Characterizing and correcting gradient errors in non-cartesian imaging: Are gradient errors linear time-invariant (LTI)?
Non‐Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non‐Cartesian techniques...
Uloženo v:
| Vydáno v: | Magnetic resonance in medicine Ročník 62; číslo 6; s. 1466 - 1476 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.12.2009
|
| Témata: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Non‐Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non‐Cartesian techniques by scanner manufacturers. Differences between the k‐space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three‐dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time‐invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | Non‐Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non‐Cartesian techniques by scanner manufacturers. Differences between the
k
‐space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three‐dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time‐invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc. Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non-Cartesian techniques by scanner manufacturers. Differences between the k-space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three-dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time-invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data.Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non-Cartesian techniques by scanner manufacturers. Differences between the k-space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three-dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time-invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data. Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non-Cartesian techniques by scanner manufacturers. Differences between the k-space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three-dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time-invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data. Magn Reson Med, 2009. [copy 2009 Wiley-Liss, Inc. Non‐Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non‐Cartesian techniques by scanner manufacturers. Differences between the k‐space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three‐dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time‐invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc. Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment towards successful implementation and eventual adoption of non-Cartesian techniques by scanner manufacturers. Differences between the k-space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multi-echo 3DPR acquisitions where the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time-invariant. This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data. Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non-Cartesian techniques by scanner manufacturers. Differences between the k-space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three-dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time-invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data. |
| Author | Brodsky, Ethan K. Samsonov, Alexey A. Block, Walter F. |
| AuthorAffiliation | 3 Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, Wisconsin 1 Department of Radiology, University of Wisconsin – Madison, Madison, Wisconsin 2 Departments of Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin |
| AuthorAffiliation_xml | – name: 2 Departments of Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin – name: 1 Department of Radiology, University of Wisconsin – Madison, Madison, Wisconsin – name: 3 Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, Wisconsin |
| Author_xml | – sequence: 1 givenname: Ethan K. surname: Brodsky fullname: Brodsky, Ethan K. email: brodskye@cae.wisc.edu organization: Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA – sequence: 2 givenname: Alexey A. surname: Samsonov fullname: Samsonov, Alexey A. organization: Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA – sequence: 3 givenname: Walter F. surname: Block fullname: Block, Walter F. organization: Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19877274$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1PFDEUhhuDkQW98A-YuVMuBvoxM229wOBGkGRZE4N42ZztdJfqTAdPuwj-ersu4Ff8uGlP0-d9z9v0bJGNMARHyGNGdxmlfK_HfpfzXN4jI1ZzXvJaVxtkRGVFS8F0tUm2YvxAKdVaVg_IJtNKSi6rEbkanwOCTQ79Fx8WBYS2sAOis2l1XCC03oVUOMQBY-FDkXuXFjC56CEUvodFBp8XB-h-ozsfHGCRfO9KHy4BsyIVzyanxzsvHpL7c-iie3Szb5N3h69Ox6_LyZuj4_HBpLS14rSspRZOADgGzZwBs2ym2lxa1VoQSs45pW3TzMQMdJOXSrc1bWpppdWztqJim-yvfS-Ws961NsdD6MwF5uR4bQbw5ueb4M_NYrg0XNVSKJENnt4Y4PBp6WIyvY_WdR0ENyyjUUoxqgT9H1JQVlNd_5OUQmgqOGsy-eTH-He5b38wAztrwOIQI7r5d4Sa1XSYPB3m23Rkdu8X1voEyQ-rl_vub4rPvnPXf7Y2J29PbhXlWuFjcld3CsCPppFC1ub99MiI6qw6fDmdmjPxFQ9Y3Ec |
| CitedBy_id | crossref_primary_10_1016_j_mri_2016_04_017 crossref_primary_10_3389_fphy_2023_1124980 crossref_primary_10_1002_mrm_30149 crossref_primary_10_1002_mp_15226 crossref_primary_10_1002_nbm_4695 crossref_primary_10_1038_s41598_020_70698_4 crossref_primary_10_1002_mrm_26481 crossref_primary_10_1002_mrm_70044 crossref_primary_10_1016_j_compbiomed_2022_106117 crossref_primary_10_1002_mrm_24348 crossref_primary_10_1002_mrm_70047 crossref_primary_10_1007_s10334_019_00770_2 crossref_primary_10_1002_acm2_70247 crossref_primary_10_1002_mrm_22564 crossref_primary_10_1002_mrm_23217 crossref_primary_10_1002_jmri_27196 crossref_primary_10_1016_j_mri_2018_04_020 crossref_primary_10_4028_www_scientific_net_AMR_718_720_641 crossref_primary_10_1016_j_jmr_2021_106945 crossref_primary_10_1007_s10278_024_01171_1 crossref_primary_10_1016_j_jmr_2020_106720 crossref_primary_10_1002_mrm_28013 crossref_primary_10_1109_TBME_2019_2895091 crossref_primary_10_1002_mp_14842 crossref_primary_10_1002_mrm_30615 crossref_primary_10_1148_radiol_14131273 crossref_primary_10_1186_s12968_017_0351_9 crossref_primary_10_1002_mrm_26315 crossref_primary_10_1002_mrm_27449 crossref_primary_10_1007_s10334_024_01187_2 crossref_primary_10_1186_1532_429X_13_18 crossref_primary_10_1002_mrm_25265 crossref_primary_10_1002_mrm_24730 crossref_primary_10_1002_mrm_26797 crossref_primary_10_1186_s12968_014_0097_6 crossref_primary_10_1118_1_4738965 crossref_primary_10_1002_mrm_25507 crossref_primary_10_1118_1_4936098 crossref_primary_10_3390_ma7010001 crossref_primary_10_1016_j_mri_2021_04_013 crossref_primary_10_1109_TMI_2020_2978405 crossref_primary_10_1137_16M1059205 crossref_primary_10_1186_1532_429X_14_72 crossref_primary_10_1016_j_mri_2020_06_016 crossref_primary_10_1016_j_jmr_2025_107951 crossref_primary_10_1088_1361_6560_abc04f crossref_primary_10_1002_mrm_22741 crossref_primary_10_1002_mrm_28566 crossref_primary_10_1002_cmr_a_20194 crossref_primary_10_1002_mrm_26863 crossref_primary_10_1007_s11307_019_01345_2 crossref_primary_10_1109_TMI_2014_2326864 crossref_primary_10_1118_1_4921418 crossref_primary_10_1007_s10334_023_01138_3 crossref_primary_10_1016_j_mri_2016_10_012 crossref_primary_10_1109_TMI_2012_2226050 crossref_primary_10_1002_mrm_28272 crossref_primary_10_1002_mrm_27383 crossref_primary_10_1002_mrm_25841 crossref_primary_10_1088_1361_6560_acc003 crossref_primary_10_1016_j_mri_2025_110367 crossref_primary_10_1002_mrm_26531 crossref_primary_10_1002_mrm_26499 crossref_primary_10_1016_j_mri_2015_01_005 crossref_primary_10_1002_jmri_27122 crossref_primary_10_1002_mrm_25648 |
| Cites_doi | 10.1002/mrm.1910390507 10.1016/0022-2364(90)90133-T 10.1002/(SICI)1522-2594(199901)41:1<87::AID-MRM13>3.0.CO;2-X 10.1002/mrm.21092 10.1006/jmre.1998.1396 10.1118/1.596012 10.1016/S0730-725X(97)00014-3 10.1002/mrm.10501 10.1088/0022-3735/20/4/014 10.1002/mrm.1910380318 10.1002/mrm.10212 10.1002/mrm.1910320308 10.1016/0022-2364(90)90365-G 10.1002/mrm.20389 10.1002/mrm.1910340323 |
| ContentType | Journal Article |
| Copyright | Copyright © 2009 Wiley‐Liss, Inc. (c) 2009 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. – notice: (c) 2009 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM |
| DOI | 10.1002/mrm.22100 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | CrossRef MEDLINE - Academic Engineering Research Database Engineering Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 1476 |
| ExternalDocumentID | PMC2857383 19877274 10_1002_mrm_22100 MRM22100 ark_67375_WNG_34V4FBNN_V |
| Genre | article Research Support, Non-U.S. Gov't Evaluation Study Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) funderid: R01NS065034 – fundername: GE Healthcare – fundername: National Cancer Institute (NCI) funderid: 1R01CA116380 – fundername: NIAMS NIH HHS grantid: U01 AR059514 – fundername: NINDS NIH HHS grantid: R01 NS065034 – fundername: NINDS NIH HHS grantid: R01NS065034 – fundername: NCI NIH HHS grantid: R01 CA116380 – fundername: NCI NIH HHS grantid: 1R01CA116380 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM |
| ID | FETCH-LOGICAL-c5820-5793e3aae1a6f1a1c1b8da6fc8dca387f200d66b3ba963ba49d50657c7c9bd403 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272067600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Tue Sep 30 16:56:46 EDT 2025 Tue Oct 07 09:47:19 EDT 2025 Tue Oct 07 09:35:55 EDT 2025 Sun Nov 09 10:23:52 EST 2025 Mon Jul 21 05:59:12 EDT 2025 Sat Nov 29 02:37:21 EST 2025 Tue Nov 18 21:28:03 EST 2025 Wed Jan 22 16:32:31 EST 2025 Sun Sep 21 06:14:26 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | (c) 2009 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5820-5793e3aae1a6f1a1c1b8da6fc8dca387f200d66b3ba963ba49d50657c7c9bd403 |
| Notes | ArticleID:MRM22100 GE Healthcare ark:/67375/WNG-34V4FBNN-V National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) - No. R01NS065034 istex:6C1FD366949E579C178B8B6B3CD322BEFB16728C National Cancer Institute (NCI) - No. 1R01CA116380 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Feature-1 |
| OpenAccessLink | http://doi.org/10.1002/mrm.22100 |
| PMID | 19877274 |
| PQID | 733903216 |
| PQPubID | 23462 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2857383 proquest_miscellaneous_888108303 proquest_miscellaneous_883015095 proquest_miscellaneous_733903216 pubmed_primary_19877274 crossref_primary_10_1002_mrm_22100 crossref_citationtrail_10_1002_mrm_22100 wiley_primary_10_1002_mrm_22100_MRM22100 istex_primary_ark_67375_WNG_34V4FBNN_V |
| PublicationCentury | 2000 |
| PublicationDate | December 2009 |
| PublicationDateYYYYMMDD | 2009-12-01 |
| PublicationDate_xml | – month: 12 year: 2009 text: December 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn. Reson. Med |
| PublicationYear | 2009 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Mason GF, Harshbarger T, Hetherington HP, Zhang Y, Pohost GM, Twieg DB. A Method to measure arbitrary k-space trajectories for rapid MR imaging. Magn Reson Med 1997; 38: 492-496. Barger A, Block WF, Grist TM, Mistretta C. Isotropic resolution and broad coverage in contrast-enhanced MR angiography using undersampled 3D projection trajectories. Magn Reson Med 2002; 48: 297-305. Takahashi A, Peters T. Compensation of multi-dimensional selective excitation pulses using measured k-space trajectories. Magn Reson Med 1995; 34: 446-456. Duyn JH, Yang Y, Frank JA, van der Veen JW. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998; 132: 150-153. Jehenson P, Westphal M, Schuff N. Analytical method for the compensation of eddy-current effects induced by pulsed magnetic field gradients in NMR systems. J Magn Reson 1990; 90: 264-278. Onodera T, Matsui S, Sekihara K, Kohno H. A method of measuring field-gradient modulation shapes. Applications to high-speed NMR spectroscopic imaging. J Phys [E] 1987; 20: 416-419. van Vaals JJ, Bergman AH. Optimization of eddy-current compensation. J Magn Reson 1990; 90: 52-70. Peters DC, Derbyshire JA, McVeigh ER. Centering the projection reconstruction trajectory: reducing gradient delay errors. Magn Reson Med 2003; 50: 1-6. Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Referenceless interleaved echo-planar imaging. Magn Reson Med 1999; 41: 87-94. Lu A, Brodsky EK, Grist TM, Block WF. Rapid fat-suppressed isotropic steady-state free precession imaging using true 3D multiple-half-echo projection reconstruction. Magn Reson Med 2005; 53: 692-699. Bernstein MA, Grgic M, Brosnan TJ, Pelc NJ. Reconstruction of phase contrast, phased-array multicoil data. Magn Reson Med 1994; 32: 330-334. Jung Y, Jashnani Y, Kijowski R, Block WF. Consistent non-Cartesian off-axis MRI quality: calibrating and removing multiple sources of demodulation phase errors. Magn Reson Med 2007; 57: 206-212. Jensen DJ, Brey WW, Delayre JL, Nayarana PA. Reduction of pulsed gradient settling time in the superconducting magnet of a magnetic resonance instrument. Med Phys 1987; 14: 859-862. Noll DC, Peltier SJ, Boada FE. Simultaneous multislice acquisition using rosette trajectories (SMART): a new imaging method for functional MRI. Magn Reson Med 1998; 39: 709-716. Papadakis NG, Wilkinson AA, Carpenter TA, Hall LD. A general method for measurement of the time integral of variant magnetic field gradients: application to 2D spiral imaging. Magn Reson Imag 1997; 15: 567-578. 1987; 14 2002; 48 1998; 39 1987; 20 2000 1997; 15 1995; 34 2008 2005; 53 1997; 38 2006 1999; 41 2003 2002 2003; 50 1998; 132 1990; 90 2007; 57 1994; 32 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_21_2 e_1_2_7_20_2 |
| References_xml | – reference: Jehenson P, Westphal M, Schuff N. Analytical method for the compensation of eddy-current effects induced by pulsed magnetic field gradients in NMR systems. J Magn Reson 1990; 90: 264-278. – reference: Noll DC, Peltier SJ, Boada FE. Simultaneous multislice acquisition using rosette trajectories (SMART): a new imaging method for functional MRI. Magn Reson Med 1998; 39: 709-716. – reference: Jensen DJ, Brey WW, Delayre JL, Nayarana PA. Reduction of pulsed gradient settling time in the superconducting magnet of a magnetic resonance instrument. Med Phys 1987; 14: 859-862. – reference: Lu A, Brodsky EK, Grist TM, Block WF. Rapid fat-suppressed isotropic steady-state free precession imaging using true 3D multiple-half-echo projection reconstruction. Magn Reson Med 2005; 53: 692-699. – reference: Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Referenceless interleaved echo-planar imaging. Magn Reson Med 1999; 41: 87-94. – reference: Bernstein MA, Grgic M, Brosnan TJ, Pelc NJ. Reconstruction of phase contrast, phased-array multicoil data. Magn Reson Med 1994; 32: 330-334. – reference: Duyn JH, Yang Y, Frank JA, van der Veen JW. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998; 132: 150-153. – reference: Onodera T, Matsui S, Sekihara K, Kohno H. A method of measuring field-gradient modulation shapes. Applications to high-speed NMR spectroscopic imaging. J Phys [E] 1987; 20: 416-419. – reference: Mason GF, Harshbarger T, Hetherington HP, Zhang Y, Pohost GM, Twieg DB. A Method to measure arbitrary k-space trajectories for rapid MR imaging. Magn Reson Med 1997; 38: 492-496. – reference: Jung Y, Jashnani Y, Kijowski R, Block WF. Consistent non-Cartesian off-axis MRI quality: calibrating and removing multiple sources of demodulation phase errors. Magn Reson Med 2007; 57: 206-212. – reference: Papadakis NG, Wilkinson AA, Carpenter TA, Hall LD. A general method for measurement of the time integral of variant magnetic field gradients: application to 2D spiral imaging. Magn Reson Imag 1997; 15: 567-578. – reference: Peters DC, Derbyshire JA, McVeigh ER. Centering the projection reconstruction trajectory: reducing gradient delay errors. Magn Reson Med 2003; 50: 1-6. – reference: van Vaals JJ, Bergman AH. Optimization of eddy-current compensation. J Magn Reson 1990; 90: 52-70. – reference: Takahashi A, Peters T. Compensation of multi-dimensional selective excitation pulses using measured k-space trajectories. Magn Reson Med 1995; 34: 446-456. – reference: Barger A, Block WF, Grist TM, Mistretta C. Isotropic resolution and broad coverage in contrast-enhanced MR angiography using undersampled 3D projection trajectories. Magn Reson Med 2002; 48: 297-305. – volume: 15 start-page: 567 year: 1997 end-page: 578 article-title: A general method for measurement of the time integral of variant magnetic field gradients: application to 2D spiral imaging publication-title: Magn Reson Imag – volume: 34 start-page: 446 year: 1995 end-page: 456 article-title: Compensation of multi‐dimensional selective excitation pulses using measured ‐space trajectories publication-title: Magn Reson Med – volume: 20 start-page: 416 year: 1987 end-page: 419 article-title: A method of measuring field‐gradient modulation shapes. Applications to high‐speed NMR spectroscopic imaging publication-title: J Phys [E] – start-page: 105 year: 2008 – volume: 41 start-page: 87 year: 1999 end-page: 94 article-title: Referenceless interleaved echo‐planar imaging publication-title: Magn Reson Med – volume: 32 start-page: 330 year: 1994 end-page: 334 article-title: Reconstruction of phase contrast, phased‐array multicoil data publication-title: Magn Reson Med – volume: 48 start-page: 297 year: 2002 end-page: 305 article-title: Isotropic resolution and broad coverage in contrast‐enhanced MR angiography using undersampled 3D projection trajectories publication-title: Magn Reson Med – year: 2002 – volume: 50 start-page: 1 year: 2003 end-page: 6 article-title: Centering the projection reconstruction trajectory: reducing gradient delay errors publication-title: Magn Reson Med – volume: 38 start-page: 492 year: 1997 end-page: 496 article-title: A Method to measure arbitrary ‐space trajectories for rapid MR imaging publication-title: Magn Reson Med – volume: 132 start-page: 150 year: 1998 end-page: 153 article-title: Simple correction method for ‐space trajectory deviations in MRI publication-title: J Magn Reson – year: 2006 – year: 2003 – volume: 14 start-page: 859 year: 1987 end-page: 862 article-title: Reduction of pulsed gradient settling time in the superconducting magnet of a magnetic resonance instrument publication-title: Med Phys – start-page: 186 year: 2000 – volume: 53 start-page: 692 year: 2005 end-page: 699 article-title: Rapid fat‐suppressed isotropic steady‐state free precession imaging using true 3D multiple‐half‐echo projection reconstruction publication-title: Magn Reson Med – volume: 90 start-page: 264 year: 1990 end-page: 278 article-title: Analytical method for the compensation of eddy‐current effects induced by pulsed magnetic field gradients in NMR systems publication-title: J Magn Reson – volume: 57 start-page: 206 year: 2007 end-page: 212 article-title: Consistent non‐Cartesian off‐axis MRI quality: calibrating and removing multiple sources of demodulation phase errors publication-title: Magn Reson Med – volume: 39 start-page: 709 year: 1998 end-page: 716 article-title: Simultaneous multislice acquisition using rosette trajectories (SMART): a new imaging method for functional MRI publication-title: Magn Reson Med – volume: 90 start-page: 52 year: 1990 end-page: 70 article-title: Optimization of eddy‐current compensation publication-title: J Magn Reson – ident: e_1_2_7_16_2 doi: 10.1002/mrm.1910390507 – ident: e_1_2_7_2_2 – ident: e_1_2_7_12_2 doi: 10.1016/0022-2364(90)90133-T – ident: e_1_2_7_10_2 – ident: e_1_2_7_4_2 doi: 10.1002/(SICI)1522-2594(199901)41:1<87::AID-MRM13>3.0.CO;2-X – ident: e_1_2_7_18_2 doi: 10.1002/mrm.21092 – ident: e_1_2_7_9_2 doi: 10.1006/jmre.1998.1396 – ident: e_1_2_7_21_2 – ident: e_1_2_7_11_2 doi: 10.1118/1.596012 – ident: e_1_2_7_6_2 doi: 10.1016/S0730-725X(97)00014-3 – ident: e_1_2_7_14_2 – ident: e_1_2_7_3_2 doi: 10.1002/mrm.10501 – ident: e_1_2_7_5_2 doi: 10.1088/0022-3735/20/4/014 – ident: e_1_2_7_8_2 doi: 10.1002/mrm.1910380318 – ident: e_1_2_7_15_2 doi: 10.1002/mrm.10212 – ident: e_1_2_7_19_2 doi: 10.1002/mrm.1910320308 – ident: e_1_2_7_13_2 doi: 10.1016/0022-2364(90)90365-G – ident: e_1_2_7_17_2 doi: 10.1002/mrm.20389 – ident: e_1_2_7_20_2 – ident: e_1_2_7_7_2 doi: 10.1002/mrm.1910340323 |
| SSID | ssj0009974 |
| Score | 2.2561898 |
| Snippet | Non‐Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary... Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1466 |
| SubjectTerms | Algorithms Computer Simulation Eddy current gradient calibration gradient error Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods k-space trajectory k-space trajectory deviation Magnetic Resonance Imaging - methods Models, Biological Models, Statistical non-cartesian imaging Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Time Factors |
| Title | Characterizing and correcting gradient errors in non-cartesian imaging: Are gradient errors linear time-invariant (LTI)? |
| URI | https://api.istex.fr/ark:/67375/WNG-34V4FBNN-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22100 https://www.ncbi.nlm.nih.gov/pubmed/19877274 https://www.proquest.com/docview/733903216 https://www.proquest.com/docview/883015095 https://www.proquest.com/docview/888108303 https://pubmed.ncbi.nlm.nih.gov/PMC2857383 |
| Volume | 62 |
| WOSCitedRecordID | wos000272067600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKFxAXHgVKeFQWQmg5pE1iZ23DAUFhoVI3QlUfe7Mcx6ERbBYl2wohDvwEfiO_hLGTzbJqi5C4Jco4cewZ-xt7_A1CT8Ig07kNqwB0IHyLiH1BLZAjhkUpzHGpaJJNsCTh47H4sIJezM_CNPwQ3YKbtQw3XlsDV2m9tSANnVSTzQgcFvDXe_ZQFXhevTd7w4PdBeeuaEiYGbVDjaBzYqEg2uoKL01HPduyX8_DmmdDJv-Esm4uGt74r7-4ia63EBS_anTmFlox5Rq6Omo32dfQFRcVquvb6Pt2R-f8DaY4rMoMa5vOQ9tgafyxcvFiM2yqalrVuChxOS1__fipbaCoPZ2Ji4nLgvQcvmbOyNvaqwrb9PZQqChPwW-Hjsb93f2dZy_voIPh2_3t936brsHXMeAIPwZTN0QpE6pBHqpQhynP4FLzTCvCWQ4GmUHnk1SB1aeKiiwGAMQ00yLNaEDuolWopbmHcJALmoUmG8SGU5WxlJncCOsrGs2FDjzUn_ea1C2XuU2p8Vk2LMyRhHaVrl099LgT_dIQeJwn9NR1fSehqk824o3F8ih5Jwk9pMPXSSIPPYTnuiHBDu3miirN9KSWjBARkCgcXCzCObHrSyL-mwgPARQHxEPrjcItKi04eEKMeogtqWInYInCl5-UxbEjDI94zAiHd_adKl7cDnK0N3IX9_9d9AG6FrU5NYLwIVqdVSfmEbqsT2dFXW2gS2zMN1rLhLujneQ35gU_yw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6aWm4vXAaMcLUQQuWhLImd2kZICAZlE22Epm7szXIcd0TQFKXdhBAP_AR-I7-E4yRNqbYhJN4s5Thx7HPs79jH3wF4FPipGbuwCkQHsusQcVcyB-So5WGCa1wiq2QTPI7FwYF8vwbPF3dhKn6IZsPNWUY5XzsDdxvSm0vW0EkxeRqix4IOe5v1KBctaL_e7e8NlqS7smJh5szNNZItmIX8cLOpvLIetV3Xfj0NbJ6MmfwTy5aLUf_K__3GVbhcg1DystKaa7Bm83W4MKyP2dfhfBkXambX4ftWQ-j8DRc5ovOUGJfQw7hwaXJYlBFjc2KLYlrMSJaTfJr_-vHTuFBRdz-TZJMyD9Iz_Jo9Ie-arwviEtxjpSw_Rs8dh5p0BqOdJy9uwF7_zWhru1snbOiaCJFEN0Jjt1RrG-jeONCBCRKRYtGI1Ggq-BhNMsXhp4lGu080k2mEEIgbbmSSMp_ehBa20t4C4o8lSwOb9iIrmE55wu3YSuctWiOk8T3oLIZNmZrN3CXV-KwqHuZQYb-qsl89eNiIfqkoPE4TelyOfSOhi08u5o1H6kP8VlG2z_qv4ljte0AWyqHQEt3xis7t9GimOKXSp2HQO1tECOp2mGT0NxERICz2qQcblcYtGy0F-kKcecBXdLERcFThq0_y7GNJGR6KiFOB7-yUunh2P6jh7rAs3P530QdwcXs0HKjBTvzuDlwK6wwbfnAXWvPiyN6Dc-Z4ns2K-7WB_gbZGEHE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELWqFipeuJRbuFoIoeUhNImdtY2QEBQWVnSjCpW2b5ZjOxDBZqvstkKIBz6Bb-RLGDvZLKu2CIk3Sxknjj1jn7HHZxB6GEdGFy6sAtCBCB0iDgV1QI5YluSwxuWiSTbBsowfHIidFfRsfhem4YfoNtycZfj52hm4PTTF5oI1dFyPnyTgsYDDvkYBh7uArv1htqDcFQ0HM6NuphF0zisUJZtd1aXVaM117NfToObJiMk_kaxfigaX_u8nLqOLLQTFLxqduYJWbLWB1kftIfsGOu-jQvX0Kvq-1dE5f4MlDqvKYO3SeWgXLI0_1j5ebIZtXU_qKS4rXE2qXz9-ahco6m5n4nLssyA9ha_ZE_Ku-arGLr09VCqrY_DbYaBxb3t3-Pj5NfRh8Hp3623YpmsIdQo4IkzB1C1RysaqX8Qq1nHODRQ1N1oRzgowSAODT3IFVp8rKkwKAIhppkVuaESuo1Vopb2JcFQIamJr-qnlVBmWM1tY4XxFq7nQUYB682GTuuUydyk1vsiGhTmR0K_S92uAHnSihw2Bx2lCj_zYdxKq_uwi3lgq97M3ktA9OniZZXIvQHiuHBLs0B2uqMpOjqaSESIiksT9s0U4J25_SaR_E-ExgOKIBOhGo3GLRgsOnhCjAWJLutgJOKLw5SdV-ckThic8ZYTDO3teF8_uBzl6P_KFW_8ueh-t77wayO1h9u42upC06TWi-A5andVH9i46p49n5bS-563zNyl0QBo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+and+correcting+gradient+errors+in+non-cartesian+imaging%3A+Are+gradient+errors+linear+time-invariant+%28LTI%29%3F&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Brodsky%2C+Ethan+K&rft.au=Samsonov%2C+Alexey+A&rft.au=Block%2C+Walter+F&rft.date=2009-12-01&rft.issn=1522-2594&rft.volume=62&rft.issue=6&rft.spage=1466&rft.epage=1476&rft_id=info:doi/10.1002%2Fmrm.22100&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |