Efficient Semiparametric Inference Under Two-Phase Sampling, With Applications to Genetic Association Studies
In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and...
Gespeichert in:
| Veröffentlicht in: | Journal of the American Statistical Association Jg. 112; H. 520; S. 1468 - 1476 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Taylor & Francis
02.10.2017
Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP. Supplementary materials for this article are available online |
|---|---|
| AbstractList | In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP. Supplementary materials for this article are available online In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exorne Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP. In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP. In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP.In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP. |
| Author | Zeng, Donglin Tao, Ran Lin, Dan-Yu |
| Author_xml | – sequence: 1 givenname: Ran surname: Tao fullname: Tao, Ran organization: Department of Biostatistics, Vanderbilt University Medical Center – sequence: 2 givenname: Donglin surname: Zeng fullname: Zeng, Donglin organization: Department of Biostatistics, University of North Carolina – sequence: 3 givenname: Dan-Yu surname: Lin fullname: Lin, Dan-Yu email: lin@bios.unc.edu organization: Department of Biostatistics, Vanderbilt University Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29479125$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUl1rFDEUHaRit9WfUBnwxQdnzedMgiAupdZCQWFb9C1kMkk3y0yyTTKW_nsz3d2ifbB5CUnOOffek3NUHDjvdFGcQDCHgIGPANYIEsrnCMBmDhGnrCYvihmkuKlQQ34dFLMJU02gw-IoxjXIq2HsVXGIOGk4RHRWDGfGWGW1S-VSD3Yjgxx0ClaVF87ooJ3S5bXrdCiv7nz1YyWjLpdy2PTW3Xwof9q0KhebfFIyWe9imXx5rp1OWWARo1f24b5cprGzOr4uXhrZR_1mtx8X11_Prk6_VZffzy9OF5eVooykipvGEERa3CqFMKIcsa7BykBmDJS8I1R12KAWtLIGNUUd1A1hXHetMoi3Ch8Xn7e6m7EddKfyeEH2YhPsIMO98NKKf1-cXYkb_1tQhjDFPAu83wkEfzvqmMRgo9J9L532YxQIAogxyaY_DwWA4QY29aT67gl07cfgshMC4ZoTVjPQZNTbv5t_7Hr_aRnwaQtQwccYtBHKpgef8yy2FxCIKSJiHxExRUTsIpLZ9Al7X-A53smWt47Jh0cSoQAxgCcfvmzfrTM-DPLOh74TSd73PpggnbJR4P-X-APzw90j |
| CitedBy_id | crossref_primary_10_1093_aje_kwz127 crossref_primary_10_1111_biom_13616 crossref_primary_10_1111_biom_13512 crossref_primary_10_1093_aje_kwz200 crossref_primary_10_1186_s13195_021_00808_5 crossref_primary_10_1002_sim_70111 crossref_primary_10_1002_sim_9300 crossref_primary_10_1002_sim_8799 crossref_primary_10_1002_sim_8876 crossref_primary_10_1093_biomtc_ujaf095 crossref_primary_10_1111_biom_13140 crossref_primary_10_21105_joss_07320 crossref_primary_10_1093_biomtc_ujad010 crossref_primary_10_1002_cjs_11566 crossref_primary_10_1093_biostatistics_kxab044 crossref_primary_10_1111_rssa_12689 crossref_primary_10_1007_s12561_023_09369_7 crossref_primary_10_1186_s12874_023_01950_4 crossref_primary_10_1002_sim_7914 crossref_primary_10_1159_000502738 crossref_primary_10_1038_s41586_024_08260_9 crossref_primary_10_1002_sim_8760 crossref_primary_10_1002_sim_9673 crossref_primary_10_1111_biom_13571 crossref_primary_10_1080_01621459_2019_1671200 crossref_primary_10_1515_scid_2019_0015 crossref_primary_10_1177_0962280220978500 |
| Cites_doi | 10.1111/1467-9868.00185 10.1093/biomet/84.1.57 10.1080/01621459.2015.1008099 10.1198/016214504000001853 10.1016/S0197-2456(97)00078-0 10.1214/aos/1059655907 10.1016/1047-2797(91)90005-W 10.1093/biomet/asn073 10.1093/aje/kwf113 10.1016/0895-4356(88)90080-7 10.1093/oxfordjournals.aje.a115184 10.1210/jc.2011-0322 10.1016/S0140-6736(08)60208-1 10.1111/j.2517-6161.1995.tb02036.x 10.1093/biomet/92.2.399 10.1073/pnas.1221713110 10.1093/oxfordjournals.aje.a113266 10.1137/1.9781611973907 10.1198/016214503388619184 10.1007/s10985-007-9066-9 10.2105/AJPH.41.3.279 10.1038/ng.271 |
| ContentType | Journal Article |
| Copyright | 2017 American Statistical Association 2017 Copyright © 2017 American Statistical Association 2017 American Statistical Association |
| Copyright_xml | – notice: 2017 American Statistical Association 2017 – notice: Copyright © 2017 American Statistical Association – notice: 2017 American Statistical Association |
| DBID | AAYXX CITATION NPM 8BJ FQK JBE K9. 7X8 7S9 L.6 5PM |
| DOI | 10.1080/01621459.2017.1295864 |
| DatabaseName | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) PubMed AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 1476 |
| ExternalDocumentID | PMC5823539 29479125 10_1080_01621459_2017_1295864 45028038 1295864 |
| Genre | Article Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: 10.13039/100000054 grantid: P01CA142538,R01CA082659 funderid: National Cancer Institute – fundername: 10.13039/100000057 grantid: R01GM047845 funderid: National Institute of General Medical Sciences – fundername: NCI NIH HHS grantid: P01 CA142538 – fundername: NIGMS NIH HHS grantid: R01 GM047845 – fundername: NCI NIH HHS grantid: P30 CA016086 – fundername: NCI NIH HHS grantid: R01 CA082659 |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABUFD ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADXHL AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGLNM AGMYJ AHDZW AIHAF AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IPNFZ IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LJTGL LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ ADYSH AFSUE ALIPV AMPGV AAYXX CITATION .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAFWJ AAIKQ AAKBW ABEFU ABJCF ABUWG ACAGQ ACGEE ADBBV ADULT AEUMN AFKRA AFQQW AGCQS AGLEN AGROQ AHMOU AI. ALCKM AMATQ AMEWO AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DWIFK DWQXO E.L FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IVXBP K9- KQ8 L6V M0C M0R M0T M1P M2O M2P M7S MVM NHB NPM NUSFT P-O PADUT PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNS S0X SJN TAQ TFMCV UB9 UKHRP UQL VH1 VOH WHG YXB YYP ZCG ZGI ZXP 8BJ FQK JBE K9. 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c584t-9f7f424b3bcc2325928d73cf18ff1a9d45cd3f2b0ba60652d1e7489edbcf29bc3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423299400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-1459 1537-274X |
| IngestDate | Tue Nov 04 01:59:23 EST 2025 Fri Oct 03 00:03:01 EDT 2025 Thu Oct 02 09:12:28 EDT 2025 Mon Nov 10 00:50:57 EST 2025 Thu Apr 03 06:58:36 EDT 2025 Tue Nov 18 21:46:27 EST 2025 Sat Nov 29 03:56:43 EST 2025 Thu May 29 09:14:48 EDT 2025 Mon Oct 20 23:48:49 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 520 |
| Keywords | Semiparametric efficiency Responseselective sampling Biased sampling Genome sequencing EM algorithm Sieve approximation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c584t-9f7f424b3bcc2325928d73cf18ff1a9d45cd3f2b0ba60652d1e7489edbcf29bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/Efficient_Semiparametric_Inference_Under_Two-Phase_Sampling_With_Applications_to_Genetic_Association_Studies/5829636 |
| PMID | 29479125 |
| PQID | 2369486807 |
| PQPubID | 41715 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2008371769 crossref_primary_10_1080_01621459_2017_1295864 crossref_citationtrail_10_1080_01621459_2017_1295864 proquest_journals_2369486807 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5823539 proquest_miscellaneous_2101334958 pubmed_primary_29479125 jstor_primary_45028038 informaworld_taylorfrancis_310_1080_01621459_2017_1295864 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-02 |
| PublicationDateYYYYMMDD | 2017-10-02 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationTitleAlternate | J Am Stat Assoc |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group,LLC – name: Taylor & Francis Ltd |
| References | cit0011 cit0022 cit0001 cit0012 cit0023 cit0010 cit0021 Robins J. (cit0013) 1995; 57 Grenander U. (cit0009) 1981 cit0008 cit0019 cit0006 cit0017 cit0007 cit0018 cit0004 cit0015 cit0005 cit0016 cit0002 cit0024 cit0003 cit0014 Taylor Jr H. A. (cit0020) 2005; 15 |
| References_xml | – ident: cit0011 doi: 10.1111/1467-9868.00185 – ident: cit0017 doi: 10.1093/biomet/84.1.57 – ident: cit0019 doi: 10.1080/01621459.2015.1008099 – ident: cit0023 doi: 10.1198/016214504000001853 – ident: cit0022 doi: 10.1016/S0197-2456(97)00078-0 – ident: cit0002 doi: 10.1214/aos/1059655907 – ident: cit0007 doi: 10.1016/1047-2797(91)90005-W – ident: cit0018 doi: 10.1093/biomet/asn073 – ident: cit0001 doi: 10.1093/aje/kwf113 – ident: cit0008 doi: 10.1016/0895-4356(88)90080-7 – volume: 15 start-page: S6-4 year: 2005 ident: cit0020 publication-title: Ethnicity and Disease – ident: cit0021 doi: 10.1093/oxfordjournals.aje.a115184 – ident: cit0010 doi: 10.1210/jc.2011-0322 – ident: cit0015 doi: 10.1016/S0140-6736(08)60208-1 – volume: 57 start-page: 409 year: 1995 ident: cit0013 publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1995.tb02036.x – ident: cit0003 doi: 10.1093/biomet/92.2.399 – ident: cit0012 doi: 10.1073/pnas.1221713110 – ident: cit0024 doi: 10.1093/oxfordjournals.aje.a113266 – volume-title: Abstract Inference year: 1981 ident: cit0009 – ident: cit0016 doi: 10.1137/1.9781611973907 – ident: cit0005 doi: 10.1198/016214503388619184 – ident: cit0004 doi: 10.1007/s10985-007-9066-9 – ident: cit0006 doi: 10.2105/AJPH.41.3.279 – ident: cit0014 doi: 10.1038/ng.271 |
| SSID | ssj0000788 |
| Score | 2.3961294 |
| Snippet | In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are... |
| SourceID | pubmedcentral proquest pubmed crossref jstor informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1468 |
| SubjectTerms | Algorithms Applications and Case Studies Asymptotic properties Biased sampling Biological markers Biomarkers Blood clinical trials Computer simulation Cost analysis cost effectiveness Density Dominance EM algorithm English for special purposes Epidemiology Extreme values Gene sequencing Genetics Genome sequencing Genomics image analysis Inference Medical imaging Normality quantitative traits Regression analysis Response-selective sampling Sampling Semiparametric efficiency sequence analysis Sieve approximation Simulation simulation models statistical inference Statistical methods Statistics |
| Title | Efficient Semiparametric Inference Under Two-Phase Sampling, With Applications to Genetic Association Studies |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1295864 https://www.jstor.org/stable/45028038 https://www.ncbi.nlm.nih.gov/pubmed/29479125 https://www.proquest.com/docview/2369486807 https://www.proquest.com/docview/2008371769 https://www.proquest.com/docview/2101334958 https://pubmed.ncbi.nlm.nih.gov/PMC5823539 |
| Volume | 112 |
| WOSCitedRecordID | wos000423299400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4tAL70KgVEbiSMrGj9g-VqgrkFBVqQvdW2Q7MbsSm0XdFP4-M44TdhHQAxwje2zHGXu-icffEPJKThzTgfFcmWBzUXOfA0qwubbaNRpMgop3YT59UGdnej435ymacJPCKtGHDj1RRNyrcXFbtxki4t4ASkF-bbxmUqhjMFhSl8gICqYfl-ZsevlzL1Yx8yRK5Cgy3OH5Uys71mmHu3SIV_wdEv01oHLLQk3v_Yd3u0_uJnhKT3p9ekBuNe1Dso-ItCd0fkRWp5F0AoZAL5rVEqnDV5iVy9P3w91BGpMp0dn3dX6-ACtJLyzGrbefX9PLZbegJ1uH5rRbU6S-hsbplqrQFN_4mHycns7evstTzobcA5TpchNUEEw47rwHsCYN07XiPhQ6hMKaWkhf88DcxFlwnSSriwb5b5ra-cCM8_yA7LXrtnlKaOGc18bVVslS2OCdt4GHwjOAjLVnNiNi-FaVT4TmmFfjS1UMvKdpMiuczCpNZkaOR7GvPaPHTQJmWxGqLv5KCX3ek4rfIHsQtWbsSUg8y-Y6I4eDGlVp19hUjJdG6FJPVEZejsWw3vEQx7bN-noT04Zy8MFL85c6sM9yDq4vdPOk18xxAMwIZQDVZkTt6OxYAfnGd0va5SLyjkvNuOTm2T_Mx3Oyj48xGpIdkr3u6rp5Qe74b6DFV0fktprro7iCfwDseEHB |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQaIX3qWBAkbiSMrGj9g-VqirViwrpC60t8h2YnYlNlu1Kfx9PM6DXQT0AGd7bMcZez7bM98AvBYjS5WnLJXam5SXzKUBJZhUGWUrFUyCjLEwnydyOlVnZ3o9FgbdKvEM7VuiiLhX4-LGy-jeJe5tgClIsI1xJpncDxZLqJzfhFsi2Frkz5-NT3_uxjLmnkSRFGX6KJ4_NbNhnzbYS3uPxd9h0V9dKtds1Pje__i6-3C3Q6jkoFWpB3Cjqh_CNoLSltP5ESwPI-9EGAM5qZYLZA9fYmIuR4778EES8ymR2fdV-nEeDCU5Mei6Xn95Q04XzZwcrL2bk2ZFkP06NE7WtIV0Lo6P4dP4cPbuKO3SNqQuoJkm1V56Trll1rmA14SmqpTM-Ux5nxldcuFK5qkdWRNOT4KWWYUUOFVpnafaOrYDW_WqrnaBZNY6pW1ppMi58c4645nPHA2osXTUJMD7n1W4jtMcU2t8LbKe-rSbzAIns-gmM4H9Qey8JfW4TkCva0LRxNsU36Y-Kdg1sjtRbYaeuMDnbKYS2Ov1qOg2jsuCslxzlauRTODVUByWPL7jmLpaXV3GzKEsHMNz_Zc6YatlLJx-QzdPWtUcBkA1lzoA2wTkhtIOFZByfLOkXswj9bhQlAmmn_7DfLyEO0ezD5Nicjx9_wy2sSg6R9I92GourqrncNt9Cxp98SIu5B-RKEUD |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BQaiXlq9CoICROJJ2YzuxfazarqioVit1ob1FthOzK7HZqpuWv8_Y-WAXFXqAsz124jx7nuPxG4AP6cBQ6SiLhXI65gWzMbIEHUstTSnRJYhwF-brqRiN5MWFGrfRhMs2rNLvoV0jFBHWaj-5LwvXRcTtI0vx-tr-mkki9tBhpTLj9-EBUufMg3wyPP-1GIuQetKbxN6mu8Tzp2bW3NOaeGkXsHgbFf09onLFRQ23_8PLPYatlp-SgwZQT-BeWT2FTU9JG0XnZzA_DqoT-AjkrJzPvHb43KflsuSkuzxIQjYlMvmxiMdTdJPkTPvA9erbR3I-q6fkYOXUnNQL4rWvsXGyghXSBjg-hy_D48nhp7hN2hBb5DJ1rJxwnHLDjLXI1lJFZSGYdYl0LtGq4KktmKNmYDTunVJaJKUXwCkLYx1VxrId2KgWVfkSSGKMlcoUWqQZ184aqx1ziaXIGQtLdQS8-1a5bRXNfWKN73nSCZ-2g5n7wczbwYxgrze7bCQ97jJQq0DI6_AvxTWJT3J2h-1OQE3fE0_9YTaTEex2MMrbZWOZU5YpLjM5EBG874txwvtTHF2Vi-tlyBvKcBOeqb_UwYWWMdz7YjcvGmT2D0AVFwppbQRiDbN9BS84vl5SzaZBeDyVlKVMvfqH8XgHj8ZHw_z0ZPT5NWz6khAZSXdho766Lt_AQ3uDgL56G6bxT4ecQ7U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Semiparametric+Inference+Under+Two-Phase+Sampling%2C+With+Applications+to+Genetic+Association+Studies&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Tao%2C+Ran&rft.au=Zeng%2C+Donglin&rft.au=Lin%2C+Dan-Yu&rft.date=2017-10-02&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=112&rft.issue=520&rft.spage=1468&rft.epage=1476&rft_id=info:doi/10.1080%2F01621459.2017.1295864&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2017_1295864 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |