc_15241
crossref_primary_10_1016_j_bbcan_2024_189172
crossref_primary_10_1084_jem_20202304
crossref_primary_10_1186_s11658_023_00472_7
crossref_primary_10_1111_brv_12797
crossref_primary_10_1186_s13024_021_00440_9
crossref_primary_10_1038_s41577_020_00487_7
crossref_primary_10_3390_cells10113162
crossref_primary_10_1016_j_conb_2024_102877
crossref_primary_10_3389_fcell_2021_661486
crossref_primary_10_1016_j_nbd_2020_105072
crossref_primary_10_1242_bio_058990
crossref_primary_10_3389_fncel_2024_1317125
crossref_primary_10_1038_s41380_023_02024_z
crossref_primary_10_1016_j_immuni_2025_08_016
crossref_primary_10_1016_j_neuron_2025_04_006
crossref_primary_10_1016_j_neuron_2025_04_004
crossref_primary_10_1016_j_cub_2024_09_018
crossref_primary_10_1038_s41467_023_37304_3
crossref_primary_10_1038_s41380_024_02534_4
crossref_primary_10_3389_fimmu_2022_958273
crossref_primary_10_1016_j_nbd_2023_106313
crossref_primary_10_1038_s41586_023_06713_1
crossref_primary_10_3390_ijms25020817
crossref_primary_10_1186_s13024_024_00720_0
crossref_primary_10_1084_jem_20202446
crossref_primary_10_1242_dev_202407
crossref_primary_10_1016_j_jbc_2022_102685
crossref_primary_10_1016_j_pharmthera_2023_108565
crossref_primary_10_3389_fcell_2020_611269
crossref_primary_10_1016_j_mcn_2021_103679
crossref_primary_10_1042_BST20211254
crossref_primary_10_1093_cercor_bhad313
crossref_primary_10_1016_j_neuron_2020_11_007
crossref_primary_10_1038_s41420_025_02538_1
crossref_primary_10_3389_fnagi_2022_909303
crossref_primary_10_3389_fnagi_2022_975176
crossref_primary_10_3389_fcell_2023_1193130
crossref_primary_10_1016_j_bbi_2024_09_034
crossref_primary_10_1002_advs_202400064
crossref_primary_10_1016_j_conb_2023_102692
crossref_primary_10_1016_j_immuni_2024_11_003
crossref_primary_10_1002_bies_202100021
crossref_primary_10_1038_s41593_022_01184_5
crossref_primary_10_7554_eLife_101779_3
crossref_primary_10_15252_embj_2022111790
crossref_primary_10_1111_gbb_70019
crossref_primary_10_1016_j_jbc_2022_102113
crossref_primary_10_1016_j_immuni_2023_01_008
crossref_primary_10_1016_j_jbc_2021_100411
crossref_primary_10_1111_acel_70003
crossref_primary_10_1016_j_bbih_2021_100301
crossref_primary_10_1038_s41380_023_02326_2
crossref_primary_10_1007_s12264_021_00795_5
crossref_primary_10_1111_febs_16190
crossref_primary_10_1038_s41467_023_41502_4
crossref_primary_10_1186_s13024_025_00876_3
crossref_primary_10_1002_glia_24574
crossref_primary_10_1038_s41582_022_00749_z
crossref_primary_10_3389_fnins_2022_840266
crossref_primary_10_3389_fnmol_2022_896314
crossref_primary_10_1016_j_bbi_2022_09_014
crossref_primary_10_1016_j_neuint_2020_104878
crossref_primary_10_1093_neuonc_noad214
crossref_primary_10_1126_science_abb8587
crossref_primary_10_1016_j_pharmthera_2024_108606
crossref_primary_10_1016_j_immuni_2023_12_002
crossref_primary_10_1038_s41380_025_02949_7
crossref_primary_10_1111_jnc_16258
crossref_primary_10_1186_s12915_025_02360_2
crossref_primary_10_1016_j_immuni_2023_07_005
crossref_primary_10_3389_fcell_2025_1540052
crossref_primary_10_3389_fnins_2022_1072667
crossref_primary_10_1016_j_conb_2022_102674
crossref_primary_10_1177_10738584211070273
crossref_primary_10_3390_cells11121871
crossref_primary_10_1002_glia_24323
crossref_primary_10_1177_10738584231170167
crossref_primary_10_4049_jimmunol_2200597
crossref_primary_10_1007_s00406_022_01532_3
crossref_primary_10_1021_acschemneuro_5c00214
crossref_primary_10_1038_s41598_025_11528_3
crossref_primary_10_1016_j_colsurfb_2021_111668
crossref_primary_10_1038_s41380_025_02997_z
crossref_primary_10_1016_j_neuroscience_2025_03_033
crossref_primary_10_1038_s44319_025_00452_2
crossref_primary_10_1002_glia_24318
crossref_primary_10_1016_j_neuropharm_2021_108806
crossref_primary_10_1126_science_adh7906
crossref_primary_10_1523_JNEUROSCI_1208_24_2024
crossref_primary_10_1111_cns_14455
crossref_primary_10_3390_ijms25073819
crossref_primary_10_3390_ijms251910535
crossref_primary_10_1038_s41380_022_01561_3
crossref_primary_10_15252_embj_2020105924
crossref_primary_10_3390_biom14080964
crossref_primary_10_1016_j_expneurol_2022_114061
crossref_primary_10_1016_j_pneurobio_2022_102282
crossref_primary_10_1088_2516_1091_ac8dcf
crossref_primary_10_1111_ejn_15960
crossref_primary_10_1523_JNEUROSCI_1170_24_2024
crossref_primary_10_1016_j_immuni_2021_09_014
crossref_primary_10_1186_s12944_025_02633_3
crossref_primary_10_1093_brain_awab337
crossref_primary_10_1161_STROKEAHA_124_049265
crossref_primary_10_3390_ijms26062722
crossref_primary_10_1038_s43587_022_00281_1
crossref_primary_10_1111_acel_13761
crossref_primary_10_1038_s41582_025_01073_y
crossref_primary_10_7554_eLife_76707
crossref_primary_10_1007_s00281_023_00989_1
crossref_primary_10_1016_j_neuron_2025_05_009
crossref_primary_10_1097_YCO_0000000000000696
crossref_primary_10_3389_fncel_2021_680345
crossref_primary_10_3389_fpubh_2023_1268325
crossref_primary_10_1016_j_heliyon_2024_e34182
crossref_primary_10_1016_j_neuron_2025_06_020
crossref_primary_10_4103_1673_5374_317960
crossref_primary_10_1038_s41583_021_00507_y
crossref_primary_10_3389_fimmu_2020_599771
crossref_primary_10_3390_ijms242417297
crossref_primary_10_1111_ejn_16262
crossref_primary_10_3389_fnmol_2021_720899
crossref_primary_10_4103_1673_5374_385854
crossref_primary_10_1159_000541379
crossref_primary_10_1016_j_arr_2024_102596
crossref_primary_10_1002_glia_24654
crossref_primary_10_1016_j_neuroscience_2025_07_019
crossref_primary_10_1073_pnas_2205425119
crossref_primary_10_1016_j_immuni_2023_07_012
crossref_primary_10_1016_j_nbd_2025_106817
crossref_primary_10_1016_j_pnpbp_2024_111114
crossref_primary_10_1111_nyas_15105
crossref_primary_10_3389_fcell_2022_947769
crossref_primary_10_3389_fncel_2020_600656
crossref_primary_10_1186_s13024_025_00870_9
crossref_primary_10_1007_s12264_024_01260_9
crossref_primary_10_1038_s41591_025_03565_2
crossref_primary_10_1111_cns_14473
crossref_primary_10_3233_JAD_240042
crossref_primary_10_1016_j_phrs_2020_105253
crossref_primary_10_3390_biom14101293
crossref_primary_10_3390_biomedicines11082240
crossref_primary_10_1038_s41467_023_40934_2
crossref_primary_10_1186_s12974_023_02984_7
Cites_doi 10.1083/jcb.200108080
10.1038/nrn3710
10.1038/emboj.2013.107
10.1523/JNEUROSCI.09-08-02982.1989
10.1159/000024451
10.1038/ncb1279
10.1016/j.neuron.2017.02.042
10.1038/s41467-018-03566-5
10.1016/j.cellimm.2012.02.001
10.1038/s41592-019-0582-9
10.4049/jimmunol.148.7.2207
10.1126/science.1202529
10.1091/mbc.E09-08-0691
10.1038/nature12776
10.1016/j.cell.2015.01.049
10.1371/journal.pbio.1000527
10.1038/s41593-019-0419-y
10.1038/s41577-019-0167-y
10.1016/j.neuron.2012.03.026
10.4049/jimmunol.177.6.3520
10.1038/nature06329
10.1016/j.nbd.2007.11.004
10.1186/s13075-015-0565-x
10.1126/science.aad8373
10.1002/cbic.200400097
10.1189/jlb.0902433
10.7554/eLife.15224
10.1146/annurev-neuro-061010-113810
10.1073/pnas.1610403113
10.1152/jn.01321.2004
10.1038/nn1218
10.1007/s004410000178
10.1038/s41419-018-1155-z
10.1371/journal.pbio.2005970
10.1038/s41598-019-43535-6
10.1016/j.immuni.2019.12.004
10.1083/jcb.201005100
10.1016/j.neuron.2014.10.051
10.1038/s41598-018-38363-z
10.1016/j.immuni.2018.04.016
10.1038/sj.cdd.4400856
10.3389/fncel.2016.00288
10.1016/j.cell.2007.10.036
10.1021/cn3000197
10.1016/j.neuron.2018.09.017
10.1073/pnas.1901067116
10.3389/fphar.2012.00027
10.1126/science.274.5290.1133
10.1038/nature09583
10.1038/s41593-018-0296-9
10.1002/glia.23508
10.1016/0163-1047(91)80134-Z
10.1021/bi00187a035
10.1073/pnas.1114799108
10.1053/j.gastro.2012.10.040
10.1017/S0952523805225154
10.1016/j.neuron.2006.07.007
10.1016/S0022-2275(20)42702-6
10.4049/jimmunol.180.4.2329
10.1038/nature18283
10.1083/jcb.201305094
10.1074/jbc.M112.341339
10.1007/s10495-011-0601-5
10.1038/nrc3847
10.1016/S0896-6273(01)00548-7
10.1073/pnas.1722613115
10.1074/jbc.M611090200
10.1126/science.1252809
10.1101/lm.2154311
10.1007/s11481-007-9090-2
10.1038/nm.4397
10.1016/j.neuron.2018.10.014
10.1529/biophysj.105.069617
10.1126/science.1110647
10.1016/j.conb.2007.01.005
10.15252/embj.2019104136
10.1084/jem.182.5.1545
10.1074/jbc.272.47.29411
10.1016/j.celrep.2018.07.095
10.1016/S0163-7827(03)00025-0
ContentType Journal Article
Copyright The Author(s) 2020
2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license
2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: 2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license
– notice: 2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.2020105380
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts

MEDLINE


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Nicole Scott‐Hewitt et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC7429741
32657463
10_15252_embj_2020105380
EMBJ2020105380
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Fondazione Umberto Veronesi (Umberto Veronesi Foundation)
  funderid: 10.13039/501100004710
– fundername: National Institute on Aging (NIA)
  grantid: T32‐AG000222
  funderid: 10.13039/100000049
– fundername: Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
  grantid: RF‐201602361571
  funderid: 10.13039/501100003197
– fundername: Fondazione Cariplo (Cariplo Foundation)
  grantid: 2018‐0364
  funderid: 10.13039/501100002803
– fundername: National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R01‐NS071008; R01‐NS092578
  funderid: 10.13039/100000065
– fundername: Ministero dell'Istruzione, dell'Universitàe della Ricerca (MIUR)
  grantid: 2017A9MK4R
  funderid: 10.13039/501100003407
– fundername: Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
  funderid: RF‐201602361571
– fundername: National Institute on Aging (NIA)
  funderid: T32‐AG000222
– fundername: Fondazione Umberto Veronesi (Umberto Veronesi Foundation)
– fundername: Ministero dell'Istruzione, dell'Universitàe della Ricerca (MIUR)
  funderid: 2017A9MK4R
– fundername: National Institute of Neurological Disorders and Stroke (NINDS)
  funderid: R01‐NS071008; R01‐NS092578
– fundername: Fondazione Cariplo (Cariplo Foundation)
  funderid: 2018‐0364
– fundername: NIMH NIH HHS
  grantid: P50 MH112491
– fundername: NIA NIH HHS
  grantid: T32 AG000222
– fundername: NINDS NIH HHS
  grantid: RF1 NS092578
– fundername: NINDS NIH HHS
  grantid: R01 NS071008
– fundername: NICHD NIH HHS
  grantid: U54 HD090255
– fundername: NINDS NIH HHS
  grantid: R01 NS092578
– fundername: ;
– fundername: ;
  grantid: T32‐AG000222
– fundername: ;
  grantid: RF‐201602361571
– fundername: ;
  grantid: 2018‐0364
– fundername: ;
  grantid: R01‐NS071008; R01‐NS092578
– fundername: ;
  grantid: 2017A9MK4R
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
-Q-
AAMMB
AASML
AAYXX
ABZEH
AEFGJ
AGXDD
AIDQK
AIDYY
AJAOE
CITATION
NAO
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
ESTFP
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33
IEDL.DBID 24P
ISICitedReferencesCount 296
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000563278500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0261-4189
1460-2075
IngestDate Tue Sep 30 15:48:15 EDT 2025
Wed Oct 01 15:06:02 EDT 2025
Mon Oct 06 17:24:23 EDT 2025
Wed Feb 19 02:08:41 EST 2025
Sat Nov 29 03:03:08 EST 2025
Tue Nov 18 22:19:32 EST 2025
Wed Jan 22 16:32:26 EST 2025
Fri Feb 21 02:37:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords phosphatidylserine
synapse pruning
C1q
TREM2
microglia
Language English
License Attribution-NonCommercial-NoDerivs
2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
See also: G Peet et al (August 2020)
ORCID 0000-0001-6810-471X
0000-0003-4865-8218
0000-0003-4226-1201
0000-0003-1542-3498
0000-0002-3569-7843
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2020105380
PMID 32657463
PQID 2434358606
PQPubID 35985
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7429741
proquest_miscellaneous_2423532127
proquest_journals_2434358606
pubmed_primary_32657463
crossref_citationtrail_10_15252_embj_2020105380
crossref_primary_10_15252_embj_2020105380
wiley_primary_10_15252_embj_2020105380_EMBJ2020105380
springer_journals_10_15252_embj_2020105380
PublicationCentury 2000
PublicationDate 17 August 2020
PublicationDateYYYYMMDD 2020-08-17
PublicationDate_xml – month: 08
  year: 2020
  text: 17 August 2020
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2020
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Shirotani, Hori, Yoshizaki, Higuchi, Colonna, Saito, Hashimoto, Saido, Iwata (CR62) 2019; 9
Tremblay, Lowery, Majewska (CR71) 2010; 8
Neher, Neniskyte, Brown (CR47) 2012; 3
Sapar, Ji, Wang, Poe, Dubey, Ren, Ni, Han (CR55) 2018; 24
Wang, Cella, Mallinson, Ulrich, Young, Robinette, Gilfillan, Krishnan, Sudhakar, Zinselmeyer (CR76) 2015; 160
Murray, Cuccia, Ianoul, Cheetham, Johnston (CR45) 2004; 5
Martin, Leffler, Blom (CR41) 2012; 287
Graham, DeRyckere, Davies, Earp (CR20) 2014; 14
Segawa, Suzuki, Nagata (CR59) 2011; 108
CR37
Chan, Gray, Pak, Fong (CR9) 2015; 17
Huberman (CR31) 2007; 17
Martin, Reutelingsperger, McGahon, Rader, van Schie, LaFace, Green (CR39) 1995; 182
Suzuki, Umeda, Sims, Nagata (CR68) 2010; 468
Turnbull, Gilfillan, Cella, Aoshi, Miller, Piccio, Hernandez, Colonna (CR72) 2006; 177
Menna, Zambetti, Morini, Donzelli, Disanza, Calvigioni, Braida, Nicolini, Orlando, Fossati (CR44) 2013; 32
Parhizkar, Arzberger, Brendel, Kleinberger, Deussing, Focke, Nuscher, Xiong, Ghasemigharagoz, Katzmarski (CR52) 2019; 22
McQuin, Goodman, Chernyshev, Kamentsky, Cimini, Karhohs, Doan, Ding, Rafelski, Thirstrup (CR43) 2018; 16
Schafer, Lehrman, Heller, Stevens (CR57) 2014; 88
Brown, Neher (CR5) 2014; 15
Fernandez, Araç, Ubach, Gerber, Shin, Gao, Anderson, Südhof, Rizo (CR18) 2001; 32
Fadok, Xue, Henson (CR17) 2001; 8
Filipello, Morini, Corradini, Zerbi, Canzi, Michalski, Erreni, Markicevic, Starvaggi‐Cucuzza, Otero (CR19) 2018; 48
Vasek, Garber, Dorsey, Durrant, Bollman, Soung, Yu, Perez‐Torres, Frouin, Wilton (CR74) 2016; 534
Hong, Lee, Lee, Choi, Oh, Jang, Hwang, Kim, Jung, Kim (CR27) 2019; 116
Werneburg, Jung, Kunjamma, Ha, Luciano, Willis, Gao, Biscola, Havton, Crocker (CR78) 2020; 52
Hoffmann, deCathelineau, Ogden, Leverrier, Bratton, Daleke, Ridley, Fadok, Henson (CR25) 2001; 155
Györffy, Kun, Török, Bulyáki, Borhegyi, Gulyássy, Kis, Szocsics, Micsonai, Matkó (CR23) 2018; 115
Hua, Smith (CR29) 2004; 7
Berg, Kutra, Kroeger, Straehle, Kausler, Haubold, Schiegg, Ales, Beier, Rudy (CR4) 2019; 16
Bader Lange, Cenini, Piroddi, Abdul, Sultana, Galli, Memo, Butterfield (CR1) 2008; 29
Correale, Genua, Vetrano, Mazzini, Martinoli, Spinelli, Arena, Peyrin‐Biroulet, Caprioli, Passini (CR11) 2013; 144
Suzuki, Imanishi, Nagata (CR69) 2016; 113
Xu, Baldridge, Chi, Burd, Graham (CR79) 2013; 202
Gunner, Cheadle, Johnson, Ayata, Badimon, Mondo, Nagy, Liu, Bemiller, Kim (CR22) 2019; 22
Schafer, Lehrman, Kautzman, Koyama, Mardinly, Yamasaki, Ransohoff, Greenberg, Barres, Stevens (CR56) 2012; 74
Hong, Beja‐Glasser, Nfonoyim, Frouin, Li, Ramakrishnan, Merry, Shi, Rosenthal, Barres (CR26) 2016; 352
Lemke (CR35) 2019; 19
Baudry, Massicotte, Hauge (CR3) 1991; 55
Dennison, Bowen, Brunger, Lentz (CR14) 2006; 90
Katz, Shatz (CR33) 1996; 274
Zhang, Hui, Chapman, Jackson (CR80) 2009; 20
Lehrman, Wilton, Litvina, Welsh, Chang, Frouin, Walker, Heller, Umemori, Chen (CR34) 2018; 100
Ziburkus, Guido (CR81) 2006; 96
Mazzoni, Müller, DeAssis, Lew, Leevy, Finnemann (CR42) 2019; 9
Grommes, Lee, Wilkinson, Jiang, Koenigsknecht‐Talboo, Varnum, Landreth (CR21) 2008; 3
Huang, Akbar, Kevala, Kim (CR30) 2011; 192
Lentz (CR36) 2003; 42
Segawa, Kurata, Yanagihashi, Brummelkamp, Matsuda, Nagata (CR60) 2014; 344
Ma, Rai, Hudson, Song, Schmidt, Barile (CR38) 2012; 274
Nimmerjahn, Kirchhoff, Helmchen (CR49) 2005; 308
Harris, Stevens (CR24) 1989; 9
Callahan, Halleck, Krahling, Henderson, Williamson, Schlegel (CR7) 2003; 74
Newton, Keranen (CR48) 1994; 33
Nakano, Ishimoto, Kishino, Umeda, Inoue, Nagata, Ohashi, Mizuno, Arita (CR46) 1997; 272
Stephan, Barres, Stevens (CR66) 2012; 35
Smith, Xie, van Beek, Que, Blankevoort, Xiao, Cole, Hoehn, Kaijzel, Löwik (CR64) 2012; 3
Smrz, Dráberová, Dráber (CR65) 2007; 282
Smith, Xiao, Wolter, Wheeler, Suckow, Smith (CR63) 2011; 16
Park, Tosello‐Trampont, Elliott, Lu, Haney, Ma, Klibanov, Mandell, Ravichandran (CR53) 2007; 450
Ulrich, Ulland, Colonna, Holtzman (CR73) 2017; 94
Dallérac, Zerwas, Novikova, Callu, Leblanc‐Veyrac, Bock, Berezin, Rampon, Doyère (CR12) 2011; 18
Shacham‐Silverberg, Sar Shalom, Goldner, Golan‐Vaishenker, Gurwicz, Gokhman, Yaron (CR61) 2018; 9
Burbridge, Xu, Ackman, Ge, Zhang, Ye, Zhou, Xu, Contractor, Crair (CR6) 2014; 84
Chung, Clarke, Wang, Stafford, Sher, Chakraborty, Joung, Foo, Thompson, Chen (CR10) 2013; 504
Elliott, Surprenant, Marelli‐Berg, Cooper, Cassady‐Cain, Wooding, Linton, Alexander, Higgins (CR15) 2005; 7
Jaubert‐Miazza, Green, Lo, Bui, Mills, Guido (CR32) 2005; 22
Paolicelli, Bolasco, Pagani, Maggi, Scianni, Panzanelli, Giustetto, Ferreira, Guiducci, Dumas (CR51) 2011; 333
Basilico, Pagani, Grimaldi, Cortese, Di Angelantonio, Weinhard, Gross, Limatola, Maggi, Ragozzino (CR2) 2019; 67
Martin, Pombo, Poncet, David, Arock, Blank (CR40) 2000; 123
Walrave, Vinken, Albertini, De Bundel, Leybaert, Smolders (CR75) 2016; 10
Stevens, Allen, Vazquez, Howell, Christopherson, Nouri, Micheva, Mehalow, Huberman, Stafford (CR67) 2007; 131
Païdassi, Tacnet‐Delorme, Garlatti, Darnault, Ghebrehiwet, Gaboriaud, Arlaud, Frachet (CR50) 2008; 180
Hooks, Chen (CR28) 2006; 52
Weinhard, di Bartolomei, Bolasco, Machado, Schieber, Neniskyte, Exiga, Vadisiute, Raggioli, Schertel (CR77) 2018; 9
Fadok, Voelker, Campbell, Cohen, Bratton, Henson (CR16) 1992; 148
Salter, Stevens (CR54) 2017; 23
Svennerholm (CR70) 1968; 9
Schafer, Heller, Gunner, Heller, Gordon, Hammond, Wolf, Jung, Stevens (CR58) 2016; 5
Dejanovic, Huntley, De Mazière, Meilandt, Wu, Srinivasan, Jiang, Gandham, Friedman, Ngu (CR13) 2018; 100
Cellerino, Bähr, Isenmann (CR8) 2000; 301
1968; 9
2012; 287
1997; 272
2010; 468
1991; 55
2004; 7
2019; 16
2019; 19
2013; 202
2004; 5
2011; 192
2008; 3
2011; 16
2011; 18
2005; 22
2018; 48
2006; 177
2018; 9
2020; 52
2019; 22
2008; 29
2019; 67
2007; 450
2007; 131
2016; 113
2014; 15
2019; 116
1994; 33
2014; 14
2016; 352
2005; 308
2000; 123
2003; 42
2010; 8
2007; 17
2018; 100
2006; 90
2015; 160
2019; 9
2011; 333
2015; 17
2006; 52
2006; 96
2009; 20
2007; 282
2013; 504
1989; 9
1992; 148
2017; 23
2016; 10
2013; 144
2014; 84
2012; 35
2003; 74
2014; 88
2012; 74
2018; 24
2001; 155
2008; 180
2016; 5
2017; 94
2012; 274
2012; 3
2011; 108
2000; 301
2013; 32
2020
2018; 115
2001; 8
2005; 7
2016; 534
1996; 274
1995; 182
2018; 16
2001; 32
2014; 344
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Schafer DP (e_1_2_8_58_1) 2014; 88
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Li T (e_1_2_8_38_1) 2020
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
32705698 - EMBO J. 2020 Aug 17;39(16):e105924
References_xml – volume: 48
  start-page: 979
  year: 2018
  end-page: 991
  ident: CR19
  article-title: The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity
  publication-title: Immunity
– volume: 272
  start-page: 29411
  year: 1997
  end-page: 29414
  ident: CR46
  article-title: Cell adhesion to phosphatidylserine mediated by a product of growth arrest‐specific gene 6
  publication-title: J Biol Chem
– volume: 52
  start-page: 167
  year: 2020
  end-page: 182
  ident: CR78
  article-title: Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease
  publication-title: Immunity
– volume: 9
  start-page: 1590
  year: 2019
  ident: CR42
  article-title: Non‐invasive fluorescence imaging of apoptotic retinal photoreceptors
  publication-title: Sci Rep
– volume: 160
  start-page: 1061
  year: 2015
  end-page: 1071
  ident: CR76
  article-title: TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model
  publication-title: Cell
– volume: 333
  start-page: 1456
  year: 2011
  end-page: 1458
  ident: CR51
  article-title: Synaptic pruning by microglia is necessary for normal brain development
  publication-title: Science
– volume: 23
  start-page: 1018
  year: 2017
  end-page: 1027
  ident: CR54
  article-title: Microglia emerge as central players in brain disease
  publication-title: Nat Med
– volume: 52
  start-page: 281
  year: 2006
  end-page: 291
  ident: CR28
  article-title: Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse
  publication-title: Neuron
– volume: 148
  start-page: 2207
  year: 1992
  end-page: 2216
  ident: CR16
  article-title: Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages
  publication-title: J Immunol
– volume: 3
  start-page: 530
  year: 2012
  end-page: 537
  ident: CR64
  article-title: Multicolor fluorescence imaging of traumatic brain injury in a cryolesion mouse model
  publication-title: ACS Chem Neurosci
– volume: 90
  start-page: 1661
  year: 2006
  end-page: 1675
  ident: CR14
  article-title: Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG‐mediated membrane fusion
  publication-title: Biophys J
– volume: 274
  start-page: 72
  year: 2012
  end-page: 82
  ident: CR38
  article-title: RAGE binds C1q and enhances C1q‐mediated phagocytosis
  publication-title: Cell Immunol
– volume: 16
  start-page: e2005970
  year: 2018
  ident: CR43
  article-title: Cell Profiler 3.0: next‐generation image processing for biology
  publication-title: PLoS Biol
– volume: 67
  start-page: 53
  year: 2019
  end-page: 67
  ident: CR2
  article-title: Microglia shape presynaptic properties at developing glutamatergic synapses
  publication-title: Glia
– volume: 74
  start-page: 846
  year: 2003
  end-page: 856
  ident: CR7
  article-title: Phosphatidylserine expression and phagocytosis of apoptotic thymocytes during differentiation of monocytic cells
  publication-title: J Leukoc Biol
– volume: 8
  start-page: 582
  year: 2001
  end-page: 587
  ident: CR17
  article-title: If phosphatidylserine is the death knell, a new phosphatidylserine‐specific receptor is the bellringer
  publication-title: Cell Death Differ
– volume: 352
  start-page: 712
  year: 2016
  end-page: 716
  ident: CR26
  article-title: Complement and microglia mediate early synapse loss in Alzheimer mouse models
  publication-title: Science
– volume: 274
  start-page: 1133
  year: 1996
  end-page: 1138
  ident: CR33
  article-title: Synaptic activity and the construction of cortical circuits
  publication-title: Science
– volume: 55
  start-page: 137
  year: 1991
  end-page: 140
  ident: CR3
  article-title: Phosphatidylserine increases the affinity of the AMPA/quisqualate receptor in rat brain membranes
  publication-title: Behav Neural Biol
– volume: 7
  start-page: 327
  year: 2004
  end-page: 332
  ident: CR29
  article-title: Neural activity and the dynamics of central nervous system development
  publication-title: Nat Neurosci
– volume: 180
  start-page: 2329
  year: 2008
  end-page: 2338
  ident: CR50
  article-title: C1q binds phosphatidylserine and likely acts as a multiligand‐bridging molecule in apoptotic cell recognition
  publication-title: J Immunol
– volume: 100
  start-page: 1322
  year: 2018
  end-page: 1336
  ident: CR13
  article-title: Changes in the synaptic proteome in tauopathy and rescue of tau‐induced synapse loss by C1q antibodies
  publication-title: Neuron
– volume: 7
  start-page: 808
  year: 2005
  end-page: 816
  ident: CR15
  article-title: Membrane phosphatidylserine distribution as a non‐apoptotic signalling mechanism in lymphocytes
  publication-title: Nat Cell Biol
– volume: 18
  start-page: 306
  year: 2011
  end-page: 313
  ident: CR12
  article-title: The neural cell adhesion molecule‐derived peptide FGL facilitates long‐term plasticity in the dentate gyrus
  publication-title: Learn Mem
– volume: 100
  start-page: 120
  year: 2018
  end-page: 134
  ident: CR34
  article-title: CD47 protects synapses from excess microglia‐mediated pruning during development
  publication-title: Neuron
– volume: 10
  start-page: 288
  year: 2016
  ident: CR75
  article-title: Inhibition of Connexin43 hemichannels impairs spatial short‐term memory without affecting spatial working memory
  publication-title: Front Cell Neurosci
– volume: 9
  start-page: 1116
  year: 2018
  ident: CR61
  article-title: Phosphatidylserine is a marker for axonal debris engulfment but its exposure can be decoupled from degeneration
  publication-title: Cell Death Dis
– volume: 113
  start-page: 9509
  year: 2016
  end-page: 9514
  ident: CR69
  article-title: Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure
  publication-title: Proc Natl Acad Sci USA
– volume: 29
  start-page: 456
  year: 2008
  end-page: 464
  ident: CR1
  article-title: Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease
  publication-title: Neurobiol Dis
– volume: 94
  start-page: 237
  year: 2017
  end-page: 248
  ident: CR73
  article-title: Elucidating the role of TREM2 in Alzheimer's disease
  publication-title: Neuron
– volume: 115
  start-page: 6303
  year: 2018
  end-page: 6308
  ident: CR23
  article-title: Local apoptotic‐like mechanisms underlie complement‐mediated synaptic pruning
  publication-title: Proc Natl Acad Sci USA
– volume: 116
  start-page: 12494
  year: 2019
  end-page: 12499
  ident: CR27
  article-title: ANO1/TMEM16A regulates process maturation in radial glial cells in the developing brain
  publication-title: Proc Natl Acad Sci USA
– volume: 308
  start-page: 1314
  year: 2005
  end-page: 1318
  ident: CR49
  article-title: Resting microglial cells are highly dynamic surveillants of brain parenchyma
  publication-title: Science
– volume: 20
  start-page: 5086
  year: 2009
  end-page: 5095
  ident: CR80
  article-title: Phosphatidylserine regulation of Ca ‐triggered exocytosis and fusion pores in PC12 cells
  publication-title: Mol Biol Cell
– volume: 24
  start-page: 2273
  year: 2018
  end-page: 2286
  ident: CR55
  article-title: Phosphatidylserine externalization results from and causes neurite degeneration in
  publication-title: Cell Rep
– volume: 22
  start-page: 1075
  year: 2019
  end-page: 1088
  ident: CR22
  article-title: Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling
  publication-title: Nat Neurosci
– volume: 192
  start-page: 979
  year: 2011
  end-page: 992
  ident: CR30
  article-title: Phosphatidylserine is a critical modulator for Akt activation
  publication-title: J Cell Biol
– volume: 19
  start-page: 539
  year: 2019
  end-page: 549
  ident: CR35
  article-title: How macrophages deal with death
  publication-title: Nat Rev Immunol
– volume: 3
  start-page: 27
  year: 2012
  ident: CR47
  article-title: Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration
  publication-title: Front Pharmacol
– volume: 9
  start-page: 1228
  year: 2018
  ident: CR77
  article-title: Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction
  publication-title: Nat Commun
– volume: 9
  start-page: 2982
  year: 1989
  end-page: 2997
  ident: CR24
  article-title: Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics
  publication-title: J Neurosci
– volume: 17
  start-page: 50
  year: 2015
  ident: CR9
  article-title: Non‐invasive imaging of arthritis in a collagen‐induced murine model with phosphatidylserine‐binding near‐infrared (NIR) dye
  publication-title: Arthritis Res Ther
– volume: 96
  start-page: 2775
  year: 2006
  end-page: 2784
  ident: CR81
  article-title: Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation
  publication-title: J Neurophysiol
– volume: 22
  start-page: 191
  year: 2019
  end-page: 204
  ident: CR52
  article-title: Loss of TREM2 function increases amyloid seeding but reduces plaque‐associated ApoE
  publication-title: Nat Neurosci
– volume: 301
  start-page: 53
  year: 2000
  end-page: 69
  ident: CR8
  article-title: Apoptosis in the developing visual system
  publication-title: Cell Tissue Res
– volume: 84
  start-page: 1049
  year: 2014
  end-page: 1064
  ident: CR6
  article-title: Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors
  publication-title: Neuron
– volume: 35
  start-page: 369
  year: 2012
  end-page: 389
  ident: CR66
  article-title: The complement system: an unexpected role in synaptic pruning during development and disease
  publication-title: Annu Rev Neurosci
– volume: 155
  start-page: 649
  year: 2001
  end-page: 659
  ident: CR25
  article-title: Phosphatidylserine (PS) induces PS receptor‐mediated macropinocytosis and promotes clearance of apoptotic cells
  publication-title: J Cell Biol
– volume: 123
  start-page: 249
  year: 2000
  end-page: 258
  ident: CR40
  article-title: Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis
  publication-title: Int Arch Allergy Immunol
– volume: 32
  start-page: 1730
  year: 2013
  end-page: 1744
  ident: CR44
  article-title: Eps8 controls dendritic spine density and synaptic plasticity through its actin‐capping activity
  publication-title: EMBO J
– volume: 131
  start-page: 1164
  year: 2007
  end-page: 1178
  ident: CR67
  article-title: The classical complement cascade mediates CNS synapse elimination
  publication-title: Cell
– volume: 3
  start-page: 130
  year: 2008
  end-page: 140
  ident: CR21
  article-title: Regulation of microglial phagocytosis and inflammatory gene expression by Gas6 acting on the Axl/Mer family of tyrosine kinases
  publication-title: J Neuroimmune Pharmacol
– volume: 468
  start-page: 834
  year: 2010
  end-page: 838
  ident: CR68
  article-title: Calcium‐dependent phospholipid scrambling by TMEM16F
  publication-title: Nature
– volume: 202
  start-page: 875
  year: 2013
  end-page: 886
  ident: CR79
  article-title: Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport
  publication-title: J Cell Biol
– volume: 344
  start-page: 1164
  year: 2014
  end-page: 1168
  ident: CR60
  article-title: Caspase‐mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure
  publication-title: Science
– ident: CR37
– volume: 14
  start-page: 769
  year: 2014
  end-page: 785
  ident: CR20
  article-title: The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer
  publication-title: Nat Rev Cancer
– volume: 287
  start-page: 33733
  year: 2012
  end-page: 33744
  ident: CR41
  article-title: Annexin A2 and A5 serve as new ligands for C1q on apoptotic cells
  publication-title: J Biol Chem
– volume: 5
  start-page: e15224
  year: 2016
  ident: CR58
  article-title: Microglia contribute to circuit defects in Mecp2 null mice independent of microglia‐specific loss of Mecp2 expression
  publication-title: Elife
– volume: 88
  start-page: 51482
  year: 2014
  ident: CR57
  article-title: An engulfment assay: a protocol to assess interactions between CNS phagocytes and neurons
  publication-title: J Vis Exp
– volume: 15
  start-page: 209
  year: 2014
  end-page: 216
  ident: CR5
  article-title: Microglial phagocytosis of live neurons
  publication-title: Nat Rev Neurosci
– volume: 5
  start-page: 1489
  year: 2004
  end-page: 1494
  ident: CR45
  article-title: Imaging the selective binding of synapsin to anionic membrane domains
  publication-title: ChemBioChem
– volume: 9
  start-page: 570
  year: 1968
  end-page: 579
  ident: CR70
  article-title: Distribution and fatty acid composition of phosphoglycerides in normal human brain
  publication-title: J Lipid Res
– volume: 9
  start-page: 7508
  year: 2019
  ident: CR62
  article-title: Aminophospholipids are signal‐transducing TREM2 ligands on apoptotic cells
  publication-title: Sci Rep
– volume: 16
  start-page: 722
  year: 2011
  end-page: 731
  ident: CR63
  article-title: targeting of cell death using a synthetic fluorescent molecular probe
  publication-title: Apoptosis
– volume: 42
  start-page: 423
  year: 2003
  end-page: 438
  ident: CR36
  article-title: Exposure of platelet membrane phosphatidylserine regulates blood coagulation
  publication-title: Prog Lipid Res
– volume: 182
  start-page: 1545
  year: 1995
  end-page: 1556
  ident: CR39
  article-title: Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl‐2 and Abl
  publication-title: J Exp Med
– volume: 534
  start-page: 538
  year: 2016
  end-page: 543
  ident: CR74
  article-title: A complement‐microglial axis drives synapse loss during virus‐induced memory impairment
  publication-title: Nature
– volume: 144
  start-page: 346
  year: 2013
  end-page: 356
  ident: CR11
  article-title: Bacterial sensor triggering receptor expressed on myeloid cells‐2 regulates the mucosal inflammatory response
  publication-title: Gastroenterology
– volume: 8
  start-page: e1000527
  year: 2010
  ident: CR71
  article-title: Microglial interactions with synapses are modulated by visual experience
  publication-title: PLoS Biol
– volume: 22
  start-page: 661
  year: 2005
  end-page: 676
  ident: CR32
  article-title: Structural and functional composition of the developing retinogeniculate pathway in the mouse
  publication-title: Vis Neurosci
– volume: 33
  start-page: 6651
  year: 1994
  end-page: 6658
  ident: CR48
  article-title: Phosphatidyl‐L‐serine is necessary for protein kinase C's high‐affinity interaction with diacylglycerol‐containing membranes
  publication-title: Biochemistry
– volume: 74
  start-page: 691
  year: 2012
  end-page: 705
  ident: CR56
  article-title: Microglia sculpt postnatal neural circuits in an activity and complement‐dependent manner
  publication-title: Neuron
– volume: 504
  start-page: 394
  year: 2013
  end-page: 400
  ident: CR10
  article-title: Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways
  publication-title: Nature
– volume: 16
  start-page: 1226
  year: 2019
  end-page: 1232
  ident: CR4
  article-title: ilastik: interactive machine learning for (bio)image analysis
  publication-title: Nat Methods
– volume: 108
  start-page: 19246
  year: 2011
  end-page: 19251
  ident: CR59
  article-title: Constitutive exposure of phosphatidylserine on viable cells
  publication-title: Proc Natl Acad Sci USA
– volume: 450
  start-page: 430
  year: 2007
  end-page: 434
  ident: CR53
  article-title: BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module
  publication-title: Nature
– volume: 32
  start-page: 1057
  year: 2001
  end-page: 1069
  ident: CR18
  article-title: Three‐dimensional structure of the synaptotagmin 1 C2B‐domain: synaptotagmin 1 as a phospholipid binding machine
  publication-title: Neuron
– volume: 17
  start-page: 73
  year: 2007
  end-page: 80
  ident: CR31
  article-title: Mechanisms of eye‐specific visual circuit development
  publication-title: Curr Opin Neurobiol
– volume: 282
  start-page: 10487
  year: 2007
  end-page: 10497
  ident: CR65
  article-title: Non‐apoptotic phosphatidylserine externalization induced by engagement of glycosylphosphatidylinositol‐anchored proteins
  publication-title: J Biol Chem
– volume: 177
  start-page: 3520
  year: 2006
  end-page: 3524
  ident: CR72
  article-title: Cutting edge: TREM‐2 attenuates macrophage activation
  publication-title: J Immunol
– volume: 15
  start-page: 209
  year: 2014
  end-page: 216
  article-title: Microglial phagocytosis of live neurons
  publication-title: Nat Rev Neurosci
– volume: 52
  start-page: 281
  year: 2006
  end-page: 291
  article-title: Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse
  publication-title: Neuron
– volume: 160
  start-page: 1061
  year: 2015
  end-page: 1071
  article-title: TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model
  publication-title: Cell
– volume: 180
  start-page: 2329
  year: 2008
  end-page: 2338
  article-title: C1q binds phosphatidylserine and likely acts as a multiligand‐bridging molecule in apoptotic cell recognition
  publication-title: J Immunol
– volume: 96
  start-page: 2775
  year: 2006
  end-page: 2784
  article-title: Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation
  publication-title: J Neurophysiol
– volume: 19
  start-page: 539
  year: 2019
  end-page: 549
  article-title: How macrophages deal with death
  publication-title: Nat Rev Immunol
– volume: 22
  start-page: 661
  year: 2005
  end-page: 676
  article-title: Structural and functional composition of the developing retinogeniculate pathway in the mouse
  publication-title: Vis Neurosci
– volume: 74
  start-page: 846
  year: 2003
  end-page: 856
  article-title: Phosphatidylserine expression and phagocytosis of apoptotic thymocytes during differentiation of monocytic cells
  publication-title: J Leukoc Biol
– volume: 52
  start-page: 167
  year: 2020
  end-page: 182
  article-title: Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease
  publication-title: Immunity
– volume: 274
  start-page: 72
  year: 2012
  end-page: 82
  article-title: RAGE binds C1q and enhances C1q‐mediated phagocytosis
  publication-title: Cell Immunol
– volume: 450
  start-page: 430
  year: 2007
  end-page: 434
  article-title: BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module
  publication-title: Nature
– volume: 100
  start-page: 1322
  year: 2018
  end-page: 1336
  article-title: Changes in the synaptic proteome in tauopathy and rescue of tau‐induced synapse loss by C1q antibodies
  publication-title: Neuron
– volume: 16
  start-page: 722
  year: 2011
  end-page: 731
  article-title: targeting of cell death using a synthetic fluorescent molecular probe
  publication-title: Apoptosis
– volume: 23
  start-page: 1018
  year: 2017
  end-page: 1027
  article-title: Microglia emerge as central players in brain disease
  publication-title: Nat Med
– start-page: e104136
  year: 2020
  article-title: A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding
  publication-title: EMBO J
– volume: 182
  start-page: 1545
  year: 1995
  end-page: 1556
  article-title: Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl‐2 and Abl
  publication-title: J Exp Med
– volume: 108
  start-page: 19246
  year: 2011
  end-page: 19251
  article-title: Constitutive exposure of phosphatidylserine on viable cells
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: e2005970
  year: 2018
  article-title: Cell Profiler 3.0: next‐generation image processing for biology
  publication-title: PLoS Biol
– volume: 344
  start-page: 1164
  year: 2014
  end-page: 1168
  article-title: Caspase‐mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure
  publication-title: Science
– volume: 35
  start-page: 369
  year: 2012
  end-page: 389
  article-title: The complement system: an unexpected role in synaptic pruning during development and disease
  publication-title: Annu Rev Neurosci
– volume: 534
  start-page: 538
  year: 2016
  end-page: 543
  article-title: A complement‐microglial axis drives synapse loss during virus‐induced memory impairment
  publication-title: Nature
– volume: 3
  start-page: 530
  year: 2012
  end-page: 537
  article-title: Multicolor fluorescence imaging of traumatic brain injury in a cryolesion mouse model
  publication-title: ACS Chem Neurosci
– volume: 14
  start-page: 769
  year: 2014
  end-page: 785
  article-title: The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer
  publication-title: Nat Rev Cancer
– volume: 16
  start-page: 1226
  year: 2019
  end-page: 1232
  article-title: ilastik: interactive machine learning for (bio)image analysis
  publication-title: Nat Methods
– volume: 48
  start-page: 979
  year: 2018
  end-page: 991
  article-title: The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity
  publication-title: Immunity
– volume: 100
  start-page: 120
  year: 2018
  end-page: 134
  article-title: CD47 protects synapses from excess microglia‐mediated pruning during development
  publication-title: Neuron
– volume: 22
  start-page: 1075
  year: 2019
  end-page: 1088
  article-title: Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling
  publication-title: Nat Neurosci
– volume: 74
  start-page: 691
  year: 2012
  end-page: 705
  article-title: Microglia sculpt postnatal neural circuits in an activity and complement‐dependent manner
  publication-title: Neuron
– volume: 3
  start-page: 130
  year: 2008
  end-page: 140
  article-title: Regulation of microglial phagocytosis and inflammatory gene expression by Gas6 acting on the Axl/Mer family of tyrosine kinases
  publication-title: J Neuroimmune Pharmacol
– volume: 9
  start-page: 7508
  year: 2019
  article-title: Aminophospholipids are signal‐transducing TREM2 ligands on apoptotic cells
  publication-title: Sci Rep
– volume: 301
  start-page: 53
  year: 2000
  end-page: 69
  article-title: Apoptosis in the developing visual system
  publication-title: Cell Tissue Res
– volume: 17
  start-page: 73
  year: 2007
  end-page: 80
  article-title: Mechanisms of eye‐specific visual circuit development
  publication-title: Curr Opin Neurobiol
– volume: 192
  start-page: 979
  year: 2011
  end-page: 992
  article-title: Phosphatidylserine is a critical modulator for Akt activation
  publication-title: J Cell Biol
– volume: 55
  start-page: 137
  year: 1991
  end-page: 140
  article-title: Phosphatidylserine increases the affinity of the AMPA/quisqualate receptor in rat brain membranes
  publication-title: Behav Neural Biol
– volume: 9
  start-page: 570
  year: 1968
  end-page: 579
  article-title: Distribution and fatty acid composition of phosphoglycerides in normal human brain
  publication-title: J Lipid Res
– volume: 94
  start-page: 237
  year: 2017
  end-page: 248
  article-title: Elucidating the role of TREM2 in Alzheimer's disease
  publication-title: Neuron
– volume: 90
  start-page: 1661
  year: 2006
  end-page: 1675
  article-title: Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG‐mediated membrane fusion
  publication-title: Biophys J
– volume: 287
  start-page: 33733
  year: 2012
  end-page: 33744
  article-title: Annexin A2 and A5 serve as new ligands for C1q on apoptotic cells
  publication-title: J Biol Chem
– volume: 272
  start-page: 29411
  year: 1997
  end-page: 29414
  article-title: Cell adhesion to phosphatidylserine mediated by a product of growth arrest‐specific gene 6
  publication-title: J Biol Chem
– volume: 5
  start-page: e15224
  year: 2016
  article-title: Microglia contribute to circuit defects in Mecp2 null mice independent of microglia‐specific loss of Mecp2 expression
  publication-title: Elife
– volume: 9
  start-page: 1590
  year: 2019
  article-title: Non‐invasive fluorescence imaging of apoptotic retinal photoreceptors
  publication-title: Sci Rep
– volume: 32
  start-page: 1730
  year: 2013
  end-page: 1744
  article-title: Eps8 controls dendritic spine density and synaptic plasticity through its actin‐capping activity
  publication-title: EMBO J
– volume: 17
  start-page: 50
  year: 2015
  article-title: Non‐invasive imaging of arthritis in a collagen‐induced murine model with phosphatidylserine‐binding near‐infrared (NIR) dye
  publication-title: Arthritis Res Ther
– volume: 131
  start-page: 1164
  year: 2007
  end-page: 1178
  article-title: The classical complement cascade mediates CNS synapse elimination
  publication-title: Cell
– volume: 20
  start-page: 5086
  year: 2009
  end-page: 5095
  article-title: Phosphatidylserine regulation of Ca ‐triggered exocytosis and fusion pores in PC12 cells
  publication-title: Mol Biol Cell
– volume: 33
  start-page: 6651
  year: 1994
  end-page: 6658
  article-title: Phosphatidyl‐L‐serine is necessary for protein kinase C's high‐affinity interaction with diacylglycerol‐containing membranes
  publication-title: Biochemistry
– volume: 67
  start-page: 53
  year: 2019
  end-page: 67
  article-title: Microglia shape presynaptic properties at developing glutamatergic synapses
  publication-title: Glia
– volume: 9
  start-page: 2982
  year: 1989
  end-page: 2997
  article-title: Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics
  publication-title: J Neurosci
– volume: 7
  start-page: 808
  year: 2005
  end-page: 816
  article-title: Membrane phosphatidylserine distribution as a non‐apoptotic signalling mechanism in lymphocytes
  publication-title: Nat Cell Biol
– volume: 504
  start-page: 394
  year: 2013
  end-page: 400
  article-title: Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways
  publication-title: Nature
– volume: 116
  start-page: 12494
  year: 2019
  end-page: 12499
  article-title: ANO1/TMEM16A regulates process maturation in radial glial cells in the developing brain
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: 27
  year: 2012
  article-title: Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration
  publication-title: Front Pharmacol
– volume: 8
  start-page: e1000527
  year: 2010
  article-title: Microglial interactions with synapses are modulated by visual experience
  publication-title: PLoS Biol
– volume: 8
  start-page: 582
  year: 2001
  end-page: 587
  article-title: If phosphatidylserine is the death knell, a new phosphatidylserine‐specific receptor is the bellringer
  publication-title: Cell Death Differ
– volume: 282
  start-page: 10487
  year: 2007
  end-page: 10497
  article-title: Non‐apoptotic phosphatidylserine externalization induced by engagement of glycosylphosphatidylinositol‐anchored proteins
  publication-title: J Biol Chem
– volume: 42
  start-page: 423
  year: 2003
  end-page: 438
  article-title: Exposure of platelet membrane phosphatidylserine regulates blood coagulation
  publication-title: Prog Lipid Res
– volume: 10
  start-page: 288
  year: 2016
  article-title: Inhibition of Connexin43 hemichannels impairs spatial short‐term memory without affecting spatial working memory
  publication-title: Front Cell Neurosci
– volume: 148
  start-page: 2207
  year: 1992
  end-page: 2216
  article-title: Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages
  publication-title: J Immunol
– volume: 202
  start-page: 875
  year: 2013
  end-page: 886
  article-title: Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport
  publication-title: J Cell Biol
– volume: 22
  start-page: 191
  year: 2019
  end-page: 204
  article-title: Loss of TREM2 function increases amyloid seeding but reduces plaque‐associated ApoE
  publication-title: Nat Neurosci
– volume: 32
  start-page: 1057
  year: 2001
  end-page: 1069
  article-title: Three‐dimensional structure of the synaptotagmin 1 C2B‐domain: synaptotagmin 1 as a phospholipid binding machine
  publication-title: Neuron
– volume: 308
  start-page: 1314
  year: 2005
  end-page: 1318
  article-title: Resting microglial cells are highly dynamic surveillants of brain parenchyma
  publication-title: Science
– volume: 9
  start-page: 1116
  year: 2018
  article-title: Phosphatidylserine is a marker for axonal debris engulfment but its exposure can be decoupled from degeneration
  publication-title: Cell Death Dis
– volume: 84
  start-page: 1049
  year: 2014
  end-page: 1064
  article-title: Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors
  publication-title: Neuron
– volume: 18
  start-page: 306
  year: 2011
  end-page: 313
  article-title: The neural cell adhesion molecule‐derived peptide FGL facilitates long‐term plasticity in the dentate gyrus
  publication-title: Learn Mem
– volume: 352
  start-page: 712
  year: 2016
  end-page: 716
  article-title: Complement and microglia mediate early synapse loss in Alzheimer mouse models
  publication-title: Science
– volume: 123
  start-page: 249
  year: 2000
  end-page: 258
  article-title: Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis
  publication-title: Int Arch Allergy Immunol
– volume: 88
  start-page: 51482
  year: 2014
  article-title: An engulfment assay: a protocol to assess interactions between CNS phagocytes and neurons
  publication-title: J Vis Exp
– volume: 468
  start-page: 834
  year: 2010
  end-page: 838
  article-title: Calcium‐dependent phospholipid scrambling by TMEM16F
  publication-title: Nature
– volume: 113
  start-page: 9509
  year: 2016
  end-page: 9514
  article-title: Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure
  publication-title: Proc Natl Acad Sci USA
– volume: 274
  start-page: 1133
  year: 1996
  end-page: 1138
  article-title: Synaptic activity and the construction of cortical circuits
  publication-title: Science
– volume: 5
  start-page: 1489
  year: 2004
  end-page: 1494
  article-title: Imaging the selective binding of synapsin to anionic membrane domains
  publication-title: ChemBioChem
– volume: 24
  start-page: 2273
  year: 2018
  end-page: 2286
  article-title: Phosphatidylserine externalization results from and causes neurite degeneration in
  publication-title: Cell Rep
– volume: 177
  start-page: 3520
  year: 2006
  end-page: 3524
  article-title: Cutting edge: TREM‐2 attenuates macrophage activation
  publication-title: J Immunol
– volume: 144
  start-page: 346
  year: 2013
  end-page: 356
  article-title: Bacterial sensor triggering receptor expressed on myeloid cells‐2 regulates the mucosal inflammatory response
  publication-title: Gastroenterology
– volume: 29
  start-page: 456
  year: 2008
  end-page: 464
  article-title: Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease
  publication-title: Neurobiol Dis
– volume: 7
  start-page: 327
  year: 2004
  end-page: 332
  article-title: Neural activity and the dynamics of central nervous system development
  publication-title: Nat Neurosci
– volume: 9
  start-page: 1228
  year: 2018
  article-title: Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction
  publication-title: Nat Commun
– volume: 155
  start-page: 649
  year: 2001
  end-page: 659
  article-title: Phosphatidylserine (PS) induces PS receptor‐mediated macropinocytosis and promotes clearance of apoptotic cells
  publication-title: J Cell Biol
– volume: 115
  start-page: 6303
  year: 2018
  end-page: 6308
  article-title: Local apoptotic‐like mechanisms underlie complement‐mediated synaptic pruning
  publication-title: Proc Natl Acad Sci USA
– volume: 333
  start-page: 1456
  year: 2011
  end-page: 1458
  article-title: Synaptic pruning by microglia is necessary for normal brain development
  publication-title: Science
– ident: e_1_2_8_26_1
  doi: 10.1083/jcb.200108080
– ident: e_1_2_8_6_1
  doi: 10.1038/nrn3710
– ident: e_1_2_8_45_1
  doi: 10.1038/emboj.2013.107
– ident: e_1_2_8_25_1
  doi: 10.1523/JNEUROSCI.09-08-02982.1989
– ident: e_1_2_8_41_1
  doi: 10.1159/000024451
– ident: e_1_2_8_16_1
  doi: 10.1038/ncb1279
– ident: e_1_2_8_74_1
  doi: 10.1016/j.neuron.2017.02.042
– ident: e_1_2_8_78_1
  doi: 10.1038/s41467-018-03566-5
– ident: e_1_2_8_39_1
  doi: 10.1016/j.cellimm.2012.02.001
– ident: e_1_2_8_5_1
  doi: 10.1038/s41592-019-0582-9
– ident: e_1_2_8_17_1
  doi: 10.4049/jimmunol.148.7.2207
– ident: e_1_2_8_52_1
  doi: 10.1126/science.1202529
– ident: e_1_2_8_81_1
  doi: 10.1091/mbc.E09-08-0691
– ident: e_1_2_8_11_1
  doi: 10.1038/nature12776
– ident: e_1_2_8_77_1
  doi: 10.1016/j.cell.2015.01.049
– ident: e_1_2_8_72_1
  doi: 10.1371/journal.pbio.1000527
– ident: e_1_2_8_23_1
  doi: 10.1038/s41593-019-0419-y
– ident: e_1_2_8_36_1
  doi: 10.1038/s41577-019-0167-y
– ident: e_1_2_8_57_1
  doi: 10.1016/j.neuron.2012.03.026
– ident: e_1_2_8_73_1
  doi: 10.4049/jimmunol.177.6.3520
– ident: e_1_2_8_54_1
  doi: 10.1038/nature06329
– ident: e_1_2_8_2_1
  doi: 10.1016/j.nbd.2007.11.004
– ident: e_1_2_8_10_1
  doi: 10.1186/s13075-015-0565-x
– ident: e_1_2_8_27_1
  doi: 10.1126/science.aad8373
– ident: e_1_2_8_46_1
  doi: 10.1002/cbic.200400097
– ident: e_1_2_8_8_1
  doi: 10.1189/jlb.0902433
– ident: e_1_2_8_59_1
  doi: 10.7554/eLife.15224
– ident: e_1_2_8_67_1
  doi: 10.1146/annurev-neuro-061010-113810
– ident: e_1_2_8_70_1
  doi: 10.1073/pnas.1610403113
– ident: e_1_2_8_82_1
  doi: 10.1152/jn.01321.2004
– ident: e_1_2_8_30_1
  doi: 10.1038/nn1218
– ident: e_1_2_8_9_1
  doi: 10.1007/s004410000178
– ident: e_1_2_8_62_1
  doi: 10.1038/s41419-018-1155-z
– ident: e_1_2_8_44_1
  doi: 10.1371/journal.pbio.2005970
– ident: e_1_2_8_63_1
  doi: 10.1038/s41598-019-43535-6
– ident: e_1_2_8_79_1
  doi: 10.1016/j.immuni.2019.12.004
– ident: e_1_2_8_31_1
  doi: 10.1083/jcb.201005100
– ident: e_1_2_8_7_1
  doi: 10.1016/j.neuron.2014.10.051
– ident: e_1_2_8_43_1
  doi: 10.1038/s41598-018-38363-z
– ident: e_1_2_8_20_1
  doi: 10.1016/j.immuni.2018.04.016
– ident: e_1_2_8_18_1
  doi: 10.1038/sj.cdd.4400856
– ident: e_1_2_8_76_1
  doi: 10.3389/fncel.2016.00288
– ident: e_1_2_8_68_1
  doi: 10.1016/j.cell.2007.10.036
– ident: e_1_2_8_65_1
  doi: 10.1021/cn3000197
– ident: e_1_2_8_35_1
  doi: 10.1016/j.neuron.2018.09.017
– ident: e_1_2_8_28_1
  doi: 10.1073/pnas.1901067116
– ident: e_1_2_8_48_1
  doi: 10.3389/fphar.2012.00027
– ident: e_1_2_8_34_1
  doi: 10.1126/science.274.5290.1133
– ident: e_1_2_8_69_1
  doi: 10.1038/nature09583
– ident: e_1_2_8_53_1
  doi: 10.1038/s41593-018-0296-9
– ident: e_1_2_8_3_1
  doi: 10.1002/glia.23508
– ident: e_1_2_8_4_1
  doi: 10.1016/0163-1047(91)80134-Z
– ident: e_1_2_8_49_1
  doi: 10.1021/bi00187a035
– ident: e_1_2_8_60_1
  doi: 10.1073/pnas.1114799108
– ident: e_1_2_8_12_1
  doi: 10.1053/j.gastro.2012.10.040
– ident: e_1_2_8_33_1
  doi: 10.1017/S0952523805225154
– ident: e_1_2_8_29_1
  doi: 10.1016/j.neuron.2006.07.007
– ident: e_1_2_8_71_1
  doi: 10.1016/S0022-2275(20)42702-6
– ident: e_1_2_8_51_1
  doi: 10.4049/jimmunol.180.4.2329
– ident: e_1_2_8_75_1
  doi: 10.1038/nature18283
– ident: e_1_2_8_80_1
  doi: 10.1083/jcb.201305094
– ident: e_1_2_8_42_1
  doi: 10.1074/jbc.M112.341339
– ident: e_1_2_8_64_1
  doi: 10.1007/s10495-011-0601-5
– ident: e_1_2_8_21_1
  doi: 10.1038/nrc3847
– ident: e_1_2_8_19_1
  doi: 10.1016/S0896-6273(01)00548-7
– ident: e_1_2_8_24_1
  doi: 10.1073/pnas.1722613115
– ident: e_1_2_8_66_1
  doi: 10.1074/jbc.M611090200
– ident: e_1_2_8_61_1
  doi: 10.1126/science.1252809
– volume: 88
  start-page: 51482
  year: 2014
  ident: e_1_2_8_58_1
  article-title: An engulfment assay: a protocol to assess interactions between CNS phagocytes and neurons
  publication-title: J Vis Exp
– ident: e_1_2_8_13_1
  doi: 10.1101/lm.2154311
– ident: e_1_2_8_22_1
  doi: 10.1007/s11481-007-9090-2
– ident: e_1_2_8_55_1
  doi: 10.1038/nm.4397
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neuron.2018.10.014
– ident: e_1_2_8_15_1
  doi: 10.1529/biophysj.105.069617
– ident: e_1_2_8_50_1
  doi: 10.1126/science.1110647
– ident: e_1_2_8_32_1
  doi: 10.1016/j.conb.2007.01.005
– start-page: e104136
  year: 2020
  ident: e_1_2_8_38_1
  article-title: A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding
  publication-title: EMBO J
  doi: 10.15252/embj.2019104136
– ident: e_1_2_8_40_1
  doi: 10.1084/jem.182.5.1545
– ident: e_1_2_8_47_1
  doi: 10.1074/jbc.272.47.29411
– ident: e_1_2_8_56_1
  doi: 10.1016/j.celrep.2018.07.095
– ident: e_1_2_8_37_1
  doi: 10.1016/S0163-7827(03)00025-0
– reference: 32705698 - EMBO J. 2020 Aug 17;39(16):e105924
SSID ssj0005871
Score 2.6960397
Snippet Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e105380
SubjectTerms Animals
Annexin V
C1q
Caspase-3
Circuits
Coculture Techniques
Complement C1q - genetics
Complement C1q - metabolism
Complement C3 - genetics
Complement C3 - metabolism
Complement component C1q
Complement component C3
EMBO19
EMBO27
Exposure
Hippocampus
Hippocampus - metabolism
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Mice
Mice, Knockout
Microglia
Microglia - metabolism
Neural networks
Neurons - metabolism
Phosphatidylserine
Phosphatidylserines - genetics
Phosphatidylserines - metabolism
Pruning
Receptors, Immunologic - genetics
Receptors, Immunologic - metabolism
Supernumerary
Synapse elimination
synapse pruning
Synapses
Synapses - genetics
Synapses - metabolism
Synaptogenesis
TREM2
Visual pathways
Visual system
Title Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia
URI https://link.springer.com/article/10.15252/embj.2020105380
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2020105380
https://www.ncbi.nlm.nih.gov/pubmed/32657463
https://www.proquest.com/docview/2434358606
https://www.proquest.com/docview/2423532127
https://pubmed.ncbi.nlm.nih.gov/PMC7429741
Volume 39
WOSCitedRecordID wos000563278500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQBoIXLuMWGJOReAEp2pLYsfMIYxWgUSHERN-Cr7SoS6tmReq_5xznRpkACfGSxoqd1PY59vlsn-8Q8symzmoFsEQ7YWLGnIZxkMvYeYZozDtuZQg2IcZjOZkUP_vCNPwQ_YIbakYYr1HBla67iD3IGurO9TcAeLidC1oLsH03SeAX2Z3Zh-GYhwygK6yzsEQW7VYlvuPwlzdsT02X7M3Lxyb7vdNtyzZMTaNb_6NSt8nN1jClLxtJukOuuGqPXGtCVW72yPXjLjLcXfLlFCdA2hFIt56cdOHpcrqol1NI2s28Do6FNLimgD1L7XA8CQrXm0rBaGXocrXGpRmqN_QcDwd-nc_UPXI2Ovl0_CZuIzXEBuDGUcy8gv5OpIebxHgjlLe5ckUuXO4Y9Dtz2VFhee45gjzjfWqsYMom2hbCZtl9slMtKveQUJZLJblMLXOOCc-U8Ty3mdZJppWTJiKHXSeVpqUxx2ga8xLhDLZiiW1YDm0Yked9iWVD4fGHvPtdv5etMtdlit63XALUi8jT_jG0Oe6tqMot1pgnzXiGdPkRedCISf8xsJC5YHkWEbElQH0GpPjeflLNpoHqW4C5ADZfRF50ojb8rd_XgQcR-2tly5P3r94NyUf_WO4xuYEJXGhPxD7ZuVit3RNy1Xy_mNWrg6CNcBUTeUB2X38cnZ1C6vPb8Q-D7DpP
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VBdReeJRHAwWMxAWkqE1ix86Rrlq1sF1xKKK34PjBLtpmV5tupf339TgvbStAQtxi2U5ie8aeb8YzA_Bex0YX0sGSwnAVUmoKtw8yERpLEY1Zw7TwySb4aCQuLrKvGzBofWHq-BCdwg05w-_XyOCokG5T9mDYUHNZ_HIID-25jm0dbr9HnbyB-Ru-n476ex7Coy6vaKGRyBpbJb5j_9Yb1s-mOwLn3XuTnfF0XbT1Z9Pxo_8yqsfwsBFNyaealp7Ahil34EGdrHK1A1uDNjfcU_gxxCOQtCGkG19OMrNkPp5V87Er6tW08q6FxDunOImW6P6CkutcrUrp9itF5oslKmdIsSKXeD3w53Qin8G346PzwUnY5GoIlQMcByG10q14JKx7iJRVXFqdSpOl3KSGupWnJjnINEstQ5inrI2V5lTqqNAZ10nyHDbLWWl2gdBUSMFErKkxlFsqlWWpTooiSgpphApgv12lXDWBzDGfxjRHQIOzmOMc5v0cBvCh6zGvg3j8oe1eu_B5w85VHqP_LRMO7AXwrqt2c47WFVma2RLbxAlLMGB-AC9qOuk-5mRkxmmaBMDXKKhrgEG-12vKydgH--ZOYHBSXwAfW1rrf-v3Y2Cexv462Pzo7PBzX3z5j_3ewtbJ-dkwH56OvryCbaxAtXvE92DzarE0r-G-ur6aVIs3njVvAFfoOxA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwED9NHa8vA8aAsAFG4gtI0ZbEjp2PW7eKR6kmxKR9C44ftKhLo2ZF6n-PL0-VCZAQ3-L4kdi-s-939t0BvNah0Zl0sCQzXPmUmsytg0z4xlJEY9YwLapgE3wyEZeXyfkWDFtbmNo_RKdwQ86o1mtkcFNo24bsQbeh5ir77hAenuc6tnW4fZtiLJkBbJ9-Hl2M-5seosJdlaqFBiJpTiuxlcNf2tjcnW6InDdvTnbHp5vCbbU7je7_l349gJ1GOCXHNTU9hC2T78LtOlzlehfuDtvocI_g6xg3QdI6kW6sOcnCkmK6KIupS-r1vKyMC0llnuJkWqL7K0qucrnOpVuxFCmWK1TPkGxNrvCC4Lf5TO7Bxejsy_Cd30Rr8JWDHEc-tdLNeSCsewiUVVxaHUuTxNzEhrq5pyY6SjSLLUOgp6wNleZU6iDTCddR9BgG-SI3T4HQWEjBRKipMZRbKpVlsY6yLIgyaYTy4LCdpVQ1rswxosY8RUiDo5jiGKb9GHrwpqtR1G48_lD2oJ34tGHoMg3RApcJB_c8eNVluzHH8xWZm8UKy4QRi9BlvgdPajrpPuakZMZpHHnANyioK4Buvjdz8tm0cvfNncjg5D4P3ra01v_W7_vAKhr7a2fTs08nH_rks3-s9xLunJ-O0vH7ycd9uIfvUe8e8AMYXC9X5jncUj-uZ-XyRcObPwGFMju5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+externalization+of+phosphatidylserine+mediates+developmental+synaptic+pruning+by+microglia&rft.jtitle=The+EMBO+journal&rft.au=Nicole+Scott%E2%80%90Hewitt&rft.au=Perrucci%2C+Fabio&rft.au=Morini%2C+Raffaella&rft.au=Erreni%2C+Marco&rft.date=2020-08-17&rft.pub=Springer+Nature+B.V&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=39&rft.issue=16&rft_id=info:doi/10.15252%2Fembj.2020105380&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon